Non-Shannon type conditional information inequalities: proofs and application

Andrei Romashchenko (CNRS, LIRMM)

August 19, Prague

linear inequalities for the Shannon entropy that are valid under **linear** constraints

linear inequalities for the Shannon entropy that are valid under **linear** constraints

i.e., [some **linear** constraints] \implies [some **linear** inequality]

linear inequalities for the Shannon entropy that are valid under **linear** constraints

i.e., [some **linear** constraints] \implies [some **linear** inequality]

e.g.,
$$I(x : y) = I(x : y|a) = 0 \Longrightarrow I(a : b) \le I(a : b | x) + I(a : b | y)$$

[Zhang-Yeung'97]

piecewise-linear conditional inequalities [Matúš 2006]

- piecewise-linear conditional inequalities [Matúš 2006]
- non-linear information inequalities [Chan–Grant 2008, based on Matúš 2007]

- piecewise-linear conditional inequalities [Matúš 2006]
- non-linear information inequalities
 [Chan–Grant 2008, based on Matúš 2007]
- conditional information equalities
 [conditional independence properties, Studený, Matúš]

Outline

Three types of conditional information inequalities

- 2 Conditional inequalities: geometric view
- 3 How people prove unconditional information inequalities
- 4 How people prove conditional information inequalities
- Applications of conditional information inequalities
 non-essentially conditional inequalities
 - essentially conditional inequalities for almost-entropic points
 - essentially conditional inequalities for entropic points

(a) Trivial, Shannon-type:

if I(x : y) = 0 then $H(a) \le H(a | x) + H(a | y)$

(a) Trivial, Shannon-type:

if I(x : y) = 0 then $H(a) \le H(a | x) + H(a | y)$

this is true since

 $H(a) \le H(a | x) + H(a | y) + I(x : y)$ [Shannon-type unconditional inequalitiy]

(b) Trivial, non Shannon-type:

if I(a : b | z) = I(a : z | b) = I(b : z | a) = 0 then $I(a : b) \le I(a : b | x) + I(a : b | y) + I(x : y)$

(b) Trivial, non Shannon-type:

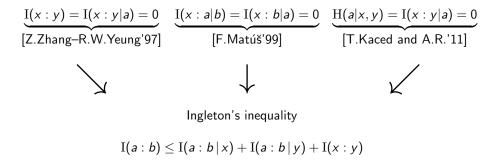
if
$$I(a : b | z) = I(a : z | b) = I(b : z | a) = 0$$
 then
 $I(a : b) \le I(a : b | x) + I(a : b | y) + I(x : y)$

this is true since

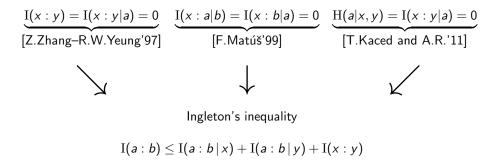
$$I(a:b) \leq I(a:b|x) + I(a:b|y) + I(x:y) + I(a:b|z) + I(a:z|b) + I(b:z|a)$$

[non Shannon-type unconditional inequalitiy]

(c) Non-trivial, e.g.:



(c) Non-trivial, e.g.:



Claim: These three implications are *essentially* conditional inequalities.

The inequality

$$\mathrm{H}(a|x,y) = \mathrm{I}(x:y|a) = 0 \Rightarrow \mathrm{I}(a:b) \leq \mathrm{I}(a:b|x) + \mathrm{I}(a:b|y) + \mathrm{I}(x:y)$$

is essentially conditional.

The inequality

$$\mathrm{H}(a|x,y) = \mathrm{I}(x:y|a) = 0 \Rightarrow \mathrm{I}(a:b) \leq \mathrm{I}(a:b|x) + \mathrm{I}(a:b|y) + \mathrm{I}(x:y)$$

is essentially conditional.

We cannot reduce it to an unconditional inequality!

The inequality

$$\mathrm{H}(a|x,y) = \mathrm{I}(x:y|a) = 0 \Rightarrow \mathrm{I}(a:b) \leq \mathrm{I}(a:b|x) + \mathrm{I}(a:b|y) + \mathrm{I}(x:y)$$

is essentially conditional.

We cannot reduce it to an unconditional inequality!

That is, for all λ_1, λ_2 the inequality

 $I(a:b) \leq I(a:b|x) + I(a:b|y) + I(x:y) + \lambda_1 H(a|x,y) + \lambda_2 I(x:y \mid a)$

does not hold.

The inequality

$$\mathrm{H}(a|x,y) = \mathrm{I}(x:y|a) = 0 \Rightarrow \mathrm{I}(a:b) \leq \mathrm{I}(a:b|x) + \mathrm{I}(a:b|y) + \mathrm{I}(x:y)$$

is essentially conditional.

We cannot reduce it to an unconditional inequality!

More precisely, for all λ_1, λ_2 there exist (a, b, x, y) such that

 $I(a:b) \leq I(a:b|x) + I(a:b|y) + I(x:y) + \lambda_1 H(a|x,y) + \lambda_2 I(x:y \mid a)$

Outline

Three types of conditional information inequalities

2 Conditional inequalities: geometric view

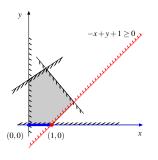
3) How people prove unconditional information inequalities

4 How people prove conditional information inequalities

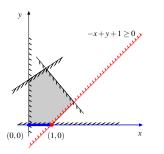
Applications of conditional information inequalities
 non-essentially conditional inequalities

essentially conditional inequalities for almost-entropic points

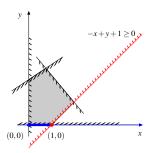
• essentially conditional inequalities for entropic points



if y = 0 then $x \le 1$

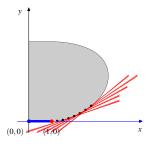


if y = 0 then $x \le 1 \iff x \le 1 + y$

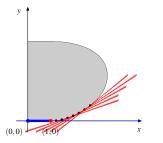


if y = 0 then $x \le 1 \iff x \le 1 + y$

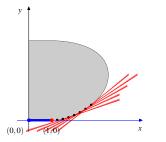
NOT essentially conditional



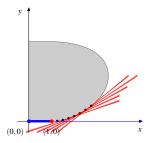
if y = 0 then $x \le 1$



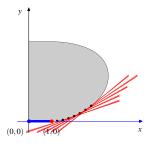
if y = 0 then $x \le 1$ follows from an *infinite* family of linear inequalities



if y = 0 then $x \le 1$ this inequality is essentially conditional

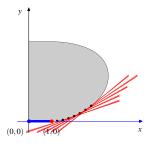


if y = 0 then $x \le 1$ this inequality is essentially conditional NO unconditional inequality $x \le 1 + \lambda y$



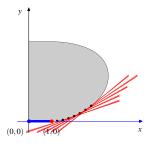
if y = 0 then $x \le 1$ this inequality is essentially conditional NO unconditional inequality $x \le 1 + \lambda y$

 \exists one essentially conditional inequality \Longrightarrow the grey area is not polyhedral



if y = 0 then $x \le 1$ this inequality is essentially conditional NO unconditional inequality $x \le 1 + \lambda y$

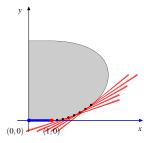
 \exists one essentially conditional inequality \Longrightarrow the grey area is not polyhedral $\Longrightarrow \exists$ infinitely many independent tangent lines



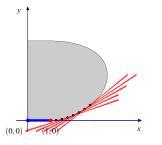
if y = 0 then $x \le 1$ this inequality is essentially conditional NO unconditional inequality $x \le 1 + \lambda y$

 \exists one essentially conditional inequality \Longrightarrow the grey area is not polyhedral $\Longrightarrow \exists$ infinitely many independent tangent lines

formal proof: Farkas lemma

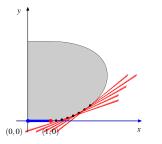


if y = 0 then $x \le 1$ (...) this inequality is essentially conditional

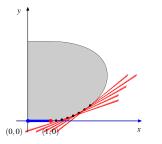


if y = 0 then $x \le 1$ (...) this inequality is essentially conditional

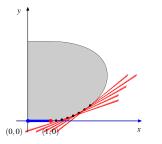
one essentially conditional inequality for the grey area \downarrow infinitely many independent unconditional inequality for the grey area



one essentially conditional inequality for (almost) entropic points (\geq 4 r.v.) $\downarrow\downarrow$ infinitely many unconditional information inequalities



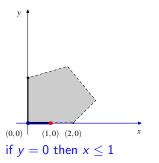
one essentially conditional inequality for (almost) entropic points (\geq 4 r.v.) \downarrow infinitely many unconditional information inequalities (in \mathbb{R}^{15})

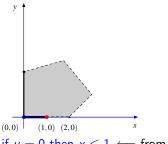


one essentially conditional inequality for (almost) entropic points (\geq 4 r.v.) infinitely many unconditional information inequalities (in \mathbb{R}^{15}) \Downarrow

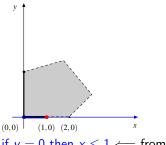
Theorem (Matúš)

There exist infinitely many independent linear information inequalities.



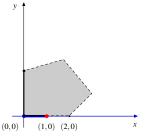


if y = 0 then $x \le 1$ \Leftarrow from a complex structure of the borderline



if y = 0 then $x \le 1$ \Leftarrow from a complex structure of the borderline

NO unconditional inequality $x \leq 1 + \lambda y$



if y = 0 then $x \le 1$ \Leftarrow from a complex structure of the borderline

NO unconditional inequality $x \leq 1 + \lambda y$

this inequality is also essentially conditional

Outline

Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

Applications of conditional information inequalities
 non-essentially conditional inequalities

- essentially conditional inequalities for almost-entropic points
- essentially conditional inequalities for entropic points

How people prove unconditional information inequalities

How people prove unconditional information inequalities

People use **conditional** inequalities with **delusive** constraints.

How people prove unconditional information inequalities

People use **conditional** inequalities with **delusive** constraints.

Simplified Example:

If I(a, b : z|xy) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b) + I(x : y|z) + I(x : z|y) + I(y : z|x)$ [Shannon-type conditional inequality]

How people prove unconditional information inequalities

People use **conditional** inequalities with **delusive** constraints.

Simplified Example:

If I(a, b : z|xy) = 0 then $I(x : y) \leq I(x : y|a) + I(x : y|b) + I(a : b) + I(x : y|z) + I(x : z|y) + I(y : z|x)$ [Shannon-type conditional inequality]

We forget the constraint and obtain a non-Shannon type unconditional inequality.

How people prove unconditional information inequalities

People use **conditional** inequalities with **delusive** constraints.

More "physical" example: Ahlswede-Körner Lemma

in more detail: the talk of Carles Padró

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Classical argument [Zhang-Yeung]:

Copy Lemma

For all (a, b, x, y) there is a' (clone of a conditional on (x, y)) such that

•
$$H(a') = H(a),$$

 $H(a', x) = H(a, x), H(a', y) = H(a, y),$
 $H(a', x, y) = H(a, x, y)$

• a' and (a, b) are independent conditional on (x, y)

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Classical argument [Zhang-Yeung]:

Copy Lemma

For all (a, b, x, y) there is a' (clone of a conditional on (x, y)) such that

• H(a') = H(a), H(a', x) = H(a, x), H(a', y) = H(a, y),H(a', x, y) = H(a, x, y)

• a' and (a, b) are independent conditional on (x, y)

If a' satisfies these constraints then $I(x : y) \leq I(x : y|a) + I(x : y|b) + I(a : b) + I(x : y|a) + I(x : a|y) + I(y : a|x)$ [Shannon-type conditional inequality]

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Classical argument [Zhang-Yeung]:

Copy Lemma

For all (a, b, x, y) there is a' (clone of a conditional on (x, y)) such that

• H(a') = H(a), H(a', x) = H(a, x), H(a', y) = H(a, y),H(a', x, y) = H(a, x, y)

• a' and (a, b) are independent conditional on (x, y)

If a' satisfies these constraints then $I(x : y) \leq I(x : y|a) + I(x : y|b) + I(a : b) + I(x : y|a) + I(x : a|y) + I(y : a|x)$ [Shannon-type conditional inequality]

We forget the constraint and obtain a non-Shannon type unconditional inequality.

prague

How people prove unconditional information inequalities

People use **conditional** inequalities with **delusive** constraints.

Classical example [Zhang-Yeung]:

Copy Lemma

For all (a, b, x, y) there is a' (clone of a conditional on (x, y)) such that

•
$$H(a') = H(a),$$

 $H(a', x) = H(a, x), H(a', y) = H(a, y),$
 $H(a', x, y) = H(a, x, y)$

• a' and (a, b) are independent conditional on (x, y)

All known proofs of non-Shannon type unconditional inequalities can be translated in the language of the Copy Lemma [observed by T. Kaced].

Outline

Three types of conditional information inequalities

- 2 Conditional inequalities: geometric view
- 3) How people prove unconditional information inequalities

4 How people prove conditional information inequalities

- Applications of conditional information inequalities
 non-essentially conditional inequalities
 - essentially conditional inequalities for almost-entropic points
 - essentially conditional inequalities for entropic points

Proposition

If
$$I(x : a|y) = I(y : a|x) = 0$$
 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Proposition

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Lazy proof: We know from [Zhang-Yeung 98] that for all (a, b, x, y)

$$I(x:y) \le 2I(x:y|a) + I(x:y|b) + I(a:b) + I(x:a|y) + I(y:a|x)$$

This universal inequality implies our conditional inequality.

Proposition

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Direct application of the Copy Lemma (from the proof of [Zhang-Yeung 98]): Every tuple **all** (a, b, x, y) can be extended to (a, b, x, y, a') such that

- (a', x, y) has the same distribution as (a, x, y)
- a' and (a, b) are independent conditional on (x, y)

[we have made a **clone** of a conditional on (x, y)]

Proposition

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Direct application of the Copy Lemma (from the proof of [Zhang-Yeung 98]): Every tuple **all** (a, b, x, y) can be extended to (a, b, x, y, a') such that

- (a', x, y) has the same distribution as (a, x, y)
- a' and (a, b) are independent conditional on (x, y)

[we have made a **clone** of a conditional on (x, y)]

[Shannon-type inequalities + our constraints + definition of $a' \implies$ our inequality.

Proposition

If
$$I(x : a|y) = I(y : a|x) = 0$$
 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Direct application of the Copy Lemma (from the proof of [Zhang-Yeung 98]): Every tuple **all** (a, b, x, y) can be extended to (a, b, x, y, a') such that

- (a', x, y) has the same distribution as (a, x, y)
- a' and (a, b) are independent conditional on (x, y)

[we have made a **clone** of *a* conditional on (x, y)]

There is a Shannon type inequality

$$I(x:y) \le I(x:y|a) + I(x:y|b) + I(a:b) + I(x:a'|y) + I(y:a'|x) + I(x:y|a') + 3I(a':a,b|x,y)$$

[this inequality + our constraints + definition of a'] \Longrightarrow our inequality.

Proposition

 $\textit{If } I(x:a|y) = I(y:a|x) = 0 \textit{ then } I(x:y) \leq 2I(x:y|a) + \textit{I}(x:y|b) + I(a:b)$

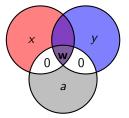
Materialization of the mutual information:

Lemma on Double Markov Property.

For all (a, x, y), if I(x : a|y) = I(y : a|x) = 0 then there exists a *w* such that

•
$$\operatorname{H}(w) = \operatorname{I}(x, y : a),$$

•
$$\operatorname{H}(w|x) = \operatorname{H}(w|y) = 0.$$



Proposition

 $\textit{If } I(x:a|y) = I(y:a|x) = 0 \textit{ then } I(x:y) \leq 2I(x:y|a) + \textit{I}(x:y|b) + I(a:b)$

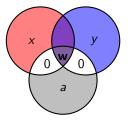
Materialization of the mutual information:

Lemma on Double Markov Property.

For all (a, x, y), if I(x : a|y) = I(y : a|x) = 0 then there exists a *w* such that

•
$$H(w) = I(x, y : a),$$

•
$$\operatorname{H}(w|x) = \operatorname{H}(w|y) = 0.$$



[Shannon-type inequalities + our constraints + definition of w] \Longrightarrow our inequality.

Proposition

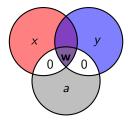
 $\textit{If } I(x:a|y) = I(y:a|x) = 0 \textit{ then } I(x:y) \leq 2I(x:y|a) + \textit{I}(x:y|b) + I(a:b)$

Materialization of the mutual information:

Lemma on Double Markov Property. For all (a, x, y), if I(x : a|y) = I(y : a|x) = 0 then there exists a *w* such that

• H(w) = I(x, y : a),

•
$$\operatorname{H}(w|x) = \operatorname{H}(w|y) = 0.$$



For all a, b, x, y, w we have the following Shannon type inequality

 $\mathrm{H}(w) \quad \leq \quad 2\mathrm{H}(w|x) \quad + \quad 2\mathrm{H}(w|y) \quad + \quad \mathrm{I}(x:y|a) + \mathrm{I}(x:y|b) + \mathrm{I}(a:b)$

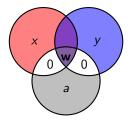
Proposition

 $\textit{If } I(x:a|y) = I(y:a|x) = 0 \textit{ then } I(x:y) \leq 2I(x:y|a) + \textit{I}(x:y|b) + I(a:b)$

Materialization of the mutual information:

Lemma on Double Markov Property. For all (a, x, y), if I(x : a|y) = I(y : a|x) = 0 then there exists a *w* such that

- H(w) = I(x, y : a),
- $\operatorname{H}(w|x) = \operatorname{H}(w|y) = 0.$



For all a, b, x, y, w we have the following Shannon type inequality

$$\begin{array}{rrrr} {\rm H}(w) & \leq & 2{\rm H}(w|x) & + & 2{\rm H}(w|y) & + & {\rm I}(x:y|a) + {\rm I}(x:y|b) + {\rm I}(a:b) \\ & & || & & || \\ & & || & & || \\ {\rm I}(x,y:a) & & 0 & & 0 \end{array}$$

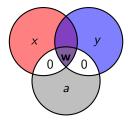
Proposition

 $\textit{If } I(x:a|y) = I(y:a|x) = 0 \textit{ then } I(x:y) \leq 2I(x:y|a) + \textit{I}(x:y|b) + I(a:b)$

Materialization of the mutual information:

Lemma on Double Markov Property. For all (a, x, y), if I(x : a|y) = I(y : a|x) = 0 then there exists a *w* such that

- H(w) = I(x, y : a),
- $\operatorname{H}(w|x) = \operatorname{H}(w|y) = 0.$



For all a, b, x, y, w we have the following Shannon type inequality

$$\begin{array}{rcl} H(w) & \leq & 2H(w|x) & + & 2H(w|y) & + & I(x:y|a) + I(x:y|b) + I(a:b) \\ & || & & || & & || \\ I(x,y:a) & & 0 & & 0 \\ & || & & \\ I(x:y) & - & I(x:y|a) \end{array}$$

Proposition

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Proposition

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le 2I(x : y|a) + I(x : y|b) + I(a : b)$

Theorem (Matúš)

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Theorem (Matúš)

If I(x:a|y) = I(y:a|x) = 0 then $I(x:y) \le I(x:y|a) + I(x:y|b) + I(a:b)$

Idea of the proof:

Approximate this inequality by infinitely many non-Shannon type inequalities.

Theorem (Matúš)

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Sketch of the proof: For each integer k > 0 we can prove the following *non-Shannon type* inequality

$$\begin{split} \mathrm{I}(x:y) &\leq \mathrm{I}(x:y|a) + I(x:y|b) + \mathrm{I}(a:b) \\ & \frac{1}{k} \mathrm{I}(x:y|a) + \frac{k+1}{2} \big(\mathrm{I}(x:a|y) + \mathrm{I}(y:a|x) \big) \end{split}$$

Theorem (Matúš)

If I(x : a|y) = I(y : a|x) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Sketch of the proof: For each integer k > 0 we can prove the following *non-Shannon type* inequality

$$I(x:y) \leq I(x:y|a) + I(x:y|b) + I(a:b) \\ \frac{1}{k}I(x:y|a) + \frac{k+1}{2}(I(x:a|y) + I(y:a|x))$$

It remains to let $k \to \infty$.

Theorem

If I(x : y|a) = H(a|x, y) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Theorem

If I(x : y|a) = H(a|x, y) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Idea of the proof: augmented Copy Lemma

Theorem

If I(x : y|a) = H(a|x, y) = 0 then $I(x : y) \le I(x : y|a) + I(x : y|b) + I(a : b)$

Sketch of the proof (augmented Copy Lemma):

 make independent clones x' and y' for x and y respectively conditional on (a, b)

Theorem

 $\textit{If } I(x:y|a) = H(a|x,y) = 0 \textit{ then } I(x:y) \leq I(x:y|a) + I(x:y|b) + I(a:b)$

Sketch of the proof (augmented Copy Lemma):

- make independent clones x' and y' for x and y respectively conditional on (a, b)
- observation 1:

$$\begin{aligned} H(x', y', a, b) &= H(a, b) + H(x'|a, b) + H(y'|a, b) \\ &= H(a, b) + H(x|a, b) + H(y|a, b) \end{aligned}$$

Theorem

 $\textit{If } I(x:y|a) = H(a|x,y) = 0 \textit{ then } I(x:y) \leq I(x:y|a) + I(x:y|b) + I(a:b)$

Sketch of the proof (augmented Copy Lemma):

- make independent clones x' and y' for x and y respectively conditional on (a, b)
- observation 1:

$$\begin{array}{rcl} {\rm H}(x',y',a,b) & = & {\rm H}(a,b) + {\rm H}(x'|a,b) + {\rm H}(y'|a,b) \\ & = & {\rm H}(a,b) + {\rm H}(x|a,b) + {\rm H}(y|a,b) \end{array}$$

observation 2:

$$\begin{array}{rcl} H(x',y',a,b) &\leq & H(b) + H(x'|b) + H(y'|b) + H(a|x',y') \\ &= & H(b) + H(x|b) + H(y|b) + 0 \end{array}$$

Ad hoc proof of an essentially conditional inequality

Theorem

 $\textit{If } I(x:y|a) = H(a|x,y) = 0 \textit{ then } I(x:y) \leq I(x:y|a) + I(x:y|b) + I(a:b)$

Sketch of the proof (augmented Copy Lemma):

- make independent clones x' and y' for x and y respectively conditional on (a, b)
- observation 1:

$$\begin{array}{rcl} {\rm H}(x',y',a,b) & = & {\rm H}(a,b) + {\rm H}(x'|a,b) + {\rm H}(y'|a,b) \\ & = & {\rm H}(a,b) + {\rm H}(x|a,b) + {\rm H}(y|a,b) \end{array}$$

observation 2:

 $\begin{array}{rcl} {\rm H}(x',y',a,b) &\leq & {\rm H}(b) + {\rm H}(x'|b) + {\rm H}(y'|b) + {\rm H}(a|x',y') \\ &= & {\rm H}(b) + {\rm H}(x|b) + {\rm H}(y|b) + 0 \end{array}$

• observation 3: $H(a, b) + H(x|a, b) + H(y|a, b) \le H(b) + H(x|b) + H(y|b)$ is equivalent to Ingleton's inequality

Outline

Three types of conditional information inequalities

- 2 Conditional inequalities: geometric view
- 3 How people prove unconditional information inequalities
- 4 How people prove conditional information inequalities
- **6** Applications of conditional information inequalities
 - non-essentially conditional inequalities
 - essentially conditional inequalities for almost-entropic points
 - essentially conditional inequalities for entropic points

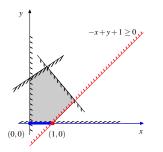
Outline

Three types of conditional information inequalities

- 2 Conditional inequalities: geometric view
- 3 How people prove unconditional information inequalities
- 4 How people prove conditional information inequalities
- Applications of conditional information inequalities
 non-essentially conditional inequalities
 - essentially conditional inequalities for almost-entropic points
 - essentially conditional inequalities for entropic points

Applications (1):

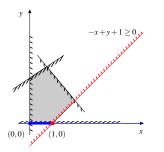
Non-essentially conditional inequalities



if y = 0 then $x \le 1 \iff x \le 1 + y$

Applications (1):

Non-essentially conditional inequalities

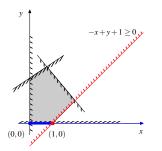


if y = 0 then $x \le 1 \iff x \le 1 + y$

This case looks simple and boring.

Applications (1):

Non-essentially conditional inequalities



if y = 0 then $x \le 1 \iff x \le 1 + y$

This case looks simple and boring. But it is not!

Applications (1): Non-essentially conditional inequalities

Archetypical example: lower bounds in secret sharing.

Applications (1): Non-essentially conditional inequalities

Archetypical example: lower bounds in secret sharing.

[constraints of a secret sharing scheme] \implies [some bounds for the size of shares]

Secret sharing, reminder (1)

- secret S_0 (e.g., uniformly distributed on $\{0,1\}^k$)
- n participants
- access structure: a family of authorized groups C_1, \ldots, C_m

Secret sharing, reminder (1)

- secret S_0 (e.g., uniformly distributed on $\{0,1\}^k$)
- n participants
- access structure: a family of authorized groups C_1, \ldots, C_m

perfect secret sharing scheme: a distribution (S_0, S_1, \ldots, S_n) such that

- a collection of shares S_i from each authorized group gives all information on S₀
- a collection of shares S_i from any non-authorized group gives no information on S₀

Secret sharing, reminder (2)

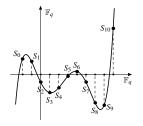
secret key: S_0 uniformly distributed on $\{0,1\}^k$

Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁,..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains $S_i = Q(x_i), i = 1, ..., n$
- let the secret $S_0 = Q(x_0)$



Secret sharing, reminder (2)

secret key: S_0 uniformly distributed on $\{0,1\}^k$

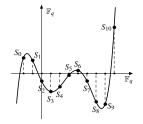
Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁,..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains $S_i = Q(x_i), i = 1, ..., n$
- let the secret $S_0 = Q(x_0)$

Given $\geq t$ pairs $(x_i, Q(x_i))$ we reconstruct Q(x) and S_0 .



Secret sharing, reminder (2)

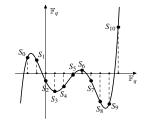
secret key: S_0 uniformly distributed on $\{0,1\}^k$

Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁, ..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains
 S_i = Q(x_i), i = 1,..., n
- let the secret $S_0 = Q(x_0)$



Given $\langle t | \text{pairs} (x_i, Q(x_i)) \rangle$ we know nothing about S_0 : all values of S_0 remain **possible** and even **equiprobable**.

Secret sharing, reminder (3)

Information ratio of a secret sharing scheme: $\frac{\max H(S_i)}{H(S_0)}$.

Fundamental problem: minimize information ratio for a given access structure.

Secret sharing, reminder (3)

Information ratio of a secret sharing scheme: $\frac{\max H(S_i)}{H(S_0)}$.

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

- 4 participants
- minimal authorized groups:
 - $\{1,2\},\ \{2,3\},\ \{3,4\}$

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2. Shannon's inequalities \implies we cannot do better.

Secret sharing, reminder (3)

Information ratio of a secret sharing scheme: $\frac{\max H(S_i)}{H(S_0)}$.

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

- 4 participants
- minimal authorized groups:
 - $\{1,2\},\ \{2,3\},\ \{3,4\}$

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2.

Shannon's inequalities \implies we cannot do better. [This is a conditional information inequality!]

Secret sharing: computing the information ratio

Very simple example:

- 4 participants
- minimal authorized groups:
 - $\{1,2\},\;\{2,3\},\;\{3,4\}$

Question: What is the optimal information ratio for this access structure? **Shannon's inequalities:** information ratio $\geq 3/2$.

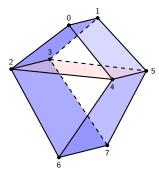
Computer-assisted proof:

- write down all equations that define the access structure
- write down all *basic inequalities* for Shannon's entropy of $(S_0, S_1, S_2, S_3, S_4)$
- write that $H(S_i) \leq T$ for i = 1, 2, 3, 4
- ask your favorite linear programming solver to find min(T)

The answer: minimal $T = (3/2)H(S_0)$.

Vámos matroid

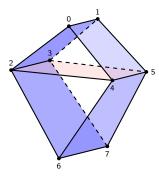
ground set = $\{0, 1, 2, 3, 4, 5, 6, 7\}$



$$\begin{split} \mathrm{rk}(\text{one point}) &= 1 \\ \mathrm{rk}(\text{two points}) &= 2 \\ \mathrm{rk}(\text{three points}) &= 3 \\ \mathrm{rk}(\{0,1,2,3\}) &= \mathrm{rk}(\{0,1,4,5\}) = \mathrm{rk}(\{2,3,6,7\}) = \mathrm{rk}(\{4,5,6,7\}) = \mathrm{rk}(\{2,3,4,5\}) = 3 \\ \mathrm{rk}(\text{other sets}) &= 4 \end{split}$$

Vámos matroid

ground set = $\{0, 1, 2, 3, 4, 5, 6, 7\}$



$$\begin{split} \mathrm{rk}(\mathsf{one point}) &= 1 \\ \mathrm{rk}(\mathsf{two points}) &= 2 \\ \mathrm{rk}(\mathsf{three points}) &= 3 \\ \mathrm{rk}(\{0,1,2,3\}) &= \mathrm{rk}(\{0,1,4,5\}) = \mathrm{rk}(\{2,3,6,7\}) = \mathrm{rk}(\{4,5,6,7\}) = \mathrm{rk}(\{2,3,4,5\}) = 3 \\ \mathrm{rk}(\mathsf{other sets}) &= 4 \end{split}$$

An access structure on this matroid: participants $\{1, \ldots, 7\}$, and

 i_1, \ldots, i_s know the secret if and only if $\operatorname{rk}(i_1, \ldots, i_s) = \operatorname{rk}(0, i_1, \ldots, i_s)$

prague

Matroids:

a structure with a rank function generalizing ranks of linear (sub)spaces

Matroids:

a structure with a **rank** function generalizing ranks of linear (sub)spaces

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

Matroids:

a structure with a **rank** function generalizing ranks of linear (sub)spaces

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

The conjecture looks plausible: This is true for linear access structures.

very plausible: Shannon's inequalities cannot disprove it.

Matroids:

a structure with a **rank** function generalizing ranks of linear (sub)spaces

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

The conjecture looks plausible: This is true for linear access structures.

very plausible: Shannon's inequalities cannot disprove it.

But there is a counter-example [Seymour]: Vámos matroid

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

| > 1

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992 Beimel–Livne 2006

$$\Big| > 1 \\ \geq 1 + \Omega(1/\sqrt{k}) ext{ for a secret of size } k$$

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992 Beimel–Livne 2006 Beimel–Livne–Padró 2008

$$ig| > 1$$

 $\geq 1 + \Omega(1/\sqrt{k})$ for a secret of size k
 $\geq 11/10$

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992 Beimel–Livne 2006 Beimel–Livne–Padró 2008 Metcalf-Burton 2011 > 1 $\geq 1 + \Omega(1/\sqrt{k}) \text{ for a secret of size } k$ $\geq 11/10$ $\geq 9/8 = 1.125$

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992 Beimel–Livne 2006 Beimel–Livne–Padró 2008 Metcalf-Burton 2011 Hadian 2013

```
\begin{vmatrix} > 1 \\ \ge 1 + \Omega(1/\sqrt{k}) \text{ for a secret of size } k \\ \ge 11/10 \\ \ge 9/8 = 1.125 \\ \ge 67/59 \approx 1.135593 \end{vmatrix}
```

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992	>1
Beimel–Livne 2006	$\geq 1 + \Omega(1/\sqrt{k})$ for a secret of size k
Beimel–Livne–Padró 2008	$\geq 11/10$
Metcalf-Burton 2011	$\geq 9/8 = 1.125$
Hadian 2013	$\geq 67/59 pprox 1.135593$
Farràs–Kaced–Martín–Padró 2018	\geq 33/29 $pprox$ 1.137931

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992	> 1
Beimel–Livne 2006	$\geq 1 + \Omega(1/\sqrt{k})$ for a secret of size k
Beimel–Livne–Padró 2008	$\geq 11/10$
Metcalf-Burton 2011	$\geq 9/8 = 1.125$
Hadian 2013	$\geq 67/59 pprox 1.135593$
Farràs–Kaced–Martín–Padró 2018	$\geq 33/29 pprox 1.137931$
Gürpınar-R. 2019	$\geq 561/491 pprox 1.142566$

Problem:

Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992	>1
Beimel–Livne 2006	$\geq 1 + \Omega(1/\sqrt{k})$ for a secret of size k
Beimel–Livne–Padró 2008	$\geq 11/10$
Metcalf-Burton 2011	$\geq 9/8 = 1.125$
Hadian 2013	$\geq 67/59 pprox 1.135593$
Farràs–Kaced–Martín–Padró 2018	\geq 33/29 $pprox$ 1.137931
Gürpınar-R. 2019	$\geq 561/491 pprox 1.142566$

The last two bounds follow from new (unknown!) inequalities for Shannon's entropy. They remain undiscovered, but we have already applied them.

Classical approach

Write a linear program as follows.

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities for entropy, $I(*:*|*) \ge 0$
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Classical approach

Write a linear program as follows.

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities for entropy, $I(*:*|*) \ge 0$
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Answer: trivial, information ratio ≥ 1 [for secret sharing on matroids]

Modern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Modern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Answer: some non-trivial bounds!

[Beimel-Livne-Padró 2008], [Metcalf-Burton 2011], [Hadian 2013]

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- new variables and constraints borrowed from proofs of non-Shannon-type inequalities [Ahlswede-Körner or Copy lemma]
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- new variables and constraints borrowed from proofs of non-Shannon-type inequalities [Ahlswede-Körner or Copy lemma]
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

[Farràs-Kaced-Martín-Padró 2018] and [Gürpınar-R.]

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- oversimplified technical explanation: make clones of (S₀, S₁, S₆, S₇) conditional on (S₂, S₃, S₄, S₅) (twice!)
- (optional) symmetry conditions

Objective function:

```
minimize \left[\max_{i} H(\text{secret share}_{i})\right]
```

Answer: information ratio $\geq 561/491 \approx 1.142566$

Modern approach vs. PostModern approach

Modern approach:

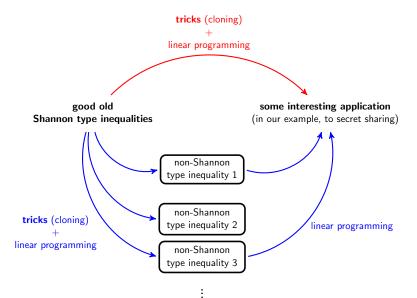
Stage 1: computer-aided search of non-Shannon type inequalities [materializing info (Ahlswede-Körner) or cloning (Copy Lemma) + linear programming]

Stage 2: computer-aided linear programming for secret sharing involving inequalities found on Stage 1

PostModern approach:

One Shot: computer-aided linear programming for a secret sharing problem involving **cloning**

In one picture: postmodern vs. modern approaches



• sharp lower bounds in secret sharing

• sharp lower bounds in secret sharing: Carles Padró

- sharp lower bounds in secret sharing: Carles Padró
- use of symmetries in the entropy space

- sharp lower bounds in secret sharing: Carles Padró
- use of symmetries in the entropy space: Qi Chen

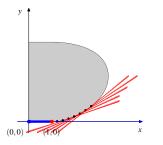
Outline

Three types of conditional information inequalities

- 2 Conditional inequalities: geometric view
- 3 How people prove unconditional information inequalities
- 4 How people prove conditional information inequalities
- Applications of conditional information inequalities
 non-essentially conditional inequalities
 - essentially conditional inequalities for almost-entropic points
 essentially conditional inequalities for entropic points

Applications (2)

the cone of almost entropic points is not polyhedral



one essentially conditional inequality for (almost) entropic points (\geq 4 r.v.) infinitely many unconditional information inequalities (in \mathbb{R}^{15}) \Downarrow

Theorem (Matúš)

There exist infinitely many independent linear information inequalities.

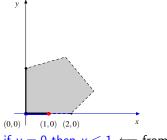
prague

Outline

Three types of conditional information inequalities

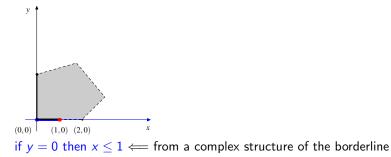
- 2 Conditional inequalities: geometric view
- 3 How people prove unconditional information inequalities
- 4 How people prove conditional information inequalities
- Applications of conditional information inequalities
 non-essentially conditional inequalities
 essentially conditional inequalities for almost-entropic points
 - essentially conditional inequalities for entropic points

Applications of essentially conditional inequalities for strictly entropic points: combinatorics (work in progress)



if y = 0 then $x \le 1$ \Leftarrow from a complex structure of the borderline

Applications of essentially conditional inequalities for strictly entropic points: combinatorics (work in progress)



What is it all about?

• not in this talk: conditional independence properties

• not in this talk: conditional independence properties, talk by **Milan Studený**

• not in this talk: conditional independence properties, talk by **Milan Studený**

• this talk: combinatorial applications

 $\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \Rightarrow \mathbf{I}(\mathbf{a}:\mathbf{b}) \leq \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{x}) + \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{y}) + \mathbf{I}(\mathbf{x}:\mathbf{y})$

$\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \Rightarrow \mathbf{I}(\mathbf{a}:\mathbf{b}) \leq \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{x}) + \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{y}) + \mathbf{I}(\mathbf{x}:\mathbf{y})$

What is the intuition behind it?

$$\mathrm{H}(\mathsf{a}|\mathsf{x},\mathsf{y}) = \mathrm{I}(\mathsf{x}:\mathsf{y}|\mathsf{a}) = \mathbf{0} \Rightarrow \mathrm{I}(\mathsf{a}:\mathsf{b}) \leq \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{x}) + \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{y}) + \mathrm{I}(\mathsf{x}:\mathsf{y})$$

We relax the constraint and make the statement stronger:

$$\mathrm{H}(\mathsf{a}|\mathsf{x},\mathsf{y}) = \mathrm{I}(\mathsf{x}:\mathsf{y}|\mathsf{a}) = \mathbf{0} \Rightarrow \mathrm{I}(\mathsf{a}:\mathsf{b}) \leq \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{x}) + \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{y}) + \mathrm{I}(\mathsf{x}:\mathsf{y})$$

We relax the constraint and make the statement stronger:

(*) $\forall i, j$ there is at most one k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

 $\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \Rightarrow \mathbf{I}(\mathbf{a}:\mathbf{b}) \leq \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{x}) + \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{y}) + \mathbf{I}(\mathbf{x}:\mathbf{y})$

We relax the constraint and make the statement stronger:

(*) $\forall i, j$ there is at most one k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

Observation [Kaced, R., Vereshchagin]:

 $\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \implies (*)$

 $\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \Rightarrow \mathbf{I}(\mathbf{a}:\mathbf{b}) \leq \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{x}) + \mathbf{I}(\mathbf{a}:\mathbf{b}\,|\,\mathbf{y}) + \mathbf{I}(\mathbf{x}:\mathbf{y})$

We relax the constraint and make the statement stronger:

(*) $\forall i, j$ there is at most one k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

Observation [Kaced, R., Vereshchagin]:

 $\mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}:\mathbf{y}|\mathbf{a}) = \mathbf{0} \implies (*) \implies \mathbf{H}(\mathbf{a}|\mathbf{x},\mathbf{b}) + \mathbf{H}(\mathbf{a}|\mathbf{y},\mathbf{b}) \le \mathbf{H}(\mathbf{a}|\mathbf{b})$

$$\mathrm{H}(\mathsf{a}|\mathsf{x},\mathsf{y}) = \mathrm{I}(\mathsf{x}:\mathsf{y}|\mathsf{a}) = \mathbf{0} \Rightarrow \mathrm{I}(\mathsf{a}:\mathsf{b}) \leq \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{x}) + \mathrm{I}(\mathsf{a}:\mathsf{b}\,|\,\mathsf{y}) + \mathrm{I}(\mathsf{x}:\mathsf{y})$$

We relax the constraint and make the statement stronger:

(*) $\forall i, j$ there is at most one k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

Observation [Kaced, R., Vereshchagin]:

(*) $\forall X_i, Y_j$ there is at most one A_k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

Theorem

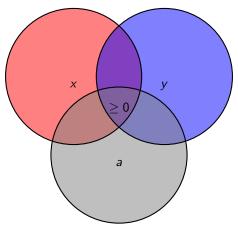
(*) \implies H(a | x) + H(a | y) \leq H(a)

(*) $\forall X_i, Y_j$ there is at most one A_k s.t. $(\Pr[X_i \& A_k] > 0 \text{ and } \Pr[Y_j \& A_k] > 0)$

Theorem

(*) \implies H(a | x) + H(a | y) \leq H(a)

Equivalent form: $(*) \implies I(a:x:y) \ge 0$



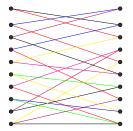
 ${\boldsymbol{\mathsf{G}}}:$ a bi-partite graph with colored edges

G: a bi-partite graph with colored edges

(*) for any vertices $v \in \text{Left}$ and $w \in \text{Right}$ there exist ≤ 1 common color

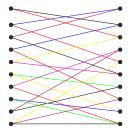
G: a bi-partite graph with colored edges

(*) for any vertices $v \in \text{Left}$ and $w \in \text{Right}$ there exist ≤ 1 common color



G: a bi-partite graph with colored edges

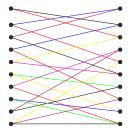
(*) for any vertices $v \in \text{Left}$ and $w \in \text{Right}$ there exist ≤ 1 common color



Take a random edge

 ${\bf G}:$ a bi-partite graph with colored edges

(*) for any vertices $v \in \text{Left}$ and $w \in \text{Right}$ there exist ≤ 1 common color



Take a random edge

- x := the left end of the edge
- y := the right end of the edge
- *a* := the color of the edge

 ${\bf G}:$ a bi-partite graph with colored edges

(*) for any vertices $v \in \text{Left}$ and $w \in \text{Right}$ there exist ≤ 1 common color



Take a random edge

- x := the left end of the edge
- y := the right end of the edge
- *a* := the color of the edge

Theorem (*) \implies H(a | x) + H(a | y) \leq H(a)

A toy application: a bound for an edge coloring

 $\boldsymbol{G}:$ a bi-partite graph

G: a bi-partite graph = a union of M matchings

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings

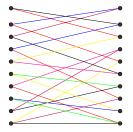
- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching

Prove that $M \ge A \cdot B$

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching



Prove that $M \ge A \cdot B$

Proof: take a random edge,

- x := the left end of this edge
- y := the right end of this **edge**
- a := the color of this edge

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \text{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching

Prove that $M \ge A \cdot B$

Proof: take a random edge,

- x := the left end of this **edge**
- y := the right end of this **edge**
- a := the color of this edge

Then $H(a|x) + H(a|y) \leq H(a)$

- **G**: a bi-partite graph = a union of M matchings
 - every vertex $v \in Left$ is involved in $\geq A$ matchings
 - every vertex $w \in \operatorname{Right}$ is involved in $\geq B$ matchings
 - any $v \in \text{Left}$ and $w \in \text{Right}$ are involved in ≤ 1 common matching

Prove that $M \ge A \cdot B$

Proof: take a random edge,

- x := the left end of this **edge**
- y := the right end of this **edge**
- a := the color of this edge

Then $H(a \mid x) + H(a \mid y) \leq H(a)$ $\lor I$ $\lor I$ $\lor I$ $\lor I$ $\log A$ $\log B$ $\log M$

Alice: knows a random x

Alice: knows a random x Bob: knows a random y

Alice: knows a random x Bob: knows a random y x and y are correlated

Alice: knows a random x Bob: knows a random y x and y are correlated

Alice and Bob:

- communicate via a public channel
- may use public and private randomness

Alice: knows a random x Bob: knows a random y x and y are correlated

Alice and Bob:

- communicate via a public channel
- may use public and private randomness

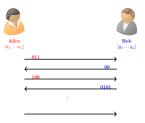
Aim: construct a common z such that $H(z \mid \text{communication transcript}) \approx |z|$

Alice: knows a random x Bob: knows a random y x and y are correlated

Alice and Bob:

- communicate via a public channel
- may use public and private randomness

Aim: construct a common z such that $H(z \mid \text{communication transcript}) \approx |z|$



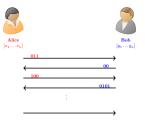
Alice: knows a random x Bob: knows a random y x and y are correlated

Alice and Bob:

- communicate via a public channel
- may use public and private randomness

Aim: construct a common z such that $H(z \mid \text{communication transcript}) \approx |z|$

Question: How large can be entropy of z?



Alice: knows a random x Bob: knows a random y x and y are correlated

Alice and Bob:

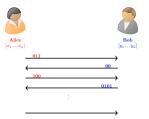
- communicate via a public channel
- may use public and private randomness

Aim: construct a common z such that $\mathrm{H}(z \,|\, \text{communication transcript}) \approx |z|$

Question: How large can be entropy of z?

Theorem (see Ahlswede–Csiszár, Maurer 93)

- **()** There is a protocol that produces a secret key z of size $\approx I(x : y)$ w.h.p.
- 2 No protocol can do better.



Theorem

For all communication protocols $H(key | transcript) \le I(x : y)$

Theorem

For all communication protocols $H(key | transcript) \le I(x : y)$

Simple observation: if no communication, then $\mathrm{H}(\textbf{key}) \leq \mathrm{I}(\textbf{x}:\textbf{y})$ Indeed:

$$\begin{array}{rcl} \mathrm{H}(\mathbf{key}) &\leq & \mathrm{H}(\mathbf{key} \,|\, x) &+ & \mathrm{H}(\mathbf{key} \,|\, y) &+ & \mathrm{I}(x : y) \\ &= & 0 &+ & 0 &+ & \mathrm{I}(x : y) \end{array}$$

Theorem

For all communication protocols $H(key | transcript) \le I(x : y)$

Simple observation: if no communication, then ${\rm H}(\textbf{key}) \leq {\rm I}(\textbf{x}:\textbf{y})$ Indeed:

$$\begin{array}{rcl} H(key) &\leq & H(key \,|\, x) &+ & H(key \,|\, y) &+ & I(x : y) \\ &= & 0 &+ & 0 &+ & I(x : y) \end{array}$$

Still simple: with a communication,

 $\mathrm{H}(\text{key}) \leq I(x:y \mid \text{transcript})$

Theorem

For all communication protocols $H(key | transcript) \le I(x : y)$

Simple observation: if no communication, then ${\rm H}(\textbf{key}) \leq {\rm I}(\textbf{x}:\textbf{y})$ Indeed:

$$\begin{array}{rcl} \mathrm{H}(\mathbf{key}) &\leq & \mathrm{H}(\mathbf{key} \,|\, x) &+ & \mathrm{H}(\mathbf{key} \,|\, y) &+ & \mathrm{I}(x : y) \\ &= & 0 &+ & 0 &+ & \mathrm{I}(x : y) \end{array}$$

Still simple: with a communication,

 $H(\mathsf{key}) \leq \mathsf{I}(\mathsf{x} : \mathsf{y} \mid \mathsf{transcript})$

Hard part:

 $\textbf{I}(\textbf{x}:\textbf{y} \mid \textbf{transcript}) \leq \textbf{I}(\textbf{x}:\textbf{y})$

Theorem

For all communication protocols $H(key | transcript) \le I(x : y)$

Simple observation: if no communication, then ${\rm H}(\textbf{key}) \leq {\rm I}(\textbf{x}:\textbf{y})$ Indeed:

$$\begin{array}{rcl} \mathrm{H}(\mathbf{key}) &\leq & \mathrm{H}(\mathbf{key} \,|\, x) &+ & \mathrm{H}(\mathbf{key} \,|\, y) &+ & \mathrm{I}(x : y) \\ &= & 0 &+ & 0 &+ & \mathrm{I}(x : y) \end{array}$$

Still simple: with a communication,

Hard part:

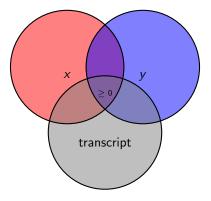
Equivalent form:

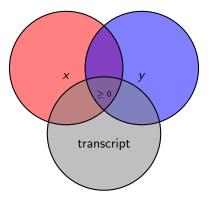
 $\mathrm{H}(\text{key}) \leq I(x:y \mid \text{transcript})$

 $I(x:y \mid transcript) \leq I(x:y)$

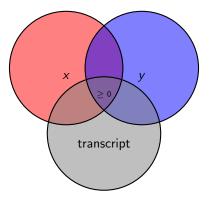
 $I(x : y : transcript) \ge 0$,

which is true for all **communication transcripts**

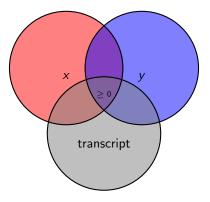




external information complexity \geq internal information complexity

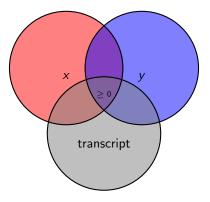


external information complexity \geq internal information complexity advantages of this approach (conditional information inequality) :



external information complexity \geq internal information complexity advantages of this approach (conditional information inequality) :

• applies to a light version of non-determinism (*bi-clique cover*)



external information complexity \geq internal information complexity advantages of this approach (conditional information inequality) :

- applies to a light version of non-determinism (*bi-clique cover*)
- translation to the setting of Kolmogorov complexity [R.-Zimand]