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Subject of this talk: conditional (constraint) information inequalities

linear inequalities for the Shannon entropy

that are valid under linear constraints

i.e.,
[some linear constraints] =⇒ [some linear inequality]

e.g., I(x : y) = I(x : y |a) = 0 =⇒ I(a : b) ≤ I(a : b | x) + I(a : b | y)

[Zhang–Yeung’97]
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Not in this talk

piecewise-linear conditional inequalities

[Matúš 2006]

non-linear information inequalities

[Chan–Grant 2008, based on Matúš 2007]

conditional information equalities

[conditional independence properties, Studený, Matúš]
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conditional information equalities

[conditional independence properties, Studený, Matúš]
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Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

5 Applications of conditional information inequalities
non-essentially conditional inequalities
essentially conditional inequalities for almost-entropic points
essentially conditional inequalities for entropic points
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Conditional information inequalities

(a) Trivial, Shannon-type:

if I(x : y) = 0 then H(a) ≤ H(a | x) + H(a | y)

this is true since

H(a) ≤ H(a | x) + H(a | y)+I(x : y) [Shannon-type unconditional inequalitiy]
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Conditional information inequalities

(b) Trivial, non Shannon-type:

if I(a : b | z) = I(a : z | b) = I(b : z | a) = 0 then

I(a : b) ≤ I(a : b | x) + I(a : b | y) + I(x : y)

this is true since

I(a : b) ≤ I(a : b | x) + I(a : b | y) + I(x : y)
+ I(a : b | z) + I(a : z | b) + I(b : z | a)

[non Shannon-type unconditional inequalitiy]
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Conditional information inequalities

(c) Non-trivial, e.g.:

I(x : y) = I(x : y |a) = 0︸ ︷︷ ︸
[Z.Zhang–R.W.Yeung’97]

I(x : a|b) = I(x : b|a) = 0︸ ︷︷ ︸
[F.Matúš’99]

H(a|x , y) = I(x : y |a) = 0︸ ︷︷ ︸
[T.Kaced and A.R.’11]

↘ ↓ ↙
Ingleton’s inequality

I(a : b) ≤ I(a : b | x) + I(a : b | y) + I(x : y)

Claim: These three implications are essentially conditional inequalities.
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Theorem
The inequality

H(a|x , y) = I(x : y |a) = 0⇒ I(a : b) ≤ I(a : b|x) + I(a : b|y) + I(x : y)

is essentially conditional.

We cannot reduce it to an unconditional inequality!

That is, for all λ1, λ2 the inequality

I(a : b) ≤ I(a : b|x) + I(a : b|y) + I(x : y) + λ1H(a|x , y) + λ2I(x : y | a)

does not hold.
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Theorem
The inequality

H(a|x , y) = I(x : y |a) = 0⇒ I(a : b) ≤ I(a : b|x) + I(a : b|y) + I(x : y)

is essentially conditional.

We cannot reduce it to an unconditional inequality!

More precisely, for all λ1, λ2 there exist (a, b, x , y) such that

I(a : b) 6≤ I(a : b|x) + I(a : b|y) + I(x : y) + λ1H(a|x , y) + λ2I(x : y | a)
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Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities
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A geometric view on conditional inequalities:

(0,0) (1,0) x

y

−x+ y+1≥ 0

if y = 0 then x ≤ 1

⇐= x ≤ 1 + y

NOT essentially conditional
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A geometric view on conditional inequalities:

(0,0) (1,0) x

y

if y = 0 then x ≤ 1

←− this inequality is essentially conditional

NO unconditional inequality x ≤ 1 + λy

∃ one essentially conditional inequality =⇒ the grey area is not polyhedral

=⇒ ∃ infinitely many independent tangent lines

formal proof: Farkas lemma
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A geometric view on conditional inequalities:

(0,0) (1,0) x

y

if y = 0 then x ≤ 1⇐= follows from an infinite family of linear inequalities

←−
this inequality is essentially conditional

NO unconditional inequality x ≤ 1 + λy

∃ one essentially conditional inequality =⇒ the grey area is not polyhedral

=⇒ ∃ infinitely many independent tangent lines

formal proof: Farkas lemma
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A geometric view on conditional inequalities:

(0,0) (1,0) x

y

if y = 0 then x ≤ 1 ←− this inequality is essentially conditional

one essentially conditional inequality for the grey area
⇓

infinitely many independent unconditional inequality for the grey area
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A geometric view on conditional inequalities:

(0,0) (1,0) x

y

one essentially conditional inequality for (almost) entropic points (≥ 4 r.v.)
⇓

infinitely many unconditional information inequalities

(in R15)

⇓

Theorem (Matúš)

There exist infinitely many independent linear information inequalities.
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A geometric view on conditional inequalities:

(0,0) (1,0) (2,0) x

y

if y = 0 then x ≤ 1

⇐= from a complex structure of the borderline

NO unconditional inequality x ≤ 1 + λy

this inequality is also essentially conditional

prague Conditional Information Inequalities August 19, Prague 15 / 52



A geometric view on conditional inequalities:

(0,0) (1,0) (2,0) x

y

if y = 0 then x ≤ 1 ⇐= from a complex structure of the borderline

NO unconditional inequality x ≤ 1 + λy

this inequality is also essentially conditional

prague Conditional Information Inequalities August 19, Prague 15 / 52



A geometric view on conditional inequalities:

(0,0) (1,0) (2,0) x

y

if y = 0 then x ≤ 1 ⇐= from a complex structure of the borderline

NO unconditional inequality x ≤ 1 + λy

this inequality is also essentially conditional

prague Conditional Information Inequalities August 19, Prague 15 / 52



A geometric view on conditional inequalities:

(0,0) (1,0) (2,0) x

y

if y = 0 then x ≤ 1 ⇐= from a complex structure of the borderline

NO unconditional inequality x ≤ 1 + λy

this inequality is also essentially conditional

prague Conditional Information Inequalities August 19, Prague 15 / 52



Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

5 Applications of conditional information inequalities
non-essentially conditional inequalities
essentially conditional inequalities for almost-entropic points
essentially conditional inequalities for entropic points

prague Conditional Information Inequalities August 19, Prague 16 / 52



Digression:

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.
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Digression:

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Simplified Example:

If I (a, b : z |xy) = 0 then

I(x : y) ≤ I(x : y |a) + I(x : y |b) + I(a : b) + I(x : y |z) + I(x : z |y) + I(y : z |x)

[Shannon-type conditional inequality]

We forget the constraint and obtain a non-Shannon type unconditional inequality.
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Digression:

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

More “physical” example: Ahlswede–Körner Lemma

in more detail: the talk of Carles Padró
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Digression:

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Classical argument [Zhang–Yeung]:

Copy Lemma

For all (a, b, x , y) there is a′ (clone of a conditional on (x , y)) such that

H(a′) = H(a),

H(a′, x) = H(a, x), H(a′, y) = H(a, y),

H(a′, x , y) = H(a, x , y)

a′ and (a, b) are independent conditional on (x , y)

If a′ satisfies these constraints then

I(x : y) ≤ I(x : y |a) + I(x : y |b) + I(a : b) + I(x : y |a) + I(x : a|y) + I(y : a|x)

[Shannon-type conditional inequality]

We forget the constraint and obtain a non-Shannon type unconditional inequality.
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Digression:

How people prove unconditional information inequalities

People use conditional inequalities with delusive constraints.

Classical example [Zhang–Yeung]:

Copy Lemma

For all (a, b, x , y) there is a′ (clone of a conditional on (x , y)) such that

H(a′) = H(a),

H(a′, x) = H(a, x), H(a′, y) = H(a, y),

H(a′, x , y) = H(a, x , y)

a′ and (a, b) are independent conditional on (x , y)

All known proofs of non-Shannon type unconditional inequalities can
be translated in the language of the Copy Lemma [observed by T. Kaced].

prague Conditional Information Inequalities August 19, Prague 17 / 52



Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

5 Applications of conditional information inequalities
non-essentially conditional inequalities
essentially conditional inequalities for almost-entropic points
essentially conditional inequalities for entropic points

prague Conditional Information Inequalities August 19, Prague 18 / 52



How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)
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How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Lazy proof: We know from [Zhang-Yeung 98] that for all (a, b, x , y)

I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b) + I(x : a|y) + I(y : a|x)

This universal inequality implies our conditional inequality.
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How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Direct application of the Copy Lemma (from the proof of [Zhang-Yeung 98]):
Every tuple all (a, b, x , y) can be extended to (a, b, x , y , a′) such that

(a′, x , y) has the same distribution as (a, x , y)

a′ and (a, b) are independent conditional on (x , y)

[we have made a clone of a conditional on (x , y)]

[Shannon-type inequalities + our constraints + definition of a′] =⇒ our inequality.
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How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Direct application of the Copy Lemma (from the proof of [Zhang-Yeung 98]):
Every tuple all (a, b, x , y) can be extended to (a, b, x , y , a′) such that

(a′, x , y) has the same distribution as (a, x , y)

a′ and (a, b) are independent conditional on (x , y)

[we have made a clone of a conditional on (x , y)]

There is a Shannon type inequality

I(x : y) ≤ I(x : y |a) + I (x : y |b) + I(a : b) + I(x : a′|y)
+ I(y : a′|x) + I(x : y |a′) + 3I(a′ : a, b|x , y)

[this inequality + our constraints + definition of a′] =⇒ our inequality.
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How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Materialization of the mutual information:

Lemma on Double Markov Property.
For all (a, x , y), if
I(x : a|y) = I(y : a|x) = 0 then there
exists a w such that

H(w) = I(x , y : a),

H(w |x) = H(w |y) = 0.

x y

a

0 0
w

[Shannon-type inequalities + our constraints + definition of w ] =⇒ our inequality.
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How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Materialization of the mutual information:

Lemma on Double Markov Property.
For all (a, x , y), if
I(x : a|y) = I(y : a|x) = 0 then there
exists a w such that

H(w) = I(x , y : a),

H(w |x) = H(w |y) = 0.

x y

a

0 0
w

For all a, b, x , y ,w we have the following Shannon type inequality

H(w) ≤ 2H(w |x) + 2H(w |y) + I(x : y |a) + I(x : y |b) + I(a : b)

|| || ||
I(x , y : a) 0 0
||

I(x : y) − I(x : y |a)

prague Conditional Information Inequalities August 19, Prague 19 / 52



How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Materialization of the mutual information:

Lemma on Double Markov Property.
For all (a, x , y), if
I(x : a|y) = I(y : a|x) = 0 then there
exists a w such that

H(w) = I(x , y : a),

H(w |x) = H(w |y) = 0.

x y

a

0 0
w

For all a, b, x , y ,w we have the following Shannon type inequality

H(w) ≤ 2H(w |x) + 2H(w |y) + I(x : y |a) + I(x : y |b) + I(a : b)
|| || ||

I(x , y : a) 0 0

||
I(x : y) − I(x : y |a)

prague Conditional Information Inequalities August 19, Prague 19 / 52



How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

Materialization of the mutual information:

Lemma on Double Markov Property.
For all (a, x , y), if
I(x : a|y) = I(y : a|x) = 0 then there
exists a w such that

H(w) = I(x , y : a),

H(w |x) = H(w |y) = 0.

x y

a

0 0
w

For all a, b, x , y ,w we have the following Shannon type inequality

H(w) ≤ 2H(w |x) + 2H(w |y) + I(x : y |a) + I(x : y |b) + I(a : b)
|| || ||

I(x , y : a) 0 0
||

I(x : y) − I(x : y |a)

prague Conditional Information Inequalities August 19, Prague 19 / 52



How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

prague Conditional Information Inequalities August 19, Prague 20 / 52



How to prove a conditional inequality: a toy example

Proposition

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ 2I(x : y |a) + I (x : y |b) + I(a : b)

prague Conditional Information Inequalities August 19, Prague 20 / 52



How to prove a conditional inequality: a more serious approach

Theorem (Matúš)

If I(x : a|y) = I(y : a|x) = 0 then I(x : y) ≤ I(x : y |a) + I(x : y |b) + I(a : b)

Sketch of the proof: For each integer k > 0 we can prove the following
non-Shannon type inequality

I(x : y) ≤ I(x : y |a) + I (x : y |b) + I(a : b)
1
k I(x : y |a) + k+1

2

(
I(x : a|y) + I(y : a|x)

)
It remains to let k →∞.
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Ad hoc proof of an essentially conditional inequality

Theorem

If I(x : y |a) = H(a|x , y) = 0 then I(x : y) ≤ I(x : y |a) + I(x : y |b) + I(a : b)

Sketch of the proof (augmented Copy Lemma):

make independent clones x ′ and y ′ for x and y respectively
conditional on (a, b)

observation 1:

H(x ′, y ′, a, b) = H(a, b) + H(x ′|a, b) + H(y ′|a, b)
= H(a, b) + H(x |a, b) + H(y |a, b)

observation 2:

H(x ′, y ′, a, b) ≤ H(b) + H(x ′|b) + H(y ′|b) + H(a|x ′, y ′)
= H(b) + H(x |b) + H(y |b) + 0

observation 3: H(a, b) + H(x |a, b) + H(y |a, b) ≤ H(b) + H(x |b) + H(y |b)
is equivalent to Ingleton’s inequality
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Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

5 Applications of conditional information inequalities
non-essentially conditional inequalities
essentially conditional inequalities for almost-entropic points
essentially conditional inequalities for entropic points
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Applications (1):

Non-essentially conditional inequalities

(0,0) (1,0) x

y

−x+ y+1≥ 0

if y = 0 then x ≤ 1 ⇐= x ≤ 1 + y

This case looks simple and boring. But it is not!
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Applications (1):

Non-essentially conditional inequalities

Archetypical example: lower bounds in secret sharing.

[constraints of a secret sharing scheme] =⇒ [some bounds for the size of shares]
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Secret sharing, reminder (1)

secret S0 (e.g., uniformly distributed on {0, 1}k)

n participants

access structure: a family of authorized groups C1, . . . ,Cm

perfect secret sharing scheme: a distribution (S0,S1, . . . ,Sn) such that

a collection of shares Si from each authorized group gives

all information on S0

a collection of shares Si from any non-authorized group gives

no information on S0
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Secret sharing, reminder (2)
secret key: S0 uniformly distributed on {0, 1}k

Standard example:

any group of ≥ t participants knows the secret

any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

fix points x0, x1, . . . , xn in F2k

(public information)

choose a secret random
polynomial Q(x) of degree ≤ t− 1

the i-th participant obtains
Si = Q(xi ), i = 1, . . . , n

let the secret S0 = Q(x0)

S0 S1

S2

S3
S4

S5
S6

S7

S8
S9

S10

Fq

Fq
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let the secret S0 = Q(x0)

S0 S1

S2

S3
S4
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S10

Fq

Fq

Given ≥ t pairs (xi ,Q(xi )) we reconstruct Q(x) and S0.
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Secret sharing, reminder (2)
secret key: S0 uniformly distributed on {0, 1}k

Standard example:

any group of ≥ t participants knows the secret

any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

fix points x0, x1, . . . , xn in F2k

(public information)

choose a secret random
polynomial Q(x) of degree ≤ t− 1

the i-th participant obtains
Si = Q(xi ), i = 1, . . . , n

let the secret S0 = Q(x0)

S0 S1

S2

S3
S4

S5
S6

S7

S8
S9

S10

Fq

Fq

Given < t pairs (xi ,Q(xi )) we know nothing about S0:
all values of S0 remain possible and even equiprobable.
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Secret sharing, reminder (3)

Information ratio of a secret sharing scheme: maxH(Si )
H(S0)

.

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

4 participants

minimal authorized groups:

{1, 2}, {2, 3}, {3, 4}

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2.

Shannon’s inequalities =⇒ we cannot do better.
[This is a conditional information inequality!]
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Secret sharing: computing the information ratio

Very simple example:

4 participants

minimal authorized groups:

{1, 2}, {2, 3}, {3, 4}

Question: What is the optimal information ratio for this access structure?

Shannon’s inequalities: information ratio ≥ 3/2.

Computer-assisted proof:

write down all equations that define the access structure

write down all basic inequalities for Shannon’s entropy of (S0,S1,S2,S3,S4)

write that H(Si ) ≤ T for i = 1, 2, 3, 4

ask your favorite linear programming solver to find min(T )

The answer: minimal T = (3/2)H(S0).
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Vámos matroid

ground set = {0, 1, 2, 3, 4, 5, 6, 7}

6

7

3
2

0
1

5

4

rk(one point) = 1

rk(two points) = 2

rk(three points) = 3

rk({0, 1, 2, 3}) = rk({0, 1, 4, 5}) = rk({2, 3, 6, 7}) = rk({4, 5, 6, 7}) = rk({2, 3, 4, 5}) = 3

rk(other sets) = 4

An access structure on this matroid: participants {1, . . . , 7}, and

i1, . . . , is know the secret if and only if rk(i1, . . . , is) = rk(0, i1, . . . , is)
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secret sharing on matroids: why do we care ?

Matroids:
a structure with a rank function generalizing ranks of linear (sub)spaces

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme
can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal
secret sharing scheme

The conjecture looks plausible: This is true for linear access structures.

very plausible: Shannon’s inequalities cannot disprove it.

But there is a counter-example [Seymour]: Vámos matroid
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prague Conditional Information Inequalities August 19, Prague 32 / 52



secret sharing on matroids: why do we care ?

Matroids:
a structure with a rank function generalizing ranks of linear (sub)spaces

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme
can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal
secret sharing scheme

The conjecture looks plausible: This is true for linear access structures.

very plausible: Shannon’s inequalities cannot disprove it.

But there is a counter-example [Seymour]: Vámos matroid
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our toy problem: secret sharing on Vámos matroid

Problem:
Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio ≤ 4/3

lower bound:
Seymour 1992 > 1

Beimel–Livne 2006 ≥ 1 + Ω(1/
√

k) for a secret of size k
Beimel–Livne–Padró 2008 ≥ 11/10
Metcalf-Burton 2011 ≥ 9/8 = 1.125
Hadian 2013 ≥ 67/59 ≈ 1.135593
Farràs–Kaced–Mart́ın–Padró 2018 ≥ 33/29 ≈ 1.137931
Gürpınar-R. 2019 ≥ 561/491 ≈ 1.142566

The last two bounds follow from new (unknown!) inequalities for
Shannon’s entropy. They remain undiscovered, but we have already
applied them.
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Shannon’s entropy. They remain undiscovered, but we have already
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Problem:
Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio ≤ 4/3

lower bound:
Seymour 1992 > 1

Beimel–Livne 2006 ≥ 1 + Ω(1/
√

k) for a secret of size k
Beimel–Livne–Padró 2008 ≥ 11/10
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Farràs–Kaced–Mart́ın–Padró 2018 ≥ 33/29 ≈ 1.137931
Gürpınar-R. 2019 ≥ 561/491 ≈ 1.142566

The last two bounds follow from new (unknown!) inequalities for
Shannon’s entropy. They remain undiscovered, but we have already
applied them.

prague Conditional Information Inequalities August 19, Prague 33 / 52



our toy problem: secret sharing on Vámos matroid
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Metcalf-Burton 2011 ≥ 9/8 = 1.125
Hadian 2013 ≥ 67/59 ≈ 1.135593
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Problem:
Find the optimal information ratio for a secret sharing on this access structure.

upper bound: information ratio ≤ 4/3

lower bound:
Seymour 1992 > 1

Beimel–Livne 2006 ≥ 1 + Ω(1/
√

k) for a secret of size k
Beimel–Livne–Padró 2008 ≥ 11/10
Metcalf-Burton 2011 ≥ 9/8 = 1.125
Hadian 2013 ≥ 67/59 ≈ 1.135593
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Classical approach

Write a linear program as follows.

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities for entropy, I (∗ : ∗ | ∗) ≥ 0

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]

Answer: trivial, information ratio ≥ 1 [for secret sharing on matroids]

prague Conditional Information Inequalities August 19, Prague 34 / 52



Classical approach

Write a linear program as follows.

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities for entropy, I (∗ : ∗ | ∗) ≥ 0

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]
Answer: trivial, information ratio ≥ 1 [for secret sharing on matroids]

prague Conditional Information Inequalities August 19, Prague 34 / 52



Modern approach

Write a linear program as follows

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]

Answer: some non-trivial bounds!
[Beimel-Livne-Padró 2008], [Metcalf-Burton 2011], [Hadian 2013]
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PostModern approach

Write a linear program as follows

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

new variables and constraints borrowed from proofs of
non-Shannon-type inequalities [Ahlswede-Körner or Copy lemma]

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]

[Farràs-Kaced-Mart́ın-Padró 2018] and [Gürpınar-R.]
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PostModern approach

Write a linear program as follows

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

oversimplified technical explanation:
make clones of (S0,S1, S6,S7) conditional on (S2,S3,S4, S5) (twice!)

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
]

Answer: information ratio ≥ 561/491 ≈ 1.142566
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Modern approach vs. PostModern approach

Modern approach:

Stage 1: computer-aided search of non-Shannon type inequalities

[materializing info (Ahlswede-Körner) or cloning (Copy Lemma)
+ linear programming]

Stage 2: computer-aided linear programming for secret sharing involving
inequalities found on Stage 1

PostModern approach:

One Shot: computer-aided linear programming for a secret sharing problem
involving cloning
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In one picture: postmodern vs. modern approaches

non-Shannon
type inequality 1

non-Shannon
type inequality 2

non-Shannon
type inequality 3

...

some interesting application
(in our example, to secret sharing)

good old
Shannon type inequalities

tricks (cloning)
+

linear programming

tricks (cloning)
+

linear programming

linear programming
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Once again: not in this talk

sharp lower bounds in secret sharing: Carles Padró

use of symmetries in the entropy space: Qi Chen

prague Conditional Information Inequalities August 19, Prague 40 / 52



Once again: not in this talk

sharp lower bounds in secret sharing

: Carles Padró
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Outline

1 Three types of conditional information inequalities

2 Conditional inequalities: geometric view

3 How people prove unconditional information inequalities

4 How people prove conditional information inequalities

5 Applications of conditional information inequalities
non-essentially conditional inequalities
essentially conditional inequalities for almost-entropic points
essentially conditional inequalities for entropic points
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Applications (2)

the cone of almost entropic points is not polyhedral

(0,0) (1,0) x

y

one essentially conditional inequality for (almost) entropic points (≥ 4 r.v.)
⇓

infinitely many unconditional information inequalities (in R15)

⇓

Theorem (Matúš)

There exist infinitely many independent linear information inequalities.
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Applications of essentially conditional inequalities for

strictly entropic points: combinatorics (work in progress)

(0,0) (1,0) (2,0) x

y

if y = 0 then x ≤ 1 ⇐= from a complex structure of the borderline

What is it all about?
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What is it all about? What is it for?

not in this talk: conditional independence properties,
talk by Milan Studený

this talk: combinatorial applications
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Theorem

H(a|x, y) = I(x : y|a) = 0⇒ I(a : b) ≤ I(a : b | x) + I(a : b | y) + I(x : y)

We relax the constraint and make the statement stronger:

(*) ∀i , j there is at most one k s.t. (Pr[Xi & Ak ] > 0 and Pr[Yj & Ak ] > 0)

Observation [Kaced, R., Vereshchagin]:

H(a|x, y) = I(x : y|a) = 0 =⇒ (∗) =⇒ H(a | x , b) + H(a | y , b) ≤ H(a | b)

⇓

I(a : b) ≤ I(a : b | x)+I(a : b | y)+I(x : y)
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(*) ∀Xi ,Yj there is at most one Ak s.t. (Pr[Xi & Ak ] > 0 and Pr[Yj & Ak ] > 0)

Theorem

(∗) =⇒ H(a | x) + H(a | y) ≤ H(a)

Equivalent form: (∗) =⇒ I(a : x : y) ≥ 0

x y

a

≥ 0
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It is about graph coloring!

G: a bi-partite graph with colored edges

(*) for any vertices v ∈ Left and w ∈ Right there exist ≤ 1 common color

Take a random edge

x := the left end of the edge

y := the right end of the edge

a := the color of the edge

Theorem (∗) =⇒ H(a | x) + H(a | y) ≤ H(a)
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A toy application: a bound for an edge coloring
G: a bi-partite graph

= a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



A toy application: a bound for an edge coloring
G: a bi-partite graph = a union of M matchings

every vertex v ∈ Left is involved in ≥ A matchings

every vertex w ∈ Right is involved in ≥ B matchings

any v ∈ Left and w ∈ Right are involved in ≤ 1 common matching

Prove that M ≥ A · B

Proof: take a random edge,

x := the left end of this edge

y := the right end of this edge

a := the color of this edge

Then H(a | x) + H(a | y) ≤ H(a)

≤ ≤ ≥

log A log B log M

prague Conditional Information Inequalities August 19, Prague 49 / 52



Slightly different view: Secret key agreement

Alice: knows a random x
Bob: knows a random y

x and y are correlated

Alice and Bob:

communicate via a public channel

may use public and private
randomness

Aim: construct a common z such that
H(z | communication transcript) ≈ |z|

Alice Bob
[x1 . . . xn] [y1 . . . yn]

011

00

100

0101

...

Question: How large can be entropy of z?

Theorem (see Ahlswede–Csiszár, Maurer 93)

1 There is a protocol that produces a secret key z of size ≈ I (x : y) w.h.p.

2 No protocol can do better.
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Conditional inequality: it is about communication protocols!

Theorem

For all communication protocols H(key | transcript) ≤ I(x : y)

Simple observation: if no communication, then H(key) ≤ I(x : y)

Indeed:

H(key) ≤ H(key | x) + H(key | y) + I(x : y)
= 0 + 0 + I(x : y)

Still simple: with a communication,
H(key) ≤ I(x : y | transcript)

Hard part: I(x : y | transcript) ≤ I(x : y)

Equivalent form: I(x : y : transcript) ≥ 0,

which is true for all
communication transcripts
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the core of the proof:

x y

transcript

≥ 0

external information complexity ≥ internal information complexity

advantages of this approach (conditional information inequality) :

applies to a light version of non-determinism (bi-clique cover)

translation to the setting of Kolmogorov complexity [R.-Zimand]
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