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Randomness: theory and practice

Randomness: theory and practice

Alexander Shen

Yurifest: May 2020
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Randomness: theory and practice

random objects?

paradox of individual random objects

É fair coin assumption says that all sequences of N bits
are equiprobable as outcomes of fair coin tossing
É still some of them refute the fair coin model while

other (“random bit sequences”) do not

Is randomness real?
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Randomness: theory and practice

random objects?

randomness around us
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Randomness: theory and practice

random objects?

more serious efforts

Rand Corporation, A Million Random Digits with 100,000
Normal Deviates (1955)
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Randomness: theory and practice

random objects?

electronic devices
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Randomness: theory and practice

random objects?

. . .could be exotic
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Randomness: theory and practice

relevant mathematics

I: probability theory

É test: a set of T⊂ {0,1}N that has very small
probability
É if x ∈ A, then x fails the test
É large deviations theorems
É limit theorems
É statistics (χ2, Kolmogorov–Smirnov, …)
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Randomness: theory and practice

relevant mathematics

Statistics as a proof

É “test should be fixed before the experiment”:
unclear but essential
É Bonferroni correction
É problems: how to choose p-value?
É what tests are acceptable?
É Gurevich, Passmore: Impugning randomness,

convincingly (Studia Logica 2012)
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Randomness: theory and practice

relevant mathematics

II: algorithmic information theory

É randomness ≈ incompressibility
É no program shorter than the sequence can produce

it
É Kolmogorov complexity ≈ length
É obstacle I: non-computability of complexity (one

can prove non-randomness but not randomness)
É obstacle II: arbitrary constants
É still the choice of programming language in advance

is more reasonable than the choice of the test
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Randomness: theory and practice

relevant mathematics

III: computational complexity
É not individual sequences but mappings (Yao,

Blum–Micali)
É G: short n-bit seed 7→ long N-bit sequence
É mapping G easy to compute (all images

compressible)
É no easily computable test T⊂ {0,1}N can

distinguish the output from random N bits:

Pr
x∈{0,1}n[G(x) ∈ T]≈ Pr

y∈{0,1}N[y ∈ T]
É easily computable ≈ polynomial-size circuits
É exist iff one-way functions exist (Hastad,

Impagliazzo, Luby, Levin)
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Randomness: theory and practice

relevant mathematics

IV: combinatorics, randomness extractors

É D: Bn×Bd→Bm:
D(reasonable random long,short independent random)
almost random and rather long
É if ξ is a random variable in Bn with large

min-entropy, ρ is an independent uniform random
variable in Bd, then D(ξ,ρ) has distribution that is
statistically (L1) close to the uniform on Bm
É existence can be proven
É some explicit constructions
É also two independent weakly random sources
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Randomness: theory and practice

randomness generators

random bits

needed for:
É random sampling in statistics
É draws, lotteries,…
É Monte-Carlo computations
É more general, simulations
É randomized algorithms could be more efficient:

É quick sort with random pivot
É primality testing
É computing an average of some array

É cryptographic protocols (one-time pad, secret
sharing)
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Randomness: theory and practice

randomness generators

“deterministic random bits”

É fix f: Bn→Bn, let xn+1 = f(xn)

É von Neumann: middle digits of a square
É linear/affine mapping in a finite field
É not random in any reasonable sense (computable,

predictable)
É but still could have good convergence for

Monte-Carlo etc.
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Randomness: theory and practice

randomness generators

hardware randomness

É also called “non-deterministic random generators”
É some process (thermal noise, radioactive decay,

photons reflection, environment, …) is used
É physics claims some probability distribution
É usually some conditioning/whitening is needed
É “centaurs”: hardware seed generation plus

deterministic transformation (Yao, Blum–Micali)
É a special type of “whitening”: no hope to get

uniform randomness, just computably
indistinguishable
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Randomness: theory and practice

randomness tests

what is a test?

É hardware RNG: special case of statistical testing
É null hypothesis H0 = uniform distribution
É test: a small set of binary strings
É its elements fail the test
É should be specified in advance…
É or be so simple that it could be specified in advance
É “deterministic RNG” may also pass some tests
É conjecture: digits of π form a normal sequence
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Randomness: theory and practice

randomness tests

history of tests

É early history described in Knuth (vol.2, 1969)
É law of large numbers (#0≈#1)
É χ2-tests for frequencies of bytes, etc.
É used when generating tables of random numbers
É Marsaglia diehard (1985–1995): still used
É Brown dieharder (2005): more flexible
É NIST 800-22 (2000, 2010), STS
É Simard, l’Ecuyer TestU01 (2007)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness: theory and practice

randomness tests

example of tests

É incompressibility (gzip as a test)
É limit theorems in probability theory
É p-values: let S: Bn→R be any function
É for each x ∈Bn we compute the p-value for x

pS (x)=Pr[S(r)¾ S(x)] for random r ∈Bn
É p-values for ordered sets (Gurevich, Vovk, 2017)
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Randomness: theory and practice

randomness tests

Secondary tests

É if pS (x) is very small, x fails the S-test
É if each value of S has negligible probability, pS (x) is

uniformly distributed in [0,1]
É so one can use tests (e.g., Kolmogorov–Smirnov) for

independent values of pS (x)
É mentioned by Knuth (1969, Art of Programming, v.2)
É widely used in diehard
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Randomness: theory and practice

randomness tests

tests in algorithmic information theory

É Martin-Löf: randomness for infinite sequences
É test: decreasing sequence of open sets (elements of

Ui have randomness deficiency ¶ i: Pr[Ui]¶ 2−i)
É probability-bounded and expectation-bounded tests

(Levin, Gács)
É universal test: finite for random sequences; adding a

long prefix of zeros increases deficiency but it
remains finite
É Schnorr–Levin–Gács theorem: expression for the

universal test in terms of Kolmogorov complexity
É quantitative algorithmic randomness theory
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Randomness: theory and practice

randomness tests

theory vs. practice: ID Quantique

(white paper)

É randomness is mixed with non-computability
É the last statement is false
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Randomness: theory and practice

randomness tests

theory vs. practice: NIST 800-22-1a
É type I error probability of failing the test assuming the null

hypothesis H0 (ok)
É “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)
É but “H0 is false” does not define any distribution
É “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉

The calculation of Type II error β is more difficult than the
calculation of α because of the many possible types of
non-randomness”
É “If a P-value for a test is determined to be equal to 1, then the

sequence appears to have perfect randomness” (1-4)
É “For a P-value ¾ 0.001, a sequence would be considered to be

random with a confidence of 99.9%. For a P-value < 0.001, a
sequence would be considered to be non-random with a confidence
of 99.9%” (1-4)
É two incorrect tests deleted from the second version
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Randomness: theory and practice

randomness tests

theory vs. practice: diehard[er]

É passing the test guarantees nothing (ok, unavoidable)
É what about failing the test?
É computation of p-values based on heuristic assumptions
É diehard: secondary tests based on incorrect assumptions
É dieharder: “At this point I think there is rock solid evidence

that this test [one of the diehard tests] is completely useless
in every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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Randomness: theory and practice

randomness tests

theory vs. practice: entropy
É entropy of a distribution (Shannon)

É for individual objects: Kolmogorov complexity

É a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and
reflects the uncertainty associated with predicting its value – the
larger the amount of entropy, the greater the uncertainty in
predicting the value of an observation”

É “Each bit of a bitstring with full entropy has a uniform distribution
and is independent of every other bit of that bitstring. Simplistically,
this means that a bitstring has full entropy if every bit of the
bitstring has one bit of entropy; the amount of entropy in the
bitstring is equal to its length’ (same NIST document)
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Randomness: theory and practice

randomness tests

theory vs. practice: whitening

É Santha–Vazirani sources: X1, . . . ,Xn

É Pr[Xi = 1 |X0 = x0, . . . ,Xi−1 = xi−1] ∈ (1/3,2/3)
É “no value can be predicted for sure”
É F: a deterministic transformation
É can we guarantee that F(X1, . . . ,Xn) is close to a fair

coin?
É nothing better than (1/3,2/3)
É similar results for k bits: for F: Bn→Bk there is SV

source and some k-bit output string that appear
with probability at least (2/3)k instead of (1/2)k
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Randomness: theory and practice

randomness tests

theory vs. practice: randomness extraction

É F(X,R) is statistically close to uniform randomness
if
É X is long and has reasonable min-entropy
É R is short but perfectly random
É X and R are independent

É IDquantique uses this approach
É but for fixed R (generated, sent with the device)
É so nothing is guaranteed
É strong extractor: (F(X,R),R)≈ uniform
É can be saved, but only with half of the security

parameter
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Randomness: theory and practice

randomness tests

theory vs. practice: using independence

É randomness extractors with several independent
sources
É exist with good parameters
É only the simplest approach seems to be used
É if X1, . . . ,Xn are independent and

Pr[Xi = 1] ∈ (1/3,2/3),
X1⊕ . . .⊕Xn is exponentially close to a fair coin
É independence is physically plausible
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Randomness: theory and practice

randomness tests

theory vs. practice: coding

É dieharder: non-reproducible results even with fixed seed

É wrong computation of Kolmogorov–Smirnov statistics

É tests are hard to debug

É NIST says:
In practice, many reasons can be given to explain why a data set has
failed a statistical test. The following is a list of possible
explanations. The list was compiled based upon NIST statistical
testing efforts.

1. An incorrectly programmed statistical test.
2. An underdeveloped (immature) statistical test.
3. An improper implementation of a random number generator.
4. Improperly written codes to harness test input data.
5. Poor mathematical routines for computing P-values.
6. Incorrect choices for input parameters.
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Randomness: theory and practice

randomness tests

how to make tests robust

É we do not know the exact distribution of a statistic
S and p-values are unreliable
É for secondary test it is not necessary if we use

Kolmogorov–Smirnov test for two samples:
S(x1), . . . ,S(xn) and S(y1), . . . ,S(ym)

É x1, . . . ,xn from the generator we test,
y1, . . . ,ym from a reference generator
É may reject a good generator using a bad reference
É S(x1), . . . ,S(xn) vs S(xn+1⊕ y1), . . . ,S(xn+m⊕ ym)
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Randomness: theory and practice

randomness tests

survey of available generators

parameters to take into account:
É noise source
É whitening
É access to raw noise
É rate
É cost
É software integration
É bonus: open source hard/software
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Randomness: theory and practice

randomness tests

Araneus

$$$, zener noise, 100 kbits/s, raw=no, whitening=?
“The raw output bits from the A/D converter are then further processed by an embedded
microprocessor to combine the entropy from multiple samples into each final output bit, resulting in
a random bit stream that is practically free from bias and correlation”
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Randomness: theory and practice

randomness tests

Gniibe

$$, environment noise, 3 mbits/s, access to raw bits,
open source (based on GNU microprocesssor unit),
whitening=CRC32 + SHA-256
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Randomness: theory and practice

randomness tests

Infinite Noise

$$, electronic noise, x 7→ 2x−1 digitization, 300 kbits/s,
access to raw bits, whitening=SHA3
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Randomness: theory and practice

randomness tests

analysis of raw noise bits

infinite noise: measured vs. model
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Randomness: theory and practice

randomness tests

Bitbabbler

$$–$$$, electronic noise, x 7→ 2x−1 digitization,
2.5 mbits/s default, 4 independent generators ($150
version), access to raw bits, variable discretization rate,
whitening=XOR
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Randomness: theory and practice

randomness tests

Bitbabbler: changing rate

100 kHz default rate 2.5 MHz 5 MHz
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randomness tests

2 or3 XOR
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Randomness: theory and practice

randomness tests

TrueRNG

$$–$$$, zener noise + ADC,
3.2 mbits/s, 2 independent generators ($100 version),
access to raw bits, whitening=XOR/CRC
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Randomness: theory and practice

randomness tests

TrueRNG raw noise
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Randomness: theory and practice

randomness tests

DIY approach
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Randomness: theory and practice

randomness tests

DIY: not all noise sources are the same

two zener diodes from the same roll
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Randomness: theory and practice

randomness tests

ID Quantique

$$$–$$$$, photon detectors, 4 mbits/s, no access to
raw bits, whitening?, additional randomness extraction
available
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Randomness: theory and practice

randomness tests

ID Quantique: scheme
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Randomness: theory and practice

paranoid mode on

certificates as randomness theater?

still fails dieharder/ent tests (before optional
randomness extractor)
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Randomness: theory and practice

paranoid mode on

security through obscurity

É NIST recommends (and insists) on using
cryptographic whitening
É “approved hash function”
É nothing is proven about them
É and even it were, it won’t help
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Randomness: theory and practice

paranoid mode on

NIST says:

Hash_DRBG’s [the random generator based on hash
functions] security depends on the underlying hash
function’s behavior when processing a series of se-
quential input blocks. If the hash function is re-
placed by a random oracle, Hash_DRBG is secure. It
is difficult to relate the properties of the hash func-
tion required by Hash_DRBG with common proper-
ties, such as collision resistance, pre-image resis-
tance, or pseudorandomness.
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Randomness: theory and practice

paranoid mode on

vulnerabilities

É software attack if a microprocessor is used
É undetected failure of noise source
É whitening obscures failures
É obscure hash function as a Troyan horse
É distribution close to random but still distinguishable
É last but not least: stupid errors (e.g., AMD Zen FF

random generator)
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Randomness: theory and practice

paranoid mode on

remedies

É xor of independent devices
É possible to make in-house
É open source hardware/software
É several reasonably cheap commercial generators, no

need for a fancy one

Happy Birthday to Ю!
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