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1 Introduction
The word “random” can be understood in many different ways. When we say that
something is “random”, we could mean a lot of different things. Restricting our-
selves to science, we see two use cases: we can speak about processes or about objects.
For example, a notion of random variable refers to processes: the outcome of a coin
tossing is a random variable that has two equiprobable outcomes “head” and “tail”,
and it makes no sense to ask whether the outcome “heads” is random or not. On the
other hand, a table of random numbers [28] printed in 1955 as a book and now avail-
able on the Internet, is a specific sequence of 1 000 000 digits. The authors make a
claim that this sequence is an outcome of some random process; however, the users
get a specific object (sequence) whose usefulness should be based on some proper-
ties of this object itself, not on the claims about its origin. These two meainings of
the word “random” are connected: When we test a statistical hypothesis (e.g., “null
hypothesis”) about some randomprocess andwant to decidewhether it is consistent
with observations, this decision is made looking at an individual object (the experi-
mental data). If we restrict ourselves to the secondmeaning (random objects), there
still is a wide gap that ranges from purely theoretical notions like incompressibility
(in the sense of Kolmogorov complexity, see [32, 34]) to quite practical issues related
to statistical evidence, validity of research papers, and pseudorandomness (see be-
low). The goal of our project is to approach this wide gap from different sides. In
the following sections we try to describe the context for some project work/papers
and then the work itself.

2 Statistical tests and 𝑝-values
As we have said, the connection between randomness of a process and randomness
of an object appears in different contexts. In statistics it is called hypotheses testing.
We assume some distribution (ofter called a null hypothesis ) on the experimental
results, and observe some specific outcome of the experiment (a value of a random
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variable that is a model of our process according to the hypothesis). We need to
decide whether this value is consistent with the hypothesis.

Looking at the example we considered (the hypothesis of a fair coin that assigns
probabilities 1/2 to both outcomes “head” and “tail”), onemay conclude that our set-
ting makes no sense: none of the two outcomes can be considered as a confirmation
(or refutation) of a hypothesis. However, in some other situations the question looks
more reasonable. For example, if we observe 10000 coin tosses and see (say) 8121
heads, it makes the fair coin hypothesis looking bad. How is this possible? Recall
that all 210000 sequence of zeros and ones (heads and tails) are equiprobable accord-
ing to the fair coin hypothesis, so the sequence we observed has the same probability
as any other possible outcome.

This paradox plays a central role both inmathematical statistic (where it is a very
practical question) and in algorithmic information theory (where it is considered
from a more abstract viewpoint). Superficially, the approaches provided by these
two fields, look quite different. Let us describe them shortly. In statistics, we con-
sider some function defined on all possible outcomes, with numerical values. In our
case the functionmay be the number of heads in the sequence. We reject (or at least
question) the statistical hypothesis (model) if the value of the function is improbably
high. More precisely, if this test function is 𝑓 and the actual value (for the observed
outcome) is 𝑐, we compute the probability of the event 𝑓(𝑋) ≥ 𝑐 according to the
assumed distribution of the random variable𝑋. It is called a “𝑝-value”; in our exam-
ple with 8121 heads the 𝑝-value is less than 10−913. Following the advice of Borel
who said “ je suis arrivé à la conclusion qu’on ne devrait pas craindre d’employer le
mot de certitude pour désigner une probabilité qui differe de l’unité d’une quantité
suffisamment petite”, we may reject the assumption of the fair coin.

Of course, usually the𝑝-values are not so small as in this example; the values like
0.01 or 0.05 are often used to show that the observation is statistically significant (say,
to convince the reader that a newmedicine is really useful and that the improvement
is not just a random fluctuation). There are many foundational problems related to
this practice.

• How to choose a test? There are many possible functions that can be used as a
test. For some of them the 𝑝-value is small, but not for others. By a suitable
choice of a test function (tailored to the outcome) we can make the 𝑝-value
small for every outcome. For example, consider the function 𝑓 that is equal
to 1 for the outcome we observed and equals 0 for all other inputs. Then the
𝑝-value will be the probability of this specific outcome (in our case, 2−10000),
and it this way almost any outcome can be used to reject almost any statisti-
cal hypothesis. To prevent this obvious cheating, we may require that the test
function is fixed before the experiment is made. However, this is hard to guar-
antee: if you read a paper that reports some experimental results, how can you
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be sure that the choice of a test function was made before the experiment? In
other cases this requirement is not very practical: if somebody discovers some
regularities in the existing experimental data (likeKepler did for planets’ data),
some tests are needed to check that it is not a random coincidence, but these
tests cannot be fixed before the experiment, it is too late. (For planets onemay
wait for the new observations, but it is not always possible or practical.)

• Publication selection. A related (but different) problem appears when many
researchers do a lot of experiments and use some 𝑝-value threshold to decide
whether their observations were statistically significant. Assume that in fact
null hypothesis is always true. Still, if 0.01 is used as significance threshold
for the 𝑝-value, one would expect that 1% of all researchers will conclude that
their observations are statistically significant and send their papers to a jour-
nal. So the journal receives a stream of false papers, and at the same time none
of the authors did anything wrong and there is no reason to reject any of the
papers.

These problems are quite practical. The American Statistican Association even pre-
pared and released an official statement (“ASA Statement on Statistical Significance
and 𝑃-Values”, [2]) where the dangers of careless use of 𝑝-values are explained. The
notion of 𝑝-value from the theoretical view point is analyzed in [18]. In [17] even
a more dangerous practice is considered when 𝑝-values (or similar estimates) are
used in court as evidence (“such and such combination of events cannot happen
randomly”); the authors note that the arguments of this type are often used without
clear methodology that consistently assigns probabilities for different arguments of
that type, and without clear and justified thresholds for these probabilities (and peo-
ple summoned to the jury service have no statistical training and still have to make
their own opinion on the validity of evidence). One may also note a recent publi-
cation of 72 authors [9] that suggests to replace one rather arbitrary threshold for
𝑝-values (0.05) by another one (0.005).

3 The notion of randomness deficiency
Many questions discussed in the previous section are outside the scope of our project.
Still they are motivations to analyze the notion of “test” as it is defined in algorith-
mic information theory, and the corresponding notion of randomness deficiency.
Informally speaking, the idea of a “test fixed in advance” is replaced in algorithmic
information theory by the idea of a “simple test”, and the notion of simplicity is un-
derstood in terms of Kolmogorov complexity. See for details the Appendix 1 in [34].
The technical difference is that now we consider “calibrated” tests. There are two
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notions of calibration that are close to each other but not equivalent. Consider a non-
negative function 𝑡. The first calibration requirement, called “probability-bounded”,
says that the probability of the event 𝑓(𝑥) ≥ 𝑐 is at most 1/𝑐. This corresponds to 𝑝-
values (the difference is that 1/𝑓 is used instead of 𝑓); this approach in a slightly
different version was considered by Martin-Löf in his first paper about random-
ness (1966, see, e.g., [34] for the historical information). Another approach, devel-
oped by Levin and Gács in 1970s (see [34] for the references) is called “expectation-
bounded”; it requires the expected value of 𝑓 to be bounded by 1. The Markov in-
equality shows that it is a stronger requirement. The notions of tests were more
or less forgotten after 1980; only recently they were studied again. In particular,
RaCAF visitor G. Novikov [27] has shown that the difference between these two no-
tions (and some intermediate notions) behaves in a rather subtle way (which is still
not really understood). Similar effects (in a different settings) were observed in [3].

Another line of research related to tests and deficiencies can be called the “quan-
titative algorithmic randomness theory”. The notion of randomness (for an infi-
nite sequence of zeros and ones) was introduced by Martin-Löf in 1966 using tests.
Unlike finite sequences where the sharp dividing line between random and non-
random objects is impossible, for infinite sequences we can draw such a line and di-
vide all sequences into random and non-random ones. A random sequence remains
random if we change one bit. It is a natural property, but it implies that random
sequence can start with a long sequence of zeros. This is reflected in the value of
a function called randomness deficiency: it is finite for random sequences and infi-
nite for non-random ones, and for a random sequence that starts with many zeros
the randomness deficiency is large. Informally speaking, randomness deficiency is
a negated logarithm of the 𝑝-value for the universal randomness test.

Therefore, the notion of randomness deficiency allows us to transform a “qual-
itative” statements in algorithmic randomness theory into “quantitative” ones. It
is easier to do this for an expectation-bounded version of randomness deficiency.
For example, a classical van Lambalgen theorem says that a pair (𝛼, 𝛽) is random if
and only if two conditions are true: (1) 𝛼 is random; (2) 𝛽 is random and remains
random even with oracle 𝛼 (see [34] for the exact definitions and statements). The
quantitaive version of this result (see [8]) says that

𝑑(𝛼, 𝛽) = 𝑑(𝛼) + 𝑑𝛼(𝛽),

where the left side is the deficiency of the pair (and is finite if and only if (𝛼, 𝛽) is
random), and in the right hand side we have the deficiencies of 𝛼 and of 𝛽; in the
latter case we use 𝛼 as an oracle (which increases the deficiency). Left-hand side is
finite if and only if both terms in the right hand side are finite. So we get the classical
van Lambalgen’s theorem plus some quantitative information for the case when the
pair is random.
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A similar quantitative result for image randomness is proven in [15]: it says that
the randomness deficiency of a sequence equals theminimal randomness deficiency
of its preimages.

4 Tests and random number generators
Here againwe use statisticals tests but from different perspective. In natural science,
we have some experimental data and choose a probabilisticmodel (distribution) that
fits the data. Tests are used to check whether the model seems to be OK for the data;
if not, we search for another model that fits better the existing data. Now, for the
random number generators, the distribution is fixed (e.g., the fair coin distribution,
the Bernoulli distribution with independent trials and equiprobable outcomes). We
have some sequence (e.g., obtained by a physical coin tossing) and want to check
whether it looks plausible (one could believe that the sequence is a result of the
corresponding random process). For example, if the coin is not really symmetric,
or the tossing is performed not high enough, or (in a more realistic settings) the
parameters of the noise used to get random bits differ from the expected ones, such
a test will tell us about the problems.

Again, we have the same problem. If a sequence is given, it is easy to construct
a test that shows that the sequence is not random. On the other hand, if we fix
some battery of tests in advance, then it is quite possible that some evidently non-
random sequence passes all the tests, which is also undesirable. The algorithmic
information theory provides a universal test where bad sequences are compressible
ones. More precisely, a bit string 𝑥 of length 𝑛 has randomness deficiency at least
𝑑 if 𝐶(𝑥) < 𝑛 − 𝑑. Then the fraction of strings that have deficiency greater than
𝑑 is at most 2−𝑑, so we can construct a probability-bounded test based on this de-
ficiency function. This test has many theoretical advantages; it is universal in the
sense that a sequence that passes it at level 𝑑, will also pass any computable test at
level 𝑑+𝑂(1), where𝑂(1)-constant dependes on the choice of the other test. On the
other hand, the complexity function (as defined by Kolmogorov) is non-computable,
and the constant in 𝑂(1) can be large, and these two problems make the complexity
approach not practical. Still the standard compressors can be considered as random-
ness tests: from a practical viewpoint, if a bit sequence can be compressed by bzip (or
gzip, or zip) by more than 50 bytes, it is definitely non-random (the corresponding
𝑝-value is about 2−400, since 50 bytes = 400 bits).

To understand the real situation, one may look at the statistical tests that are
really used to test random number generators (including physical ones). We have
selected a classical battery of tests, called “Marsaglie Diehard tests”, created in 1990s
by George Marsaglia (1924–2011). Typical test from this collection works as follows.
There is some random process that uses random bits. For example, one of the tests
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fills a matrix of size 32×32. Then a rank of this matrix (a number between 0 and 32)
is computed. This is repeated 40 000 times, and four numbers are computed: how
many matrices have rank 32, 31, 30 and ≤ 29. (Marsaglia explains that matrices of
rank less than 29 are rare, and he decided to combine them with matrices of rank
29.) These probabilities can be computed, so we can then apply, say, 𝜒2-criterion
as a test (we have independent trials with finite number of outcomes and known
probability).

Unfortunately, for many other tests in the collection one cannot compute the
ditribution explicitly. In this cases Marsaglia uses some approximation for the dis-
tribution. Even if the approximation is proven, we lose the possibility for secondary
testing (Section 5); moreover, in many cases there is no proof at all. One may sug-
gest to use the “truly random generators” to certify the tests for which there is no
proof. The problem, however, is that we get a vicious circle (to certify a generator
we need to certify a test and vice versa) and, moreover, the nature and value of this
certification is unclear.

As the linuxman page for diehard puts it, “Lacking a source of perfect random
numbers to use as a reference, validating the tests themselves is not easy and always
leaves one with some ambiguity … During development the best one can usually do
is to rely heavily on these “presumed good” random number generators.” We return
to this question and formulate our suggestions in Section 6.

5 Secondary testing: independence needed
Secondary testing is sound if (1) we know the exact distribution of the test function;
(2) the function has large min-entropy, i.e., each value has a negligible probability.
Then, if we compute 𝑝-value as a function of this test, it will have distribution that
is very close to the uniform distribution in [0, 1]. (If test function is injective, we get
a uniform distribution on the set of all fractions with denominator 𝑁, where 𝑁 is
the number of possible outcomes.) Then we may use the test repeatedly (on fresh
random bits) and get some sample from the uniform distribution (under the null
hypothesis); some other tests (like Kolmogorov–Smirnov one) could be then used to
check it.

One shouldmention that diehard test suite sometimes does not implement this
approach correctly. The description of the “birthday spacing test” says: “…The first
test uses bits 1–24 (counting from the left) from integers in the specified file. Then
the file is closed and reopened. Next, bits 2–25 are used to provide birthdays, then 3–
26 and so on to bits 9–32. Each set of bits provides a 𝑝-value, and the nine 𝑝-values
provide a sample for a KSTEST [Kolmogorov–Smirnov test]”. Here the same bits (in
the overlapping range) are used in different tests, so there is no reason to expect that
𝑝-values will be uniformly distributed.
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6 How to discredit a bad sequence in a reliable way
There is an approach (that we plan to test) to overcome the difficulties mentioned.
Imagine that we have some test for which only some heuristic for approximating a
𝑝-value is conjectured. If we repeat this test using non-overlapping group of bits,
we get some distribution. Imagine that this distribution is far from the uniform
distribution in [0, 1], so we suspect that the string we are testing is bad. How can we
confirm this conclusion without any unproven assumptions?

First approach is mentioned above: compare the distribution of 𝑝-values with
the similar distribution for “truly random” bits (say, using Kolmogorov–Smirnov
test for checking whether two samples are drawn from the same distribution). If
they differ significantly, this difference shows that our sequence is bad. In other
words, we consider a “randomized randomness test”, where the bits used for this
“randomization” should be “truly random”.

It seems at first (see the citation abowe) that this approach depends on the access
to “truly random bits”. Even if we have some physical generator that is believed to
be good (passes other tests, for example), there is no way to prove it.

To overcome the difficulty we suggest the following trick. Assume that we have
to test a sequence of bits and split it into 𝑁 blocks of length𝑀:

𝐵 = 𝐵1𝐵2…𝐵𝑁
The we apply the (unproven) test to all the blocks and get some quasi-𝑝-values
𝑡(𝐵1), … , 𝑡(𝐵𝑁). If we had some truly random generator, we could generate random
sequence

𝑅 = 𝑅1𝑅2…𝑅𝑁
and then apply the Kolmorogov–Smirnov test to two samples 𝑡(𝐵1), … , 𝑡(𝐵𝑁) and
𝑡(𝑅1), … , 𝑡(𝑅𝑁). Now we want to do the same without access to a certified source of
random bits. For that, we first use the generator that is believed to be good and get
the sequence 𝑅1, … , 𝑅𝑁 as before. For testing we now need a twice longer sequence;
we split it into 2𝑁 blocks of the same size:

𝐵′ = 𝐵1𝐵2…𝐵𝑁𝐵𝑁+1𝐵𝑁+2…𝐵2𝑁 .
Then we apply Kolmogorov–Smirnov test to two samples

𝑡(𝐵1), 𝑡(𝐵2), … , 𝑡(𝐵𝑁) (∗)
and

𝑡(𝑅1 ⊕ 𝐵𝑁+1), 𝑡(𝑅2 ⊕ 𝐵𝑁+2), … , 𝑡(𝑅𝑁 ⊕ 𝐵2𝑁). (∗∗)
What is the advantage of this approach? If the generator used to get 𝑅𝑖 is really
good, we are in the same situation as before with the same chances to catch the non-
randomness of 𝐵′ (though using twice as many bits). On the other hand, without
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any assumptions on the sequence 𝑅1𝑅2…𝑅𝑁 we get a provably valid test: if indeed
𝐵′ is generated with a correct distribution, both sequences (∗) and (∗∗) are drawn
from the same distribution!

7 Testing physical randomness
We have acquired a device generating physical random bits, in which the correcting
apparatus has been removed. Our study plan is twofold: fist to make the device go
through a batch of statistical randomness test to understand the natural bias, second
to measure its randomness through the use of algorithmic tests.

8 Randomness as a type of warranty
A notion of randomness appears in many contexts and could have different (but
probably related) meanings in different contexts. We can use the notion of expecta-
tion-bounded test in the framework of game-theoretic approach to probability the-
ory developed by Vovk and Shafer [39].

In the spirit of this theory, we consider the interaction between two players
introduced in [31]: “randomness producer” (P) and “randomness consumer” (C).
The producer provides a bit sequence of some fixed length 𝑁, in exchange for a 1
dollar payment. The consumer, not seeing this sequence, provides an expectation-
bounded test, i.e., some non-negative function 𝑡 defined on all𝑁-bit strings with the
average atmost 1. (This producer does not know this function, so this is a gamewith
incomplete information.) After the sequence 𝑅 and test 𝑡 are chosen, the producer
pays back 𝑡(𝑅) dollars to the consumer.1 In the Vovk–Shafer framework the random-
ness of the bits means that P is ready to participate in the game, i.e., randomness is
a type of warranty for the bits that are shipped.

For example, if C plans to use the random bits bought from P for some random-
ized algorithm (that, say, generates a prime number with probability 0.999), then
the function 𝑡 would be equal to 1000 on sequences that lead to a composite num-
bers, and 0 elsewhere. The proof of the correctness of the algorithm guarantees that
the average of this function is at most 1. So, bringing this function when buying the
sequence, C hedges her risks: if she gets in trouble because the number turns out to
be composite, at least she can get a $1000monetary compensation from P.

The framework suggested by Vovk and coauthors is related not only to random-
ness, but also to complexity. Recently he and Pavlovic suggested a new representa-
tion for randomness testing [38]. It turned out that the basic notion introduced by

1This corresponds to a “non-commercial” production of random bits; a commercial producer
could charge a bit more, say, $1.01 instead of 1 to cover its costs.
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them (it can be called the stopping time complexity) can be obtained as a special case
of conditional complexity with structured conditions introduced long ago (see [34]
for the historical account). This connection and other properties of the stopping
time complexity are studied in [4].

9 Weak Complexity Models
One of the obstacles for a practical use of Kolmogorov complexity (and the related
notion of incompressibility) is its non-computability. This non-computability is in-
avoidable if we do not restrict the computational power of decompressors (descrip-
tion modes) used in the definition. Therefore, a restricted versions of Kolmogorov
complexity could be interesting.

One extreme restriction is to consider finite memory and almost real-time com-
putations, as provided by the finite automata computationmodels. It was known for
a long time that (morally) finite-state incompressibility corresponds to Borel normal-
ity (all blocks of given lengths should have the same limit frequency in a random se-
quence). However, this result did not fit the general framework for complexity and
compressibility as used in the other versions of Kolmogorov complexity. We show
that this one can overcome this difficulty and define the class of description modes
using finite-state memory and show that normality corresponds to the incompress-
ibility in this class. As a byproduct we get simple proofs for many results about nor-
mal number (the equivalence between aligned and non-aligned definitions, Wall’s
theorem, Agafonov’s theorem, Piatetski-Shapiro’s theorem). See [33] for details.

10 Randomness extractors: one ormultiple sources
From the practical viewpoint, the randomness extraction deals with the following
problem. It is quite easy to implement some physical process that is believed to be
“random” in the weak sense of unpredictability (white noise and radioactive decay
are twowell known examples of such a process). In otherwords, it is rather simple to
make a physical device that produces a sequence of bits with high Shannon entropy
(or min-entropy, or some other reasonable measure of “randomness”). However, it
is virtually impossible to guarantee that the outcome of a real-world physical device
is “perfect”, i.e., provides a sequence of truly independent and uniformly distributed
bits. An interesting challenge is therefore the problem of extraction of randomness,
i.e., post-processing of random data that improves the “quality” of random bits. In
practice this task is well known; for example, Marsaglia himself noted that some
sequence obtained from a special device fails several random test and tried to correct
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it by xor-ing with some good pseudorandom generator.2
A more formal question is what kind of transform should be applied to a se-

quence of bits with high enough measure of randomness to get a result that would
bemuch closer (in some formal sense) to the uniform distribution. Such a transform
may shrink the size of the data (the number of random output bits can be signifi-
cantly less than the number of input bits), but improve the “quality” of randomness
in these data.

Most known constructions of randomness extraction can be subdivided into two
classes: extractors that use a short supplementary random input (which supposed
to be almost perfect) and extractors that take two (or more) imperfect but mutually
independent inputs.3

The methods of randomness extraction was substantially developed in theoreti-
cal computer science (mostly due to purely theoretical aspects of derandomization
in computational complexity). In the last two decades the techniques of derandom-
ization havemade an impressive progress, the researchers working in this area have
successfully employed very nontrivialmathematical and algorithmic techniques. The
known constructions of randomness extractors use different tools, including spec-
tral graph theory (e.g., randomwalks on expander graphs), coding theory (e.g., error
correcting codes with efficient list decoding), see [30, 36] for a survey. However, in
most natural settings there remains a large gap between “theoretical” results (those
which characterize the parameters of randomness extractors that can be achieved in
theory, if the computational complexity is not an issue), and more “practical” con-
structions that can be implemented by polynomial-time algorithms.

Though the reunification of the theoretical results for randomness extractors and
the practical efficient algorithms remains elusive, the existing methods may be pow-
erful enough tomake progress in various problems of computer science and informa-
tion theory. We plan to apply the techniques of randomness extraction on the two fol-
lowing (quite opposite) offshoots of the theory of randomness. The questions of the
first type are very practical: how successful/efficient are the known constructions of
randomness extractors (first of all, based on the random walk on expander graphs)
when the raw data is the physical noise (obtained, e.g., from a standard sound card
or a more specialized gadget). We plan to experiment with the following scheme:
subsequence blocks in a weakly random sequences are used for a “weakly random
walk” in a graph with expander-like properties. Another planned experiment is to

2Later a possible reason for the failure was found: CR-LF/LF (DOS/Unix) conversion that hap-
pens while copying files in text mode could be applied to the data.

3It is easy to see that one cannot hope to find a function that maps a “somehow random” long bit
string𝑥 into one “almost perfect” bit𝑏 (not using any auxiliary information). Indeed, such a function
should have preimages of 0 and 1 of approximately the same size, and a random variable uniformly
distributed in one of them will have large entropy, min-entropy etc., and still will be mapped into a
constant random variable.
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try to use time-separated data for extraction from independent sources: it is much
more plausible that some physical device has no memory (knowing today’s noise
hardly changes the distribution of tomorrow’s noise for a memory-less device) than
any assumption on the specific distribution.

The questions of the second type are rather theoretical and appear in algorithmic
information theory (theory of Kolmogorov complexity): which information quanti-
ties can be extracted from a tuple of correlated strings? In a series of recent works
it was shown (see the surveys [35, 40]) that the randomness extractors combined
with standard hashing techniques help to “materialize” some quantities known in
information theory. For instance, it turns to be possible to extract from a string 𝑥 an
almost shortest description of 𝑥 conditional on another string 𝑦, which is a sort of
operational interpretation of the conditional Kolmogorov complexity 𝐶(𝑥|𝑦). Some
other results of this type was obtained earlier by the participants of the project [29].
We suppose to use similar methods to find an operational characterization of more
elusive information quantities like the mutual information 𝐼(𝑥∶𝑦) = 𝐶(𝑥) + 𝐶(𝑦) −
𝐶(𝑥, 𝑦). Csiszár and Narayan suggested in [16] that such a characterization can be
found in cryptographical settings. Assume for example that two remote parties (Al-
ice and Bob) hold correlated data (Alice is given a string 𝑥, Bob is given another
string 𝑦, and they both know an approximate value of 𝐼(𝑥∶𝑦)). Can Alice and Bob
use the given data to agree on a common secret key by communicating over an open
channel? It seems that this problem can be solved using randomness extractors and
some nonconventional information inequalities. Csiszár and Narayan have shown
this in the framework of Shannon’s information theory, and we are working on a
similar result for the algorithmic framework.

11 Local rules enforcing high complexity
The following result deals more with the theoretical side of randomness notions. It
shows, roughly speaking, that local rules are enough to force a uniquely defined
and complex global structure. (One often considers local rules with complex global
structure as a theoretical models for quasicrystals.) A technique based on computer
science and logic tools (Kleene recursion theorem) was developed earlier by the par-
ticipants of the project [14]. It was used to show that local rules can enforce a maxi-
mally complex structure (in a subspace of codimension 1): for a tiling of a plane one
can construct a finite set of local rules (subshift of finite type in the terminology of
the ergodic theory) that guarantees that one-dimensional sections of any tiling are
“almost random”, have complexity close to maximal (Ω(𝑛) for 𝑛-bit substring).

In 2017 a new step in this direction was made. In the general case, a set of local
rules can admit completely different tilings, with completely different and a priori
non-uniform structural properties. This freedom is restricted if we considerminimal
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or quasiperiodic subshifts of finite type. The minimality requirement says that every
two tilings have one and the same set of finite patterns: if some finite pattern appears
in one tiling, then it must appear (in fact, infinitely often) in every other one. The
quasiperiodicity means that every valid structure is uniform in some sense: every
finite pattern that appear in the structure at least once, must appear there infinitely
often, with about the same density everywhere. In [13] we described the structures
that can be obtained as “cross sections” (restrictions to a subspace of codimension
1) of minimal subshifts of finite type; we also constructed quasiperiodic subshifts of
finite type with maximally complex structure in all subspace of codimension 1.

12 Algorithmic statistics
A systematic research of the relation between statistical hypotheses (models) and
individual objects is a topic of algorithmic statistics. It appeared in the first papers
(and talks) by Kolmogorov on algorithmic information theory; later many people
(Rissanen, Bennett, Koppel, Antunes and others) suggested similar ideas in differ-
ent (and not always clear) form. It turned out that all these approaches (Kolmogorov
structure functions, (𝛼, 𝛽)-stochasticity, minimal description length principle, logi-
cal depth, computational depth, sophistication) are essentially equivalent (see [23,
24] and [37] for a survey). One could say that “computability theory” part of algo-
rithmic statistics is well understood now.

One can describe the main goal of algorithmic statistics as follows. We observe
some data 𝑥 (say, binary string) and have some statistical model for 𝑥 (a finite dis-
tribution on binary strings, or, for simplicity, a finite set 𝐴 with assumed uniform
distribution on 𝐴). When 𝐴 is a good model for 𝑥 (=𝑥 is a “typical”, or “random” el-
ement of 𝐴)? The model 𝐴 should be simple (have small complexity), and 𝑥 should
have small randomness deficiency (see above) in𝐴. Vitanyi andVereshchagin noted
that these requirements are closely related to good two-part descriptions (when 𝑥 is
specified by 𝐴 and the ordinal number of 𝑥 in 𝐴). These notions are also closely re-
lated to resource-bounded complexity. However, the resource bounds used here are
huge (busy beaver numbers, see [3]), so this remains more a computability theory
that complexity theory even if we speak about bounded time (or space) computa-
tions.

To make these results (a bit) closer to practice, one should consider much more
reasonable bounds, and some new techniques, like pseudo-random generator of
Nisan–Wigderson, are needed. At that complexity level one should distinguish be-
tween time and space bounds (for busy beaver type bounds this difference does not
matter). The space-bounded version of algorithmic statistics is considered in [25].
In [26] a time-bounded version is considered. The authors suggest three defini-
tions of a plausible statistical hypothesis with polynomial time bounds, which are
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called acceptability, plausibility and optimality. Roughly speaking, a probability
distribution 𝑚 is called an acceptable explanation for 𝑥, if 𝑥 possesses all proper-
ties decidable by short programs in a short time and shared by almost all objects
(with respect to 𝑚). Plausibility is a similar notion, however this time we require
𝑥 to possess all properties 𝑇 decidable even by long programs in a short time and
shared by almost all objects. To compensate the increase in program length, we
strengthen the notion of “almost all”— the longer the program recognizing the prop-
erty is, the more objects must share the property. Finally, a probability distribution
𝑚 is called an optimal explanation for 𝑥 if 𝑚(𝑥) is large. It turns out that (under
some complexity-theoretic assumptions) for acceptability and plausibility there are
infinitely many non-stochastic objects, i.e. objects that do not have simple plausible
(acceptable) explanations, and that the distinguishing complexity of a string 𝑥 can
be super-logarithmically less than the conditional complexity of 𝑥 with condition 𝑟
for almost all 𝑟 (for polynomial time bounded programs).

13 Randomness and Continuous Time Processes
The previous discussion was mostly considering randomness as being generated by
digital algorithms or machines. However, practical generation of randomness often
relies on continuous (in time and space) processes. This includes the most emblem-
atic example of randomness generation: rolling a dice. While the dynamic of a dice
is governed by a purely deterministic law of evolution, its output is generally consid-
ered as random.

From a mathematical point of view, its evolution is described by some poly-
nomial ordinary differential equation 𝑦′ = 𝑝(𝑦) starting from some initial data
𝑦(0) = 𝑦0. Mathematical theories and results have been invented to model this
phenomenon and explain how a purely deterministic process can generate random-
ness.

They include ergodic theory which studies dynamical systems with an invari-
ant measure, initially motivated by problems of statistical physics. One of its main
concerns is the behavior of dynamical systems (and the corresponding measure-
preserving transformations) when they are allowed to run for a long time. From
this viewpoint, the randomness of a dice is explained by the incertitude present in
the initial condition 𝑦0, modeled as random, and its dynamics is seen as a process
preserving this initial randomness. Computable versions of several theorems of er-
godic theory have been proven.

However, another approach, though probably less common in 2017 (but not at
the time of first computers that were analog machines), is however very natural: a
dice can be considered as a process computing a value in {1, 2, … , 6}. More gener-
ally, every system modeled by an ordinary differential equation can be considered
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as doing a computation in a similar sense. If we want to simulate a given contin-
uous system, we could build an analog computer, that is, a mechanical or on elec-
tronic process, whose evolution corresponds to the system to be modeled. The term
‘analog’ in “analog computation” comes historically from the idea of computing by
analogy, though in the recent years it is mostly understood as being the antonimous
of ‘digital’: indeed, these simulationmachines were working with continuous quan-
tities such as angles or voltage (not bits as modern computers do).

Recent results showed that polynomial ordinary differential equations havemany
similaritieswith Turingmachines. In particular, they can simulate Turingmachines
(and vice versa). The class of solutions of polynomial ordinary differential equations
have many closure properties rather similar to the properties of computable func-
tions. A recent breakthrough, obtained by the PhD thesis of Amaury Pouly was to
establish that time is corresponding, in some deep sense, to the length of solutions.
The results of this type open a way to define computability or complexity notions
related to continuous functions internally, without any reference to digital concepts
such as Turing machines (using only basic concepts like length, distance, etc.). The
PhD thesis of Amaury Pouly, co-supervised by Olivier Bournez and Daniel Graça,
has been awarded in August 2017 the selective Ackermann PhDAward. These state-
ments have also been accepted to the selective Journal of the ACM [5].

Coming back to our example: One sees that it is possible to generate a random
number {1, 2, … , 6} using a polynomial ordinary differential equation. Namely, con-
sider the one corresponding to the dice dynamics. Can one generate any function?
We answered positively to this question through the result published in ICALP’17
[6], solving an open question from Rubel in 81. This has been remarked and a post
in thewell-known blogGödel’s Lost Letter and P=NP have been devoted to our result
[19].

To be more concrete and precise: An astonishing fact was established by Lee
A. Rubel (1981): there exists a fixed non-trivial fourth-order polynomial differen-
tial algebraic equation (DAE) such that for any positive continuous function 𝜑 on
the reals, and for any positive continuous function 𝜖(𝑡), it has a 𝒞∞ solution with
|𝑦(𝑡) − 𝜑(𝑡)| < 𝜖(𝑡) for all 𝑡. Lee A. Rubel provided an explicit example of such
a polynomial DAE. Other examples of universal DAE have later been proposed by
other authors. However, while these results may seem very surprising, their proofs
are quite simple and are frustrating, and can be interpreted more as the fact that
(fourth-order) polynomial algebraic differential equations are too loose as a model
compared to classical ordinary differential equations.

The question whether one can require the solution that approximates 𝜑 to be the
unique solution for a given initial condition is a well known open problem [Rubel
1981, page 2], [Boshernitzan 1986, Conjecture 6.2]. In [6], we solve it and show that
Rubel’s statement holds for polynomial ordinary differential equations (ODEs), and
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since polynomial ODEs have a unique solution given an initial data, this positively
answers Rubel’s open problem. More precisely, we show that there exists a fixed
polynomial ODE such that for any 𝜑 and 𝜖(𝑡) there exists some initial condition that
yields a solution that is 𝜖-close to 𝜑 at all times.

These results were established in the purpose of trying to define concepts similar
to Kolmogorov complexity for continuous functions. Of course, these concepts can
be defined by transferring the questions back to the digital world, but we believe
they can possibly be defined in an implicit/internal way, without any reference to
concepts such as Turing machine. For example, by replacing the concept of “sim-
plest program” by simplest ordinary differential equation/initial condition, onemay
expect theorems similar to the one known in the classical settings. The most funda-
mentals definitions and statements in the classical settings relies indeed on the fact
that there exists universal Turing machines. Results established in [6] are clearly a
first substantial step towards this, as they lead a way to talk about universal (polyno-
mial) ordinary differential equations.

14 Higher randomness and computations
To understand the philosophical notion of randomness, one may study more pow-
erful computational models. In particular, in order to understand the power pro-
vided by a random set, we have investigated computations to which as been added
a generic ultrafilter [11]. This is not an easy task for any computational model, it
comes more naturally with cellular automata. We add a generic ultrafilter to this
model by constructing a shift-invariant interval-unbounded ultrafilter on ℤ. The
construction is interesting in itself, as different hypothesis are needed depending
on the ground model considered. For example, starting from a model satisfying the
continuum hypothesis, one can construct such an ultrafilter, whereas we need to
use Martin’s axiom in a model with larger continuum. We show that the power of
these augmented cellular automata is strictly more powerful: such an enhanced au-
tomaton can use the ultrafilter to decide the totality of a given Turing Machine. All
the ultrafilter constructed in this manner are essentially generic as they have been
built via a forcing construction.

We have also studied the power of another enhanced model, the Infinite Time
Turing Machines [10]. These machines behave like classical Turing Machines, but
have special features to handle infinite ordinal time. The running times of these
machines present gaps, and we proved that their gap distribution is both rich and
complex. Some ordinals play an important role in this study : they are strongly
closed ordinals called admissibles. Of those admissibles, some begin gaps and others
are properly contained in a gap. We have given a comprehensive description of this
later case.
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In the study of these Infinite Time Turing Machines, we have embarked on the
quest for rich specific infinite time behaviours of TuringMachines. We have defined
infinite time variants of Tibor Rado’s busy beaver fonctions and given a comprehen-
sive study of the first machine classes, in addition to providing a theoretical outlook
on the algorithmic complexity of these busy beaver functions [12]
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