
Algorithmic information theory

Alexander Shen

December 26, 2014

Algorithmic information theory uses the notion of algorithm to measure the
amount of information in a finite object. The corresponding definition was sug-
gested in 1960s by Ray Solomonoff, Andrei Kolmogorov, Gregory Chaitin and
others: the amount of information in a finite object, or its complexity, was defined
as the minimal length of a program that generates this object.

Informally, the amount of information in a finite object can be described as
the number of bits (zeros and ones) needed to encode this message. For example,
there are 26 Latin letters, so one can encode a letter by a combination of five bits
(there are 25 = 32 bit strings of length 5, and 32≥ 26). On the other hand, it is not
possible to encode Latin letters by 4-bit strings, because we do not have enough
4-bit strings (24 = 16 < 32). So we can say that each Latin letter carries between
4 and 5 bits of information. In general, if there are N possible messages and we
agree in advance on the list of all possible messages, then each message can be
encoded by dlog2 Ne bits.

More complicated situation arises when we know in advance that some mes-
sages are more probable than others and want to minimize the expected number
of bits per message. Then we can use shorter encodings for more popular mes-
sages, like in the Morse code where short sequences of dots and dashes are used
for some frequent letters. This approach leads to the notion of Shannon entropy
of a random variable (see the chapter about Shannon information theory).

In both cases we assume that the set of possible messages (and a probability
distribution on it, for the case of Shannon entropy) is fixed in advance. So we
cannot measure the amount of information in an individual object (such as DNA
sequence or a novel) in this way. Indeed, it is not clear what set of “possible
DNA sequences” should we consider as an ensemble from which our sequence
is taken. If we choose the set of all DNA sequences that existed on earth, the
amount of information would be at most few hundred bits, a ridiculously small

1

quantity; moreover, this set increases over time. Similarly, it is absurd to say
that The Brothers Karamazov novel contains at most 4 bits of information on the
grounds that Dostoevsky (its author) has written at most 16 novels.

Algorithmic information theory overcomes this problem in the following way.
The amount of information in an individual finite object, or its Kolmogorov com-
plexity, is defined as the minimal length of a program without input that generates
this object. In this definition programs and objects are binary strings. A program-
ming language is specified by fixing an interpreter for it, i.e., an algorithm D such
that D(p) is the output generated by program p. We consider all algorithms whose
inputs and outputs are binary strings, as interpreters. Then for a string x its com-
plexity with respect to D is defined as CD(x) = min{l(p) | D(p) = x} where l(p)
stands for the length of p, and the minimum of the empty set is +∞.

The function CD depends on the choice of D; better (more efficient) languages
D may provide shorter programs and lower complexity than less efficient ones.
One would like to find the optimal, i.e., most efficient, programming language in
this sense. However, an obvious problem arises. It may happen that some D is very
efficient for some class of objects, i.e., objects of this class have short programs,
and at the same time D is less efficient for other objects. For each object x we can
design a special programming language Dx where x has a very short program. For
example, we may agree that a one-bit string 0 is a program for x: the interpreter
Dx, seeing the input 0, interprets it as a command to produce x. So the complexity
CD(x) is 1 if Dx is chosen as D. Moreover, having two arbitrary objects (strings)
x and y, we may consider an interpreter D such that D(0) = x and D(1) = y, thus
making both complexities CD(x) and CD(y) equal to 1. However, we cannot assign
short programs to many different objects, as there is not enough short programs
for that. This argument shows that there is no interpreter that is better than every
program of the form Dx.

So a weaker asymptotic notion of optimality is needed. We say that D is bet-
ter than D′ if CD(x) ≤ CD′(x)+ c for some c and for all x. The constant c in the
definition means that we are ready to accept longer programs as soon as the over-
head is bounded by some constant that depends only on the choice of D′ and is
independent of x. An interpreter is optimal if it is better than any other one. The
Kolmogorov–Solomonoff optimality theorem says that optimal interpreters exist.
We fix arbitrarily some optimal interpreter D. The value CD(x) is then called
Kolmogorov complexity of x and denoted by C(x). Using different optimal inter-
preters D1 and D2, we get different complexity functions CD1 and CD2 , but the op-
timality property guarantees that the difference is bounded: |CD1(x)−CD2(x)| ≤ c
for some constant c (depending on D1 and D2 but not on x) and for all x. So Kol-

2

mogorov complexity is defined up to a bounded additive term.
The Kolmogorov complexity of a string x is bounded by the length of x up

to some bounded additive term: all n-bit strings have complexity at most n+ c,
where c is a constant not depending on n. Indeed, every n-bit string x can be
generated by a program “output XX . . .X”, where XX . . .X are the bits of x, and
this program has length about n. So the complexity of a n-bit string cannot be
much bigger than n (asymptotically, as n goes to infinity). But it may be much
smaller than n; for example, the complexity of the string 0n (n zeros) does not
exceed logn+ c for some c and for all n. Indeed, 0n can also be generated by
a shorter program “output NN . . .N zeros” where NN . . .N is n written in binary,
and the length of this shorter program is about logn. A counting argument shows
that most strings of length n are incompressible, i.e., have complexity close to n.
Indeed, compressible strings have programs whose length is significantly smaller
than n. Using some k < n as a threshold, we note that at most 2k strings may have
programs shorter than k: different strings have different programs, and the total
number of all possible programs shorter than k is bounded by a total number of
strings of lengths 0,1,2, . . . ,k−1, i.e., is bounded by

1+2+22 + . . .+2k−1 = 2k−1 < 2k.

We see that if k is significantly smaller than n, then the strings of complexity less
than k form only a very small fraction (1/2n−k) of all n-bit strings.

Tossing a fair coin n times and recording heads and tails, we get a n-bit string
that is incompressible with high probability, i.e., with probability close to 1, ac-
cording to the uniform distribution on n-bit strings usually associated with “fair
coin tossing”. So incompressible strings are also called random. Note, however,
that there is no strict boundary between compressible (non-random) strings and
incompressible (random) ones; the difference between the length and the com-
plexity, called sometimes the randomness deficiency, is small for random strings
and large for non-random ones, but there is no specific threshold that separates
one collection from the other.

The notion of Kolmogorov complexity has some properties that are intuitively
expected for a measure of information. Here is one example of such a property.
Let A be some algorithm whose inputs and outputs are strings. One can easily
show that the complexity of the string A(x) may exceed the complexity of x at most
by some constant c that depends on A but not on x. Interpreting the Kolmogorov
complexity of a string as the “amount of information” in this string measured in
bits, we may say that the algorithmic transformation of a string cannot create new

3

information and increases the complexity only by some constant (depending on
how much information was in the algorithm itself). This result allows us to define
Kolmogorov complexity of arbitrary finite objects (like graphs, rational numbers,
logical formulas, etc.) as the complexity of their binary encoding. The choice of
a computable encoding changes the complexity defined in this way by at most an
additive constant.

In saying that Kolmogorov complexity measures the amount of information in
a given string, we do not mean that one can actually perform such a measurement.
The exact value of complexity depends on the choice of an optimal interpreter, so
the question like “which of the strings 000100010001001 and 10010000000 has
higher complexity” has no meaning, as the answer depends on the choice of the in-
terpreter. Also one can prove that complexity function is non-computable: there is
no algorithm that given x computes C(x). Moreover, the complexity function has
no non-trivial computable lower bounds; the proof imitates Berry’s paradox about
the minimal natural number that cannot be described by twelve English words
(this description has exactly twelve words). Using this argument, Chaitin provided
a proof of the Gödel incompleteness theorem based on Kolmogorov complexity;
he showed that for large enough M one cannot prove any statement of the form
“the complexity of x exceeds M” while these statements are true for all but finitely
many x.

Kolmogorov complexity is sometimes called descriptional complexity. This
should be distinguished from computational complexity where one studies the
computational resources (processor steps, memory cells) needed to solve some
problem. A string has small Kolmogorov complexity if there exists a short pro-
gram that outputs it, even if this program needs a lot of time.

Information systems often store information in compressed form. A com-
pressor program uses the regularities in the data, e.g., in some computer file, to
compress this file and get a shorter one. This shorter file still contains all the
information in the original file: one can restore the original file by applying a
decompressor program to the compressed version. The size of the compressed
version of a file is an upper bound for its Kolmogorov complexity (again up to
some constant); such a bound depends on a specific method of compression and
decompression used. Kolmogorov complexity, therefore, puts a limit to the possi-
ble compression of a file; no compressor can significantly compress a file whose
Kolmogorov complexity is close to its length (such as a file that is a record of fair
coin tossing).

When we say that Kolmogorov complexity measures the “amount of informa-
tion” in a string, we do not distinguish between “useful” and “useless” informa-

4

tion: a random noise has high Kolmogorov complexity but contains no “informa-
tion” in the intuitive sense. Still we can define the amount of information in x
about y for two binary strings x and y as the difference between the complexity
of y and conditional complexity of y given x, the minimal length of a program
that transforms x to y. To define the notion of conditional complexity in a more
formal way, we consider algorithms D(p,x) with two arguments as conditional
decompressors. The first argument p is considered as a program, and the second
argument x is considered as a condition. Then the function

CD(y |x) = min{l(p) | D(p,x) = y}

is defined. Again an optimal D(p,x) exists that makes the function CD minimal
up to an additive constant. Some optimal D(p,x) is fixed, and the corresponding
function CD(y |x) is called conditional complexity of y given x.

Then the amount of information in x about y is defined as C(y)−C(y |x). As
shown by Kolmogorov and Leonid Levin, the notion of information defined in this
way is almost symmetric: the amount of information in x about y and the amount
of information in y about x differ at most by c logn for some c and for arbitrary n
and arbitrary n-bit strings x and y. Both values are close to the mutual information
between x and y, defined as C(x) +C(y)−C(x,y). Here C(x,y) stands for the
complexity of a pair (x,y), i.e., the complexity of some its computable encoding.

Whereas the Kolmogorov complexity of a string x measures how many bits are
needed to specify this string, there is a related notion, called a priori probability
of a string x that measures how likely x appears as an output of a random pro-
cess. Consider a randomized algorithm M without input that uses fair coin tosses,
outputs some binary string (depending on the outcome of the coin tosses), and
terminates. The algorithm M may also work infinitely long producing no output.
By pM(x) we denote the probability of the event “the binary string x appears as the
output of M”. In this way for every M we get a real-valued function pM defined
on binary strings; these functions are called lower semicomputable semimeasures.
Among all these function there exists a maximal one: there is some algorithm
M such that for every algorithm M′ the inequality pM(x) ≥ ε pM′(x) is true for
some ε > 0 and for all x. We fix one of these maximal functions pM and call
it discrete a priori probability of x. As shown by Levin, it is closely related to
Kolmogorov complexity: log2(1/pM(x)) differs from C(x) at most by c log l(x)
for some constant c and for all x. Moreover, Levin suggested a different defini-
tion of complexity, called prefix complexity, that makes the difference between
log2(1/pM(x)) and the complexity of x bounded. Later this connection between a
priori probability and complexity was rediscovered by Chaitin.

5

The algorithmic information theory may be considered as an extension of
Shannon information theory to individual objects. The Shannon entropy provides
an upper bound for Kolmogorov complexity in the following sense: the complex-
ity of a N-bit string x does not exceed NH +O(logN), where H is the Shannon
entropy of a random variable with two values whose probabilities p0 and p1 are
frequencies of zeros and ones in x. Intuitively, Shannon entropy takes into account
the statistical regularities while Kolmogorov complexity considers all algorithmi-
cally discoverable regularities, including the statistical ones, so Shannon entropy
provides an upper bound for Kolmogorov complexity. One can show also that if
a finite object is generated by a random process, then with probability close to 1
the Kolmogorov complexity of this object is close to the entropy of the random
process.

Another, more recent result that relates algorithmic information theory and
classical information theory (by Andrei Romashchenko): the linear inequalities
that are true for Shannon entropies of tuples of variables, and for Kolmogorov
complexities of tuples of strings (with logarithmic precision in the latter case) are
the same.

Switching from finite binary strings to infinite sequences of zeros and ones,
one can draw a sharp dividing line between “random” and “non-random” se-
quences. The first attempts to provide such a definition were made in the be-
ginning of the 20th century by Richard von Mises who defined a Kollektiv as a
sequence where zeros and ones appear with some limit frequencies that remains
the same for every subsequence selected by some admissible rule. Mises did not
give a precise definition; later Abraham Wald, Jean Ville, Alonzo Church, Don-
ald Loveland, Kolmogorov and others studied different mathematical notions of
randomness defined along these lines. It turned out that this notion is too broad;
in 1960s Per Martin-Löf suggested a stricter definition based on the ideas of con-
structive measure theory. A set X of binary sequences is effectively null if for every
n one can effectively generate a sequence of intervals that covers X and has mea-
sure less than 2−n. Martin-Löf proved that there exists a maximal effectively null
set containing all others; Martin-Löf random sequences are sequences that do not
belong to this maximal set. This notion is related to the notion of incompressibil-
ity: Claus-Peter Schnorr and Levin proved that a binary sequence is Martin-Löf
random if and only if its finite prefixes are incompressible (have bounded ran-
domness deficiency, where randomness deficiency is defined using special version
of complexity called monotone complexity; prefix complexity can also be used).
Martin-Löf’s definition of randomness guarantees that most laws of probability
theory hold for random sequences. For example, the strong law of large numbers

6

says that with probability 1 a sequence of zeros and ones obtained by tossing a
fair coin is normal, i.e., all combinations of n zeros and ones appear in the se-
quence with the same limit frequency 2−n. The constructive version of this law
guarantees that every Martin-Löf random sequence is normal. However, not every
normal sequence is random: the Champernown sequence 011011100101110 . . .,
obtained by concatenation of all integers in binary (0, 1, 10, 11, 100, 101, 110,. . .),
is normal but computable, and no computable sequence is Martin-Löf random.

There are interesting connections between computability (recursion) theory
and algorithmic information theory, see [8, 9].

The notion of complexity is often used while discussing the methodology of
natural sciences. The famous Occam’s razor asks for the simplest possible expla-
nation of some observations (sometimes one speaks also about the ‘economy of
thought’), but does not say how we measure the ‘simplicity’. With all disclaimers
above (Kolmogov complexity is not uniquely defined and is not computable), we
can use the algorithmic information theory to make this notion of ‘simplicity’
more concrete. A more specific version of this approach is called the minimal de-
scription principle. Having some experimental data, presented as a binary string
x, we look for a statistical model that treats this x as a typical example taken
from some class S of strings. More formally, we consider a finite set of strings
S that contains x, as a model for x. There could be several models for the same
x; which is better? According to the minimal description length principle, a good
model, called sufficient statistic, should have C(S)+ log2 #S close to C(x), where
#S stands for the cardinality of S, and C(S) is the complexity of S (defined as the
complexity of the binary encoding of S; recall that S is a finite set of binary strings,
so it can be encoded by a binary string). Each element of S has a two-part descrip-
tion. First we specify S using C(S) bits. Then we specify the ordinal number of x
in S, i.e., we specify that x is the n-th element of S in some fixed natural ordering.
This second part n uses log2 #S bits. In total we use about C(S)+ log2 #S bits for
this two-part description, so C(x) cannot exceed significantly C(S)+ log2 #S. The
minimal description length principle says that for a good model these two values
are close to each other. In this way we may hope to separate the regularities in x
that force it to be in S, and random noise that determines which specific element
of S was chosen. If there are several sufficient statistics, the minimal sufficient
statistic where C(S) is as small as possible, should be preferred.

The notions of complexity and randomness are important for the foundations
of probability theory. A well-known paradox: seeing thousand tails in a row while
tossing a coin, we reject the hypothesis of a fair coin on the grounds that the
probability of such an event is astronomically small, only 2−1000. However, if the

7

other day some other sequence y of 1000 heads and tails appears, the probability
to see this sequence y is the same 2−1000, yet we do not consider it as a reason
to reject the fair coin hypothesis. What is the difference between the sequence x
of 1000 tails and the sequence y? One can say that x was in our mind before the
experiment while y was not; however, if a sequence with 1000 first binary digits
of π appears, we also will suspect some cheating trick even if we never thought
about this possibility before the experiment. Using the notion of complexity, we
may explain the difference saying that x is simple while the complexity of y is
close to its length.

There are many other philosophical questions related to the notion of complex-
ity. For example, there is an experimental observation: tossing a fair coin many
times and applying standard compression software to the resulting sequence, we
never achieve a significant compression. Is this observation derivable from the
laws of physics, or it is an additional law of nature? Does it happens because the
coin tossing results have high Kolmogorov complexity, or just because our com-
pressors are not clever enough? Can Kolmogorov complexity be applied somehow
to the foundations of thermodynamics—in particular, can it be used to define en-
tropy of a specific state of a dynamical system?

Though the notion of Kolmogorov complexity is purely theoretical, the ideas
from algorithmic information theory can give insights for practical applications.
Rudi Cilibrasi and Paul Vitanyi suggested to use compressed size as a first approx-
imation to complexity, and defined a version of information distance: the distance
between x and y is small if the concatenated string xy, being compressed, gives
something much shorter than the concatenation of compressed versions of x and
y. They applied this distance to the hierarchical clustering problems. They also
tried another approach that used the number of appearences in a search engine as
a way to estimate a priori probability.

Literature. Original papers: In [1] the notion of Kollektiv is introduced; [2, 3,
4] contain the definition of complexity (independently discovered); [5] describes
the proof of Gödel incompleteness theorem using complexity; in [6] the definition
of Martin-Löf random sequences is given. Textbooks and surveys: [7] covers a lot
of material related to Kolmogorov complexity and algorithmic randomness, with
historical account and references; [8, 9] also cover more recent results relating
algorithmic information theory and recursion (computability) theory; [10] is a
textbook that also contains some more recent results not covered by other books;
[11] is a concise introduction to the subject (lecture notes of a course), and [12] is
a survey describing philosophical aspects of algorithmic information theory.

8

References
[1] von Mises, Richard. Grundlagen der Wahrscheinlichkeitsrechnung,

Mathematische Zeitschrift, 5, 52–99 (1919). Reprinted in Selected pa-
pers of Richard von Mises. Volume 2. Probability and Statistics, General.
American Mathematical Society, Providence, RI, 1964.

[2] Solomonoff, Ray. A formal theory of inductive inference, Information and
Control, 7(1), 1–22 (1964), especially Section 3.1.2.

[3] Kolmogorov, Andrei N. Three approaches to the quantitative definition of
information. Russian original published in Problemy peredachi informatsii
[Problems of Information Transmission], 1(1), 3–11 (1965). Translation is
reprinted in International Journal of Computer Mathematics, 2, 157–168
(1968).

[4] Chaitin, Gregory. On the length of programs for computing finite binary
sequences: statistical considerations. Journal of the ACM, 16(1), 145–159
(1969), especially Section 9.

[5] Chaitin, Gregory. Computational complexity and Gödel’s incompleteness the-
orem, ACM SIGACT News, 9 (April 1971), 11–12.

[6] Martin-Löf, Per. The definition of random sequences, Information and Con-
trol, 9, 602–619 (1966).

[7] Li, Ming and Vitanyi, Paul M.B. An Introduction to Kolmoghorov complexity,
3rd edition, Springer, 2008. XXIV, 792 p.

[8] Downey, Rodney G. and Hirschfeldt, Denis R., Algorithmic Randomness and
Complexity, Springer, 2010. XXIII, 855 p.

[9] Nies, André. Computability and Randomness, Oxford University Press, 2012,
456 p.

[10] Vereshchagin, Nikolay K., Uspensky, Vladimir A. and Shen, Alexander, Kol-
morogov complexity and algorithmic randomness, Moscow, MCCME Pub-
lishers, 2012. [In Russian; for draft English translation see
www.lirmm.fr/~ashen/kolmbook-eng.pdf]

9

[11] Shen, Alexander, Algorithmic information theory and Kolmogov complex-
ity, Technical Report TR2000-034, Uppsala University, 2000. Available at
www.it.uu.se/research/publications/reports/2000-034/.

[12] Shen, Alexander, Algorithmic information theory and foundations of prob-
ability, Reachability problmes, LNCS 5797, Springer, 2009, 26–34. See also
arxiv.org/abs/0906.4411.

10

