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Three- 
Dimensional 
Solutions for 
Two-Dimensional 
Problems 

This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To appear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readers--either new notes, or 

replies to past columns. 

Please send all submissions to the 

Mathematical Entertainments Editor, 

Alexander Shen, Institute for Problems of 

Information Transmission, Ermolovoi 19, 

K-51 Moscow GSP-4, 101447 Russia; 

e-mail:shen@landau.ac.ru 

I 
n this issue we continue our col- 
lection of  nice proofs. I present  sev- 
eral examples where a simple but 

unexpected construct ion in a three-di- 
mensional space provides a short  so- 
lution of  a plane problem which is 
rather difficult. 

1. The first example is so famous 
that most  of  you surely know it. How- 
ever, it is too nice to omit. It is the 
Desargues theorem. 

Theorem. Consider two triangles 

AiBIC1 and A2B2C2. Assume that the 
straight lines AiA2, BIB2, and CiC2 go 
through a single point  O. In this case 
the three intersection points  of  the cor- 
responding sides (o fAiBi  and A2B2, of  
BiC1 and B2C2, and, finally, of  AiCi and 
A2C2) lie on a straight line (Fig. 1). 

F I G U R E  1 

Let us see why this theorem is evi- 
dent. Imagine a t ransparency on which 
the triangle A1B1Ci is drawn. This 
t ransparency is inclined in such a way  
that one side of  it lies on a horizontal 
table. A lamp casts light on the trans- 
parency, and we see the shadow of  the 
triangle on the table. This shadow is 

the triangle A2B262 . (This is without  
loss of  generality: any two triangles 
can be related in this way.) The sides 
of  this triangle are shadows of  the 
sides of  the original triangle and inter- 
sect  them where the t ransparency 
touches  the tables, i.e., on the line of  
intersection of  two planes (trans- 
parency and table). See Fig. 2. 

2. The second example is the prob- 
lem about  three common  chords of  
three circles. Consider three intersect- 
ing circles in a plane. For  each two of  
them we connect  the two intersection 
points by a common  chord. We have to 
prove that these three chords  go 
through one point (Fig. 3). 

To see why it is true, imagine a hor- 
izontal plane through the center  of  a 
sphere. This plane divides the sphere 
into two hemispheres separated by a 
circle. We need only the upper  hemi- 
sphere. Looking at this hemisphere 
from above, we see a circle (Fig. 4). 

Now consider two intersecting 
hemispheres of  this type whose  diam- 
eter circles lie on the same horizontal 

4 4  THE MATHEMATICAL INTELLIGENCER �9 1997 SPRINGER-VERLAG NEW YORK 



IGURE FIGURE 3 

IGURE 

plane and intersect. Looking from 
above, we see two intersecting circles. 
A closer look reveals the common 
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chord of these two circles. Indeed, the 
spheres intersect each other along a 
circle that is orthogonal to the hori- 
zontal plane and therefore is visible 
from above as a straight line (Fig. 5) 

Now our problem becomes easy. 
Imagine three hemispheres based on a 
horizontal plane. Looking from above, 
we see three circles (which are diam- 
eter circles of those hemispheres). 
Consider the point where all three 
hemispheres intersect--in other words, 
the point where the circle that is the 
intersection of two spheres, intersects 
the third one. Looking from above, we 
see this point as the point of intersec- 
tion of three common chords, so the 
problem is solved. 

3. In our third example we start with 
a space construction and transform it 
into a plane problem. Consider a paper 
tetrahedron ABCD, with face ABC hor- 
izontal (Fig. 6). Let us cut the tetrahe- 
dron along the lines AD, BD and CD 
and turn the side faces about the hori- 
zontal edges until they are horizontal. 
We get a plane hexagon AD1BD2CD3 
(Fig. 7) whose vertices include three 

copies D1, D2, and D3 of the vertex D. 
Let us follow the movement of these 

three copies while the side faces ABD, 
BCD, and ACD are turned around the 
horizontal sides. Each copy moves 
along a circle that is orthogonal to the 
horizontal plane and to one of the sides 
of the triangle ABC. Therefore, in the 
top view, the vertices D1, 02, and D 3 
move along straight lines orthogonal to 
the sides of triangle ABC (Fig. 8). 

We arrive at the solution of the fol- 
lowing problem: 

Consider a triangle ABC and three 
other triangles ABD1, BCD2, A CD3 that 
have common sides with it. Assume 
that the sides adjacent to any vertex of 
the given triangle are equal (AD1 = 
AD3, BD1 = BD2, C'D2 = CD3). Consider 
the altitudes of the three triangles or- 
thogonal to the sides of ABC and go- 
ing through D1, D2, Ds. Prove that these 
altitudes, continued, meet in a point. 

4. This example is also about circles. 
Consider a black disc of diameter d 
drawn on a plane and a number of long 
white paper strips of different widths. 
Our goal is to cover the disc by these 
strips so that no black spot is ~sible. 
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If the total width of the strips is at 
least d, this is trivial--just put all the 
strips side-to-side. It turns out that if 
the total width is smaller than d, such 
covering is impossible. 

Why? To explain this, recall the fol- 
lowing geometric fact. The area of the 
part of a sphere which lies between 
two parallel planes (intersecting the 
sphere) depends on the radius of the 
sphere and the distance between the 
planes, but not on the position of the 
planes. 

In other words, if we cut a spheri- 
cal lemon into slices of equal thick- 
ness, the amount of skin will be the 
same for all slices (Fig. 9). 

What is the connection between this 
fact and our circle and strips problem? 
Imagine that the circle is a top view of 
a hemisphere. Then each strip that 
goes across the circle becomes part of 
the hemisphere lying between two par- 
allel planes (visible as border lines of 
the strip); the area of this part is pro- 
portional to the width of the strip (Fig. 
10). 

If the strips cover the circle, the cor- 
responding parts of the hemisphere 
cover the hemisphere. Therefore, their 
total area is not less than the area of 
the hemisphere. And the whole hemi- 
sphere corresponds to a strip of width 
d. Therefore, the total width of all 
strips is at least d. Q.E.D. 

5. Our last example is the classical 
problem of Apollonius: to construct a 
circle tangent to three given circles 
(Fig. 11). All the information below is 
taken from the paper by A.V. 
Khabelishvili in the Russian Journal 
Istoriko-matematicheskie Issledovaniya 
ser. 2, vol. 1 (36), number 2 (1996), 
6-81. I cannot vouch for the history, 
but the proof suggested in this paper 
is indeed nice. 

According to the paper, the problem 
of constructing a circle tangent to 
three given circles was stated by the 
Greek mathematician Apollonius (260- 
170 B.C.) in his treatise "On tangents" 
in two volumes. However, this treatise 
as a whole and the solution given by 
Apollonius were lost. 

Many famous mathematicians 
worked on this problem later (includ- 
ing F. Vi~te, R. Descartes, I. Newton, L. 
Euler); however, all the solutions pro- 

posed involve some notions not avail- 
able to Apollonius. (The best-known 
solution uses inversion. If two given 
circles intersect in the center of inver- 
sion, then after the inversion they be- 
come straight lines; this special case is 
easy.) 

A.V. Khabelishvili suggests a solu- 
tion that he believes may be the origi- 
nai solution found by Apollonius, who 
is famous as an expert in conic sec- 
tions. 

Here it is. Assume the three given cir- 
cles are drawn in a horizontal plane. 
Imagine three similar cones with verti- 
cal axes that intersect the plane along 
these circles (Fig. 12), like three coni- 
cal volcanos of different height in the 
middle of the sea; the given circles are 
shorelines of these mountains. 

Consider one more cone. This cone 
is similar to the three given cones, and 
also has vertical axis, but its vertex is 
pointing down. Let us put this cone in 
between the three cones and then 
move it down until it touches them. At 
that point the intersection of this cone 
with the horizontal plane will be the re- 
quired circle, and the vertex of this 
cone will coincide with the point of in- 
tersection of the given cones. So if we 
consider fmding the point of intersec- 
tion of three cones as a legal operation, 
the Apollonius problem is easy. 

However, we are looking for a ruler 
and compass construction, so we con- 
tinue to follow Khabelishvili's argu- 
ment. Consider the plane that goes 
through the vertices of three given 
cones. In its final (desired) position, 
the fourth cone intersects this plane in 
an ellipse through the vertices of the 
given cones. 

FIGURE 9 
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I G U R E  1, For any three points there are many 
ellipses going through them, so we 
need some additional information. 
Please note that all ellipses that are in- 
tersections of the moving fourth cone 
and the plane, are similar to each other 
and have the same ratio of long and 
short axes. Therefore, using a suitable 
projection (we will say now: affme 
transformation) we reduce the prob- 
lem to the following one: construct a 
circle going through three given points. 

It remains to show that all required 
constructions may be performed using 
compass and ruler only (on a suitable 
plane). We will not go into details and 
mention only two basic facts needed: 

A. To find on the horizontal plane 
(that contains the three given circles) 
the line of intersection with the plane 
going through the cone vertices, we do 
the following: for each two circles we 

draw two common tangents and find 
their intersection; these three inter- 
section points lie on the straight line in 
question (Fig. 13). 

B. Looking at the side view of a 
cone and a plane intersecting this 
cone, it is easy to construct the major 
and minor axes of the intersection el- 
lipse and determine the ratio in which 
the cone's axis divides the long axis of 
the ellipse. 

Dear reader, what do you think? 
Was this the original solution of 
Apollonius? It would be interesting to 
hear from historians of mathematics. 
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press my gratitude to my friend Vadim 
Radionov (Moscow Center of 
Continuing Education Editorial 
House) who provided the PostScript 
drawings for this issue using META- 
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G.-C. Rota, MIT 
F. Palombi, Univ. 
Bologna, Italy (Ed.) 

Indiscrete Thoughts gives a 
rare glimpse into a world 
that has seldom been 
described, the world of 

science and technology seen through the eyes of 
a mathematician. The period that runs roughly 
from 1950 to 1990 was one of the great ages of 
science, and it was the golden age of the 
American university. Rota takes pleasure in 
portraying, warts and all, some of the great 
scientists of that age. In portraying these men as 
they truly were, in revealing their weaknesses 
and insecurities, Rota deconstructs some of the 
cherished myths of our time. 
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