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This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To gppear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must  attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readers---either new notes, or 

replies to past columns. 

Please send all submissions to the 

Mathematical Entertainments Editor, 

Alexander Shen, Institute for Problems of 
Information Transmission, Ermolovoi 19, 

K-51 Moscow GSP-4, 101447 Russia; 
e-mail:shen@landau.ac.ru 

Unexpected 
Proofs 
O ne of  the nice  things abou t  math- 

emat ics  is that  somet imes  a ques- 
t ion looks  very s imple but  the  answer  
uses  an unexpec ted  and e legant  argu- 
ment .  Let me show two examples .  

Boxes in a Train 
Rules of  the Moscow underground  say 

tha t  you are  a l lowed to br ing on  a rec- 
t angular  box of  size w • h • d only if 

w + h + d does  not  exceed  150 cm. 
Quest ion:  Is it poss ib le  to  chea t  by 
pack ing  one box  into another?  The an- 
swe r  is no: 

If  a rec tangular  box  w I X hi  X dt 
can  be  p laced  inside ano the r  one of  

size w 2 x h 2 x d2, then Wl + hi + 

d l  --< w2 + h2 + d2. 

We p resen t  two  comple te ly  differ- 

ent  p roofs  of  this  fact. The first  con- 
s iders  the  ~ne ighbo rhood  of  a box  (in- 
chiding the in ter ior  part) .  I ts volume 
V(e) is  def ined for  non-negat ive ~. It is 
easy  to  see  that  V(e) is a po lynomia l  in 

V(~) = V + Se + r 2 + (4/3)~-~. 

Here, V is the volume of  the  box,  S is 
the  a r ea  of  its surface, and  1 is the  sum 
of  the  d imensions  (w + h + d). In- 
deed,  the  ne ighborhood  cons is t s  of  

�9 the  b o x  itself  (V) 
* s ix  rec tangular  boxes  (of  th ickness  

e) covet ing the faces  and having to- 
tal  vo lume Se  

* twelve  p ieces  nea r  the edges  that  
can  be  combined  into th ree  cylin- 
de rs  of  radius  e a n d  lengths w, h, and 
d; to ta l  volume zre2(w + h + d) 

�9 eight  p ieces  near  the ver t ices  that  
form a bal l  of  radius  e having total  
vo lume (4/3)~re 3. 

Now, a s sume  we have two boxes ,  
one inside another .  Then, the e-neigh- 
bo rhood  of  the  first box  will be ins ide  
the e -ne ighborhood of  the  second,  so 

Vl + SI~ § 7r/1 ~2 4- (4/3)zre 3 -< V2 + 
S2e + zr/2* "2 + (4/3)~-e 3. 

This is t rue  for  any 6, even for a large 
one when  the  e 2 te rm is the  main  t e rm  

(note that  the  e 3 te rms are  the  same for  
bo th  ne ighborhoods  and cancel  each  

other).  Therefore,  11 = wl  + hi + d l  

does  not  e x c e e d / 2  = w2 + h2 + d2. 
The s econd  p roo f  uses  randomness .  

Let X be  a convex  set  in R 3. Cons ider  
a r andom line m in R 3. The or thogonal  

p ro jec t ion  o f  X onto m is a segment .  

Let us deno te  by d(X) the  e x p e c t e d  
length of  this  segment.  

Let Xm be  a segment  of  length m.  
Then, d(Xm) is p ropor t iona l  to m, i.e., 

d(Xm) = e m  for  some c. (In fact, c = 
1/2, but  the  exac t  value is not  impor tan t  
nOW.) 

Now, let  X be  a box of  size w x h x 

d. Fo r  each  line m, the pro jec t ion  of  X 

onto m has  lengthpw + Ph § Pal, where  
Pw, Ph, and Pd are pro jec t ions  of  seg- 
ments  of  length  w, h, and  d, the edges  
of  the box.  By averaging, we get 

d(X) = c(w + h + d). 

If a box  0(1) is p laced  inside ano ther  

one (X2), then  the pro jec t ion  of  X1 onto  
a line m is inc luded in the  pro jec t ion  

of  X2 onto m, s o  d(X1) ~ d(X2). Com- 
bining this  observa t ion  with  the  pre-  

ceding one, we  see that  

wl  + hi  + dl  -< w2 § h2 + d2. 

(End of  the  s econd  proof.)  

Square Split into Triangles 
I t  is easy  to  spl i t  a square into n equal 

t r iangles if  n is even. However,  

i t  is impossible to split a square into 
n triangles of  equal area i f  n is odd. 

However,  the  p r o o f  of  this  fact  is not  

s t ra igh t forward  and uses  some topoi-  
ogy and algebra.  
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We start with a special case where 
(a) the triangles form a triangulation 
and Co) all vertices have rational coor- 
dinates. (Later, we'll see how these as- 
sumptions can be removed.) For  any 
rational number  r, defme its 2-valua- 
tion 114] as follows: i f r  = 2k(p/q), where 
p and q are odd, I1~] is 2 -k. By defmi- 

tion, ]]0 H = 0. In a sense, 1141 measures  
"oddness" of  ~. for example, 3/2 is 
"odder" than 1, and 2 is "odder" than 4. 
Now, divide all rational points (x, y) 
(both x and y are rational) into three 
classes. If both x and y (represented as 
irreducible fractions) have even nu- 
merators,  the point (x, y)  belongs to 
class A. If at least one of  x and y has 
an odd numerator,  compare  the "odd- 
ness" o f x  and y: when x is "more odd," 
we get  a B point, otherwise a C point. 
Formally, 

A: Ilxl] < 1 and IlYll < 1 

B: Ilxll > Ilyll and Ilxll-> 1 
C: Ilxll---IlYll and IlYll-> 1 

Let us return to our square 12 = [0, 
1] • [0, 1] and its triangulation with ra- 
tional vertices. 

Lemma .  There exists a triangle in the 
triangulation whose vertices are la- 
beled wi th  all three labels A, B, and C. 

Proof. Our classification can be con- 
sidered as a mapping a from the set of  
vertices into the set {A, B, C}. Imagine 
that  A, B, and C are vertices of  some 
triangle ABC. Then, a can be uniquely 
extended to a mapping of  the whole 
square into the triangle ABC that is 
piecewise affme (affme on each trian- 
gle of  the triangulation). 

Now the statement of  the lemma 
can be reformulated as follows: a cov- 
ers the interior part of  the triangle 
ABC. To prove this s tatement (a ver- 
sion of  Sperner 's lemma), let us con- 
sider the restriction of  a to the bound- 
ary of  the unit square. We know its 
values on the square's vertices: (0, 0) 
has type A, while (1, 0) has type B, and 
both (1, 1) and (0, 1) have type C (see 
Fig. 1). 

Moreover, it is easy to see that any 
vertex on the lower side of  the square 
has type A or  B and any vertex on the 
left side has type A or 'C, whereas  all 
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vertices on the remaining two sides 
have type B or  C. Therefore, the re- 
striction a]0I 2 of  a to the boundary  of  
the squa re /2  maps it into the bound- 
ary of  the triangle ABC and has degree 
1. Therefore, alOI 2 is not  homotopic  to 
a constant  mapping. On the other  
hand, if the image a ( I  2) were con- 
tained in the boundary  of  triangle ABC, 
a would provide a homotopy  between 
c~]0I 2 and a constant  mapping. (End of  
the proof  of  the lemma.) 

Now we know that our  triangulation 
contains a triangle whose  vertices are 
labeled A, B, and C. Let their coordi- 

nates be (al, a2), (bl, b2), and (cl, c2), 
respectively. This triangle has area 

s = l d e t  ~ : - a l  b2-a2 
al  C2 -- a2 ' 

and I]511 > 1 (as we'll see). On the other  
hand, S = 1/n, because all n triangles 
of  the triangulation have the same 
area. Therefore, n is even. 

It remains to prove that I~1 > 1. 
Recall two main properties of  the 2- 
valuation: 

�9 Ilabll = Ilall'llbll 
�9 Ila + bll--< max(llall, Ilbll); this inequal- 

ity turns into equality if Nail r Ilbll 

Using these properties, it is easy to 
check that the point (b~, b~) = (bl - al, 
b 2 -  a2) belongs to type B and the 
point (c~, c~ )=  (C 1 - -a l ,  C 2 -  a2) be- 
longs to type C (bl is "more odd" than 
al, so subtracting al we do not change 
"oddness" of  bl, etc.) By definition of  
types B and C, we have 

IIb;ll > IIb ll; IIb;ll >- 1; 

Ilchll-> IIc;ll; Ilchll -> 1. 

' ' ' ' b' ' Therefore, IIb,c=ll > flb2c, II and II 1c211-- 
1, so 112sll = IIb;c5 - b c;ll = IIb;c ll--- 1 
and 1511 = 2112 11 > 1. 

So the statement is proved for the 
case of  triangulation with rational ver- 
tices. Let me say, briefly, what  could 
be done for the general case. 

Assume that the triangles do no t  
form a triangulation, e.g., vertex Q of  
one triangle lies on side P R of  another  
one. (See Fig. 2.) What can we do? We 
can admit  "degenerate" triangles like 
PQR, get a triangulation, apply our ar- 
gument, and find a triangle that  is ABC- 
labeled. This triangle cannot  be de- 
generate since for  its area S, we have 

proved that  I1 11 > 1. 
What should we do if the coordi- 

nates of  the vertices are irrational? In 
this case, one can extend the 2-valua- 
tion to an extension of  Q that  contains 
all the coordinates, and use the same 
argument. (I omit the details.) 

I found.this problem (and its solu- 
tion) iIi an article of  B. Bel~ker and N. 
Netsvetaev; they attribute it to John  
Thomas (A dissection problem, Math. 
Mag. 41 (1968), 187-190) for the case 
of  rational coordinates and Paul 
Monsky (On dividing a square into tri- 
angles, Am. Math. Monthly 77 (1970), 
161-164) for the general case. 

I . e t t e ~  

Concerning Poncelet 's  theorem and 
your article in the Intelligencer, I won- 
der if you know this. Poncelet 's  initial 
theorem concerned a pencil of  circles, 
and he stated it like this: let I, II, and 
III be three circles in a pencil. Start 
from a point m in I, draw the tangent 
to II, get a second point  n in I; f rom n 
draw a tangent to III, get another  point  
p in I. Then, the line mp, when m runs 
through I, envelops a circle IV (from 
the initial pencil). All closure theorems 
follow from this one. Now, the p roof  
of  the InteUigencer applies to this, one 
has only to remark that the lengths of  
tangents drawn f rom points of  I to cir- 
cles in the pencil are proport ional  with 
universal constants. Then, the associ- 
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ated measures on the circle I, given by 
H, III, etc., are proportional. Otherwise 
stated: for such a measure the line join- 
ing two points differing by a transla- 
tion of this measure always envelops 
some circle of the pencil. 

Elliptic functions are at the core of 
Poncelet's theorem; here the elliptic 
function is the new measure. 

Marcel Berger 

Institut des Hautes Etudes Scientifiques 

91440 Bures-sur-Yvette 

France 

e-mail: ber'ger@ihes.fr 

Preparing an article on the story of 
Poncelet's theorem, I read some of the 
original papers. My following notes 
sketch the historical background. 

1. Poncelet's original theorem is not 
about a triangle inscribed in a circle 
and circumscribed around another 
circle, but about an n-gon inscribed 
in a conic section and circumscribed 
around another conic section. More- 
over, the theorem in Poncelet's ap- 
proach is a consequence of a more 
general theorem. This general theo- 
rem is about a pencil of conic sec- 
t ions.  Le t  C, cl, c2, �9 �9 �9 Cn-1 be the 
elements of this pencil. Poncelet 
states: there is a conic section Cn such 
that whenever points A1, A2, �9 �9 An  

are on C, a n d  l ine A1A 2 touches Cl, 
l ine  A2A 3 touches c2, �9 �9 . , An-l, An 
touches Cn- 1, thenAnA1 will touch Cn. 

The first publication was in 1822. 
2. Poncelet was an officer of Napoleon. 

He was imprisoned in Russia, in 
Saratov, for more than a year. At this 
time, without books and equipment, 
he created many notions of projective 
geometry: ideal and imaginary points, 
for example. One of his practical re- 
sults: Circles are exactly the conic 
sections containing the points (1, i, 0) 
and (1, - i ,  0). One can transform two 
conics into two circles simply by pro- 
jecting two of their common points to 
(1, i, 0) and (1, - i ,  0). 

3. The proof you found in Prasolov 
and Tikhomirov's textbook goes 
back to Jacobi (CreUe J. M a t h .  3 

(1828), 376). Here is the short his- 
tory of his proof: 

In Bd. 2 of Crelle's J o u r n a l  (1827), 
Steiner proposed the problem of find- 
ing the algebraic relation of the radii of 
circles Cl and c2, and the distance of 
their centers, if there is a 4-gon, 5-gon, 
� 9  8-gon inscribed in cl and circum- 
scribed around c2. (In fact, these prob- 
lems had been partly solved previously 
by Fuss, the academic secretary of St. 
Petersburg. Euler solved the problem 
for n = 3, his student Fuss for n = 4, 
and Fuss was able to solve the prob- 

lem for n = 5, 6, 7, 8 if the n-gon is sym- 
metric about the center of the circles.) 

Steiner gave the appropriate equa- 
tions without proof in Crelle's J o u r n a l  

of the same year. In this issue, Abel and 
Jacobi had many articles on elliptic in- 
tegrals and on their inverse, the ellip- 
tic functions. In Bd. 3, Jacobi wrote 
three articles on this topic. Then, he 
wrote a fourth one: he proved 
Poncelet's theorem for two circles by 
integrals and he could even check the 
equations of Steiner (and Fuss). 

When the old Poncelet refers 
shortly to Jacobi's proof, he uses es- 
sentially your arguments. Jacobi's arti- 
cle is longer. 

As I can see, Jacobi tried to solve 
geometrically the problem proposed 
by Steiner. He could set up equations, 
and these equations reminded him of 
Legendre's addition formulas of ellip- 
tic integrals. If Jacobi could find the 
connection, he could set up an elliptic 
integral related to Poncelet's theorem. 
It was only after this that he perceived 
the geometric meaning of the inte- 
grand: the reciprocal of the length of 
the tangent. 
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