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Abstract

This document contains lecture notes of an introductory course on Kolmogorov complexity.
They cover basic notions of algorithmic information theory: Kolmogorov complexity (plain, condi-
tional, prefix), notion of randomness (Martin-Löf randomness, Mises–Church randomness), Solomonoff
universal a priori probability and their properties (symmetry of information, connection between a
priori probability and prefix complexity, criterion of randomness in terms of complexity) and appli-
cations (incompressibility method in computational complexity theory, incompleteness theorems).
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1 Compressing information

Everybody now is familiar with compressing/decompressing programs such as zip, gzip, compress,
arj, etc. A compressing program can be applied to any file and produces the “compressed version”
of that file. If we are lucky, the compressed version is much shorter than the original one. However,
no information is lost: the decompression program can be applied to the compressed version to get the
original file.

[Question: A software company advertises a compressing program and claims that this program can
compress any sufficiently long file to at most 90% of its original size. Would you buy this program?]

How compression works? A compression program tries to find some regularities in a file which
allow to give a description of the file which is shorter than the file itself; the decompression program
reconstructs the file using this description.

2 Kolmogorov complexity

The Kolmogorov complexity may be roughly described as “the compressed size”. However, there are
some differences. The technical difference is that instead of files (which are usually byte sequences)
we consider bit strings (sequences of zeros and ones). The principal difference is that in the framework
of Kolmogorov complexity we have no compression algorithm and deal only with the decompression
algorithm.

Here is the definition. Let U be any algorithm whose inputs and outputs are binary strings. Using U
as a decompression algorithm, we define the complexity KU(x) of a binary string x with respect to U as
follows:

KU(x) = min{|y| |U(y) = x}

(here |y| denotes the length of a binary string y). In other words, the complexity of x is defined as the
length of the shortest description of x if each binary string y is considered as a description of U(y)

Let us stress that U(y) may be defined not for all y’s and that there are no restrictions on time
necessary to compute U(y). Let us mention also that for some U and x the set in the definition of KU

may be empty; we assume that min( /0) = +∞.

3 Optimal decompression algorithm

The definition of KU depends on U . For the trivial decompression algorithm U(y) = y we have KU(x) =
|x|. One can try to find better decompression algorithms, where “better” means “giving smaller com-
plexities”. However, the number of short descriptions is limited: There is less than 2n strings of length
less than n. Therefore, for any fixed decompression algorithm the number of words whose complex-
ity is less than n does not exceed 2n − 1. One may conclude that there is no “optimal” decompression
algorithm because we can assign short descriptions to some string only taking them away from other
strings. However, Kolmogorov made a simple but crucial observation: there is asymptotically optimal
decompression algorithm.

Definition 1 An algorithm U is asymptotically not worse than an algorithm V if KU(x) 6 KV (x)+C for
come constant C and for all x.

Theorem 1 There exists an decompression algorithm U which is asymptotically not worse than any
other algorithm V .

Such an algorithm is called asymptotically optimal one. The complexity KU with respect to an
asymptotically optimal U is called Kolmogorov complexity. The Kolmogorov complexity of a string x is
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denoted by K(x). (We assume that some asymptotically optimal decompression algorithm is fixed.) Of
course, Kolmogorov complexity is defined only up to O(1) additive term.

The complexity K(x) can be interpreted as the amount of information in x or the “compressed size”
of x.

4 The construction of optimal decompression algorithm

The idea of the construction is used in the so-called “self-extracting archives”. Assume that we want
to send a compressed version of some file to our friend, but we are not sure he has the decompression
program. What to do? Of course, we can send the program together with the compressed file. Or we can
append the compressed file to the end of the program and get an executable file which will be applied to
its own contents during the execution).

The same simple trick is used to construct an universal decompression algorithm U . Having an input
string x, the algorithm U starts scanning x from left to right until it founds some program p written in a
fixed programming language (say, Pascal) where programs are self-delimiting (so the end of the program
can be determined uniquely). Then the rest of x is used as an input for p, and U(x) is defined as the
output of p.

Why U is (asymptotically) optimal? Consider any other decompression algorithm V . Let v be a
Pascal program which implements V . Then

KU(x) 6 KV (x)+ |v|

for any string x. Indeed, if y is V -compressed version of x (i.e., V (y) = x), then vy is U-compressed
version of x (i.e., U(vy) = x) which is only |v| bits longer.

5 Basic properties of Kolmogorov complexity

(a) K(x) 6 |x|+O(1)

(b) The number of x’s such that K(x) 6 n is equal to 2n up to a bounded factor separated from zero.

(c) For any computable function f there exists a constant c such that

K( f (x)) 6 K(x)+ c

(for any x such that f (x) is defined).

(d) Assume that for any natural n a finite set Vn containing not more than 2n elements is given. Assume
that the relation x ∈ Vn is enumerable, i.e., there is an algorithm which produces the (possibly
infinite) list of all pairs 〈x,n〉 such that x ∈Vn. Then there is a constant c such that all elements of
Vn have complexity at most n+ c (for any n).

(e) The “typical” binary string of length n has complexity close to n: there exists a constant c such
that for any n more than 99% of all strings of length n have complexity in between n−c and n+c.

Proof. (a) The asymptotically optimal decompression algorithm U is not worse that the trivial de-
compression algorithm V (y) = y.

(b) The number of such x’s does not exceed the number of their compressed versions, which is
limited by the number of all binary strings of length not exceeding n, which is bounded by 2n+1. On the
other hand, the number of x’s such that K(x) 6 n is not less than 2n−c (here c is the constant from (a)),
because all words of length n− c have complexity not exceeding n.
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(c) Let U be the optimal decompression algorithm used in the definition of K. Compare U with
decompression algorithm V : y 7→ f (U(y)):

KU( f (x)) 6 KV ( f (x))+O(1) 6 KU(x)+O(1)

(any U-compressed version of x is a V -compressed version of f (x)).
(d) We allocate strings of length n to be compressed versions of strings in Vn (when a new element

of Vn appears during the enumeration, the first unused string of length n is allocated). This procedure
provides a decompression algorithm W such that KW (x) 6 n for any x ∈Vn.

(e) According to (a), all the 100% of strings of length n have complexity not exceeding n + c for
some c. It remains to mention that the number of strings whose complexity is less than n− c does not
exceed the number of all their descriptions, i.e., strings of length less than n−c. Therefore, for c = 7 the
fraction of strings having complexity less than n− c among all the strings of length n does not exceed
1%.

Problems

1. A decompression algorithm D is chosen in such a way that KD(x) is even for any string x. Could
D be optimal?

2. The same question if KD(x) is a power of 2 for any x.
3. Let D be the optimal decompression algorithm. Does it guarantee that D(D(x)) is also an optimal

decompression algorithm?
4. Let D1,D2, . . . be a computable sequence of decompression algorithms. Prove that K(x) 6

KDi(x)+2log i+O(1) for all i and x (the constant in O(1) does not depend on x and i).
5.∗ Is it true that K(xy) 6 K(x)+K(y)+O(1) for all x and y?

6 Algorithmic properties of K

Theorem 2 The complexity function K is not computable; moreover, any computable lower bound for
K is bounded from above.

Proof. Assume that k is a computable lower bound for K which is not bounded from above. Then
for any m we can effectively find a string x such that K(x) > m (indeed, we should compute k(x) for all
strings x until we find a string x such that k(x) > m). Now consider the function

f (m) = the first string x such that k(x) > m

Here “first” means “first discovered” and m is a natural number written in binary notation. By definition,
K( f (m)) > m; on the other hand, f is a computable function and therefore K( f (m)) 6 K(m)+O(1). But
K(m) 6 |m|+ O(1), so we get that m 6 |m|+ O(1) which is impossible (the left-hand side is a natural
number, the right-hand side—the length of its binary representation).

This proof is a formal version of the well-known paradox about “the smallest natural number which
cannot be defined by twelve English words” (the quoted sentence defines this number and contains
exactly twelve words).

7 Complexity and incompleteness

The argument used in the proof of the last theorem may be used to obtain an interesting version of Gödel
incompleteness theorem. This application of complexity theory was advertised by Chaitin.
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Consider a formal theory (like formal arithmetic or formal set theory). It may be represented as
a (non-terminating) algorithm which generates statements of some fixed formal language; generated
statements are called theorems. Assume that the language is rich enough to contain statements like
“complexity of 010100010 is bigger than 765” (for any bit string and any natural number). The language
of formal arithmetic satisfies this condition as well as the language of formal set theory. Let us assume
also that all theorems are true.

Theorem 3 There exists a constant c such that all the theorems of type “K(x) > n” have n < c.

Indeed, assume that it is not true. Consider the following algorithm α: For a given integer k, generate
all the theorems and look for a theorem of type K(x) > s for some x and some s greater than k. When
such a theorem is found, x becomes the output α(s) of the algorithm. By our assumption, α(s) is defined
for all s.

All theorems are supposed to be true, therefore α(s) is a bit string whose complexity is bigger than
s. As we have seen, this is impossible, since K(α(s)) 6 K(s)+O(1) 6 |s|+O(1) where |s| is the length
of the binary representation of s. (End of proof.)

(We may also use the statement of the preceding theorem instead of repeating the proof.)
Such a constant c can be found explicitly if we fix a formal theory and the optimal decompression

algorithm and for most natural choices does not exceed — to give a rough estimate — 100,000. It leads
to a paradoxical situation: Toss a coin 106 times and write down the bit string of length 1,000,000.
Then with overwhelming probability its complexity will be bigger than 100,000 but this claim will be
unprovable in formal arithmetic or set theory. (The existence of true unprovable statement constitutes
the well-known Gödel incompleteness theorem.)

8 Algorithmic properties of K (continued)

Theorem 4 The function K(x) is “enumerable from above”, i.e., K(x) can be represented as lim
n→∞

k(x,n)

where k(x,n) is a total computable function with integer values and

k(x,0) > k(x,1) > k(x,2) > . . .

Note that all values are integers, so for any x there exist some N such that k(x,n) = K(x) for any
n > N.

Proof. Let k(x,n) be the complexity of x if we restrict by n the computation time used for decom-
pression. In other words, let U be the optimal decompression algorithm used in the definition of K. Then
k(x,n) is the minimal |y| for all y such that U(y) = x and the computation time for U(y) does not exceed
n. (End of proof.)

(Technical correction: it can happen (for small n) that our definition gives k(x,n) = ∞. In this case
we let k(x,n) = |x|+ c where c is chosen in such a way that K(x) 6 |x|+ c for any x.)

Therefore, any optimal decompression algorithm U is not everywhere defined (otherwise KU would
be computable). It sounds like a paradox: If U(x) is undefined for some x we can extend U on x and let
U(x) = y for some y; after that KU(y) becomes smaller. However, it can be done for one x or for finite
number of x’s but we cannot make U defined everywhere and keep U optimal at the same time.

9 An encodings-free definition of complexity

The following theorem provides an “encodings-free” definition of Kolmogorov complexity as a minimal
function K such that K is enumerable from above and |{x | K(x) < n}|= O(2n).
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Theorem 5 Let K′(x) be any enumerable from above function such that |{x | K′(x) < n}| 6 C2n for
some constant C and for all n. Then there exists a constant c such that K(x) 6 K′(x)+ c for all x.

Proof. This theorem is a reformulation of one of the statements above. Let Vn be the set of all
strings such that K′(x) < n. The binary relation x ∈Vn (between x and n) is enumerable. Indeed, K′(x) =
limk′(x,m) where k′ is a total computable function that is decreasing as a function of m. Compute
k′(x,m) for all x and m in parallel. If it happens that k(x,m) < n for some x and m, add x into the
enumeration of Vn. (The monotonicity of k′ guarantees that in this case K′(x) < n.) Since limk′(x,m) =
K′(x), any element of Vn will ultimately appear.

By our assumption |Vn|6C2n. Therefore we can allocate strings of length n+c (where c = dlog2Ce)
as descriptions of elements of Vn and will not run out of descriptions. So we get a decompression
algorithm D such that KD(x) 6 n+ c for x ∈Vn. Since K′(x) < n implies KD(x) 6 n+ c for any x and n,
we have KD(x) 6 K′(x)+1+ c and K(x) 6 K′(x)+ c for some other c and any x. (End of proof.)

10 Axioms of complexity

It would be nice to have a list of “axioms” for Kolmogorov complexity that determine it uniquely (up to
a bounded term). The following list shows one of the possibilities.

A1. (Conservation of information) For any computable (partial) function f there exists a constant c
such that K( f (x)) 6 K(x)+ c for all x such that f (x) is defined.

A2. (Enumerability from above) Function K is enumerable from above.

A3. (Units of measure) There are constants c and C such that the cardinality of set {x | K(x) < n} lies
in between c ·2n and C ·2n.

Theorem 6 Any function K that satisfies A1–A3 differs from K only by O(1) additive term.

Proof. Axioms A2 and A3 guarantee that K(x) 6 K(x)+O(1) (here K is any function satisfying the
axioms, while K is Kolmogorov complexity). We need to prove that K(x) 6 K(x)+O(1).

First, we prove that K(x) 6 |x|+O(1).
Since K is enumerable from above, we can generate strings x such that K(x) < n. Axiom A3 guar-

antees that we have at least 2n−d strings with this property for some d (which we assume to be integer).
Let us stop generating them when we have already 2n−d strings x such that K(x) < n; let Sn be the set of
strings generated in this way. The list of all elements in Sn can be obtained by an algorithm that has n as
input; |Sn|= 2n−d and K(x) < n for any x ∈ Sn.

We may assume that S1 ⊂ S2 ⊂ S3 ⊂ . . . (if not, replace some elements of Si by elements of Si−1
etc.). Let Ti be equal to Si+1 \Si. Then Ti has 2n−d elements and all Ti are disjoint.

Now consider a computable function f that maps elements of Tn onto strings of length n−d. Axiom
A1 guarantees then that K(x) = n + O(1) for any string of length n− d. Therefore, K(x) 6 |x|+ O(1)
for all x.

Let D be the optimal decompression algorithm. We apply A1 to function D. If p is a shortest
description for x, then D(x) = p, therefore K(x) = K(D(p)) 6 K(p)+O(1) 6 |p|+O(1) = K(x)+O(1).

Problems

1. If f : N → N is a computable bijection, then K( f (x)) = K(x)+ O(1). Is it true if f is a (com-
putable) injection (i.e., f (x) 6= f (y) for x 6= y)? Is it true if f is a surjection (for any y there is an x such
that f (x) = y)?
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2. Prove that K(x) is “continuous” in the following sense: K(x0) = K(x) + O(1) and K(x1) =
K(x)+O(1).

3. Is it true that K(x) changes at most by a constant if we change the first bit in x? last bit in x? any
bit in x?

4. Prove that K(x01bin(K(x))) (a string x with doubled bits is concatenated with 01 and the binary
representation of its complexity K(x)) equals K(x)+O(1).

11 Complexity of pairs

Let
x,y 7→ [x,y]

be any computable function which maps pairs of strings into strings and is an injection (i.e., [x,y] 6= [x′,y′]
if x 6= x′ or y 6= y′). We define complexity K(x,y) of pair of strings as K([x,y]).

Note that K(x,y) changes only by O(1)-term if we consider another computable “pairing function”:
If [x,y]1 and [x,y]2 are two pairing functions, then [x,y]1 can be obtained from [x,y]2 by an algorithm, so
K([x,y]1) 6 K([x,y]2)+O(1).

Note that
K(x,y) > K(x) and K(x,y) > K(y)

(indeed, there are computable functions that produce x and y from [x,y]).
For similar reasons, K(x,y) = K(y,x) and K(x,x) = K(x).
We can define K(x,y,z), K(x,y,z, t) etc. in a similar way: K(x,y,z) = K([x, [y,z]]) (or K(x,y,z) =

K([[x,y],z]), the difference is O(1)).

Theorem 7
K(x,y) 6 K(x)+2logK(x)+K(y)+O(1).

Proof. By x we denote binary string x with all bits doubled. Let D be the optimal decompression
algorithm. Consider the following decompression algorithm D2:

bin(|p|)01pq 7→ [D(p),D(q)].

Note that D2 is well defined, because the input string bin(|p|)01pq can be disassembled into parts
uniquely: we know where 01 is, so we can find |p| and then separate p and q.

If p is the shortest description for x and q is the shortest description for y, then D(p) = x, D(q) = y
and D2(bin(p)01pq) = [x,y]. Therefore

KD2([x,y]) 6 |p|+2log |p|+ |q|+O(1);

here |p|= K(x) and |q|= K(y) by our assumption. (End of proof.)
Of course, p and q can be interchanged: we can replace logK(p) by logK(q).

12 Conditional complexity

We now want to define conditional complexity of x when y is known. Imagine that you want to send
string x to your friend using as few bits as possible. If she already knows some string y which is similar
to x, this can be used.

Here is the definition. Let 〈p,y〉 7→ D(p,y) be a computable function of two arguments. We define
conditional complexity KD(x|y) of x when y is known as

KD(x|y) = min{|p| | D(p,y) = x}.
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As usual, min(∅) = +∞. The function D is called “conditional decompressing function” or “conditional
description mode”: p is the description (compressed version) of x when y is known. (To get x from p
the decompressing algorithm D needs y.)

Theorem 8 There exists an optimal conditional decompressing function D such that for any other con-
ditional decompressing function D′ there exists a constant c such that

KD(x|y) 6 KD′(x|y)+ c

for any strings x and y.

Proof is similar to the proof of unconditional theorem. Consider some programming language where
programs allow two input strings and are self-delimiting. Then let

D(uv,y) = the output of program u applied to v,y.

Algorithm D finds a (self-delimiting) program u as a prefix of its first argument and then applies u to the
rest of the first argument and the second argument.

Let D′ be any other conditional decompressing function. Being computable, it has some program u.
Then

KD(x|y) 6 KD′(x|y)+ |u|.

Indeed, let p be the shortest string such that D′(p,y) = x (therefore, |p|= KD′(x|y)). Then D(up,y) = x,
therefore KD(x|y) 6 |up|= |p|+ |u|= KD′(x|y)+ |u|. (End of proof.)

We fix some optimal conditional decompressing function D and omit index D in KD(x|y). Beware
that K(x|y) is defined only “up to O(1)-term”.

Theorem 9 (a) K(x|y) 6 K(x)+O(1)
(b) For any fixed y there exists some constant c such that

|K(x)−K(x|y)|6 c.

This theorem says that conditional complexity is smaller than unconditional one but for any fixed
condition the difference is limited by a constant (depending on the condition).

Proof. (a) If D0 is an (unconditional) decompressing algorithm, we can consider a conditional de-
compressing algorithm

D(p,y) = D0(p)

that ignores conditions. Then KD(x|y) = KD0(x).
(b) On the other hand, if D is a conditional decompressing algorithm, for any fixed y we can consider

an (unconditional) decompressing algorithm Dy defined as

Dy(p) = D(p,y).

Then KDy(x) = KD(x|y) for given y and for all x. And K(x) 6 KDy(x) + O(1) (where O(1)-constant
depends on y). (End of proof.)

13 Pair complexity and conditional complexity

Theorem 10
K(x,y) = K(x|y)+K(y)+O(logK(x)+ logK(y)).
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Proof. Let us prove first that

K(x,y) 6 K(x|y)+K(y)+O(logK(x)+ logK(y)).

We do it as before: If D is an optimal decompressing function (for unconditional complexity) and D2 is
an optimal conditional decompressing function, let

D′(bin(p)01pq) = [D2(p,D(q)),D(q)].

In other terms, to get the description of pair x,y we concatenate the shortest description of y (denoted
by q) with the shortest description of x when y is known (denoted by p). (Special precautions are used
to guarantee the unique decomposition.) Indeed, in this case D(q) = y and D2(p,D(q)) = D2(p,y) = x,
therefore

KD′([x,y]) 6 |p|+2log |p|+ |q|+O(1) 6

6 K(x|y)+K(y)+O(logK(x)+ logK(y)).

The reverse inequality is much more interesting. Let us explain the idea of the proof. This inequality
is a translation of a simple combinatorial statement. Let A be a finite set of pairs of strings. By |A| we
denote the cardinality of A. For any string y we consider the set Ay defined as

Ay = {x|〈x,y〉 ∈ A}.

The cardinality |Ay| depends on y (and is equal to 0 for all y outside some finite set). Evidently,

∑
y
|Ay|= |A|.

Therefore, the number of y such that |Ay| is big, is limited:

|{y| |Ay|> c}|6 |A|/c

for any c.
Now we return to complexities. Let x and y be two strings. The inequality K(x|y)+K(y) 6 K(x,y)+

O(logK(x)+ logK(y)) can be informally read as follows: if K(x,y) < m+n, then either K(x|y) < m or
K(y) < n up to logarithmic terms. Why it is the case? Consider a set A of all pairs 〈x,y〉 such that
K(x,y) < m + n. There is at most 2m+n pairs in A. The given pair 〈x,y〉 belongs to A. Consider the set
Ay. It is either “small” (contains at most 2m elements) or big. If Ay is small (|Ay| 6 2m), then x can be
described (when y is known) by its ordinal number in Ay, which requires m bits, and K(x|y) does not
exceed m (plus some administrative overhead). If Ay is big, then y belongs to a (rather small) set Y of all
strings y such that Ay is big. The number of strings y such that |Ay| > 2m does not exceed |A|/2m = 2n.
Therefore, y can be (unconditionally) described by its ordinal number in Y which requires n bits (plus
overhead of logarithmic size).

Let us repeat this more formally. Let K(x,y) = a. Consider the set A of all pairs 〈x,y〉 that have
complexity at most a. Let b = blog2 |Ay|c. To describe x when y is known we need to specify a,b and
the ordinal number of x in Ay (this set can be enumerated effectively if a and b are known since K is
enumerable from above). This ordinal number has b+O(1) bits and, therefore, K(x|y) 6 b+O(loga+
logb).

On the other hand, the set of all y′ such that |Ay′ |> 2b consists of at most |A|/2b = O(2a−b) elements
and can be enumerated when a and b are known. Our y belongs to this set, therefore, y can be described
by a, b and y’s ordinal number and K(y) 6 a− b + O(loga + logb). Therefore, K(y)+ K(x|y) 6 a +
O(loga+ logb). (End of proof.)
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Problems

1. Define K(x,y,z) as K([[x,y], [x,z]]). Is this definition equivalent to a standard one (up to O(1)-
term)?

2. Prove that K(x,y) 6 K(x)+ logK(x)+ 2loglogK(x)+ K(y)+ O(1). (Hint: repeat the trick with
encoded length.)

3. Let f be a computable function of two arguments. Prove that K( f (x,y)|y) 6 K(x|y)+O(1) where
O(1)-constant depends on f but not on x and y.

4∗∗. Prove that K(x|K(x)) = K(x)+O(1).

14 Applications of conditional complexity

Theorem 11 If x,y,z are strings of length at most n, then

2K(x,y,z) 6 K(x,y)+K(x,z)+K(y,z)+O(logn)

Proof. The statement does not mention conditional complexity; however, the proof uses it. Recall
that (up to O(logn)-terms) we have

K(x,y,z)−K(x,y) = K(z|x,y)

and
K(x,y,z)−K(x,z) = K(y|x,z)

Therefore, our inequality can be rewritten as

K(z|x,y)+K(y|x,z) 6 K(y,z),

and the right-hand side is (up to O(logn)) equal to K(z|y) + K(y). It remains to note that K(z|x,y) 6
K(z|y) (the more we know, the smaller is the complexity) and K(y|x,z) 6 K(y). (End of proof.)

15 Incompressible strings

The string x of length n is called incompressible if K(x|n)> n. More liberal definition: x is c-incompressible,
if K(x|n) > n− c.

Theorem 12 For each n there exist incompressible strings of length n. For each n and each c the fraction
of c-incompressible strings (among all strings of length n) is greater than 1−2−c.

Proof. The number of descriptions of length less than n− c is 1 + 2 + 4 + . . . + 2n−c−1 < 2n−c.
Therefore, the fraction of c-compressible strings is less than 2n−c/2n = 2−c. (End of proof.)

16 Computability and complexity of initial segments

Theorem 13 An infinite sequence x = x1x2x3 . . . of zeros and ones is computable if and only if K(x1 . . .xn|n)=
O(1).

Proof. If x is computable, then the initial segment x1 . . .xn is a computable function of n, and
K( f (n)|n) = O(1) for any computable function of n.

Another direction is much more complicated. We provide this proof since is uses some methods
typical for the general theory of computation (recursion theory).
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Now assume that K(x1 . . .xn|n) < c for some c and all n. We have to prove that the sequence x1x2 . . .
is computable. A string of length n is called “simple” if K(x|n) < c. There is at most 2c simple strings
of any given length. The set of all simple strings is enumerable (we can generate them trying all short
descriptions in parallel for all n).

We call a string “good” if all its prefixes (including the string itself) are simple. The set of all good
strings is also enumerable. (Enumerating simple strings, we can select strings whose prefixes are found
to be simple.)

Good strings form a subtree in full binary tree. (Full binary tree is a set of all binary strings. A
subset T of full binary tree is a subtree if all prefixes of any string t ∈ T are elements of T .)

The sequence x1x2 . . . is an infinite branch of the subtree of good strings. Note that this subtree has
at most 2c infinite branches because each level has at most 2c vertices.

Imagine for a while that subtree of good strings is decidable. (In fact, it is not the case, and we will
need additional construction.) Then we can apply the following

Lemma 1. If a decidable subtree has only finite number of infinite branches, all these branches are
computable.

Proof. If two branches in a tree are different then they diverge at some point and never meet again.
Consider a level N where all infinite branches diverge. It is enough to show that for each branch there is
an algorithm that chooses the direction of branch (left or right, i.e., 0 or 1) above level N. Since we are
above level N, the direction is determined uniquely: if we choose a wrong direction, no infinite branches
are possible. Compactness argument says that in this case a subtree rooted in the “wrong” vertex will
be finite. This fact can be discovered at some point (recall that subtree is assumed to be decidable).
Therefore, at each level we can wait until one of two possible directions is closed, and chose another
one. This algorithm works only above level N, but the initial segment can be a compiled-in constant.
(Lemma is proved.)

Application of Lemma 1 is made possible by the following
Lemma 2. Let G be a subtree of good strings. Then there exists a decidable subtree G′ ⊂ G that

contains all infinite branches of G.
Proof. For each n let g(n) be the number of good strings of length n. Consider an integer g =

limsupg(n). In other words, there exist infinitely many n such that g(n) = g but only finitely many
n such that g(n) > g. We choose some N such that g(n) 6 g for all n > N and consider only levels
N,N +1, . . .

A level n > N is called complete if g(n) = g. By our assumption there are infinitely many complete
levels. On the other hand, the set of all complete levels is enumerable. Therefore, we can construct a
computable increasing sequence n1 < n2 < .. . of complete levels. (To find ni+1, we enumerate complete
levels until we find ni+1 > ni.)

There is an algorithm that for each i finds the list of all good strings of length ni. (It waits until g
goods strings of length ni appear) Let us call all those strings (for all i) “selected”. The set of all selected
strings is decidable. If a string of length n j is selected, then its prefix of length ni (for i < j) is selected.
It is easy to see now that selected strings and their prefixes form a decidable subtree G′ that includes any
infinite branch of G.

Lemma 2 and theorem 13 are proved.
For computable sequence x1x2 . . . we have K(x1 . . .xn|n) = O(1) and therefore K(x1 . . .xn) 6 logn+

O(1). One can prove that the inequality also implies computability (see Problems). However, the in-
equality K(x1 . . .xn) = O(logn) does not imply computability of x1x2 . . . .

Theorem 14 Let A be any enumerable set of natural numbers. Then for its characteristic sequence
a0a1a2 . . . (ai = 1 if i ∈ A and ai = 0 otherwise) we have

K(a0a1 . . .an) = O(logn)
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Proof. To specify a0 . . .an it is enough to specify two numbers. The first is n and the second is the
number of 1’s in a0 . . .an, i.e., the cardinality of the set A∩ [0,n]. Indeed, for a given n, we can enumerate
this set, and since we know its cardinality, we know where to stop the enumeration. Both of them use
O(logn) bits. (End of proof.)

This theorem shows that initial segments of characteristic sequences of enumerable sets are far from
being incompressible.

As we know that for each n there exists an incompressible sequence of length n, it is natural to ask
whether there is an infinite sequence x1x2 . . . such that its initial segment of any length n is incompress-
ible (or at least c-incompressible for some c that does not depend on n). The following theorem shows
that it is not the case.

Theorem 15 There exists c such that for any sequence x1x2x2 . . . there are infinitely many n such that

K(x1x2 . . .xn) 6 n− logn+ c

Proof. The main reason why it is the case is that the series ∑(1/n) diverges. It makes possible to
select the sets A1,A2, . . . with following properties:

(1) each Ai consists of strings of length i;
(2) |Ai|6 2i/i;
(3) for any infinite sequence x1x2 . . . there are infinitely many i such that x1 . . .xi ∈ Ai.
(4) the set A = ∪iAi is decidable.
Indeed, starting with some Ai, we cover about (1/i)-fraction of the whole space Ω of all infinite

sequences. Then we can choose Ai+1 to cover other part of Ω, and so on until we cover all Ω (it happens
because 1/i + 1/(i + 1)+ . . .+ 1/ j goes to infinity). Then we can start again, providing a second layer
of covering, etc.

It is easy to see that |A1|+ |A2|+ . . . + |Ai| = O(2i/i): Each term is almost twice as big as the
preceding one, therefore, the sum is O(last term). Therefore, if we write down in lexicographic ordering
all the elements of A1,A2, . . ., any element x of Ai will have number O(2i/i). This number determines x
uniquely and therefore for any x ∈ Ai we have

K(x) 6 log(O(2i)/i) = i− log i+O(1).

. (End of proof.)

Problems

1. True or false: for any computable function f there exists a constant c such that K(x|y) 6
K(x| f (y))+ c for all x,y such that f (y) is defined.

2. Prove that K(x1 . . .xn|n) 6 logn+O(1) for any characteristic sequence of an enumerable set.
3∗. Prove that there exists a sequence x1x2 . . . such that K(x1 . . .xn) > n−2logn− c for some c and

for all n.
4∗. Prove that if K(x1 . . .xn) 6 logn+c for some c and all n, then the sequence x1x2 . . . is computable.

17 Incompressibility and lower bounds

We apply Kolmogorov complexity to obtain lower bound for the following problem. Let M be a Turing
machine (with one tape) that duplicates its input: for any string x on the tape (with blanks on the right of
x) it produces xx. We prove that M requires time Ω(n2) if x is an incompressible string of length n. The
idea is simple: the head of TM can carry finite number of bits with limited speed, therefore the speed
of information transfer (measured in bit×cell/step) is bounded and to move n bits by n cells we need
Ω(n2) steps.

13



Theorem 16 Let M be any Turing machine. Then there exists some constant c with the following prop-
erty: for any k, any l > k and any t, if cells ci with i > k are initially empty, then the complexity of the
string cl+1cl+2 . . . after t steps is bounded by ct/(l− k)+O(log l + log t).

Roughly speaking, if we have to move information at least by l− k cells, then we can bring at most
ct/(l− k) bits into the area where there was no information at the beginning.

One technical detail: string sl+1cl+2 . . . denotes the visited part of the tape.
This theorem can be used to get a lower bound for duplication. Let x be an incompressible string

of length n. We apply duplicating machine to the string 0nx (with n zeros before x). After the machine
terminates in t steps, the tape is 0nx0nx. Let k = 2n and l = 3n. We can apply our theorem and get
n 6 K(x) 6 ct/n+O(logn+ log t). Therefore, t = Ω(n2) (note that log t < 2logn unless t > n2).

Proof. Let u be any point on the tape between k and l. A police officer records what TM carries is
its head while crossing point u from left to right (but not the time of crossing). The recorded sequence
Tu of TM-states is called trace at point u. Each state occupies O(1) bits since the set of states is finite.
This trace together with u, k, l and the number of steps after the last crossing (at most t) is enough to
reconstruct the contents of cl+1cl+2 . . . at the moment t. (Indeed, we can simulate the behaviour of M on
the right of u.) Therefore, K(cl+1cl+2 . . .) 6 cNu +O(log l)+O(log t) where Nu is the length of Tu, i.e.,
the number of crossings at u.

Now we add these inequalities for all u = k,k +1, . . . , l. The sum of Nu is bounded by t (since only
one crossing is possible at any given time). So

(l− k)K(cl+1cl+2 . . .) 6 t +(l− k)[O(log l)+O(log t)]

and theorem is proved.
The original result (one of the first lower bounds for time complexity) was not for duplication but

for palindrome recognition: Any TM that checks whether its input is a palindrome (like abadaba) needs
Ω(n2) steps for some inputs of length n. We can prove it by incompressibility method.

Proof sketch: Consider a palindrome xxR of length 2n. Let u be any position in the first half of xxR:
x = yz and length of y is u. Then the trace Tu determines y uniquely if we record states of TM while
crossing checkpoint u in both directions. Indeed, if strings with different y have the same trace, we can
mix the left part of one computation with the right part of another one and get a contradiction. Taking
all u between |x|/4 and |x|/2, we get the required bound.

18 Incompressibility and prime numbers

Let us prove that there are infinitely many prime numbers. Imagine that there are only n prime numbers
p1, . . . , pn. Then each integer N can be factored as

N = pk1
1 pk2

2 . . . pkn
n .

where all ki do not exceed logN. Therefore, each N can be described by n integers k1, . . . ,kn and
ki 6 logN for any i, so the total number of bits needed to describe N is O(n log logN). But integer N
corresponds to a string of length logN, so we get a contradiction if this string is incompressible.

19 Incompressible matrices

Consider an incompressible Boolean matrix of size n× n. Let us prove that its rank (over field F2 =
{0,1}) is greater than n/2.

14



Indeed, imagine that its rank is at most n/2. Then we can select n/2 columns of the matrix such
that any other column is a linear combination of selected ones. Let k1, . . . ,kn/2 be the numbers of these
columns.

Then instead of specifying all bits of the matrix we can specify:
(1) the numbers k1, . . . ,kn (O(n logn) bits)
(2) bits in the selected columns (n2/2 bits)
(3) n2/4 bits that are coefficients in linear combinations of selected columns needed to get any non-

selected column, (n/2 bits for any of n/2 non-selected columns).
Therefore, we get 0.75n2 +O(n logn) bits instead of n2 needed for incompressible matrix.
Of course, it is trivial to find a n×n Boolean matrix of full rank, so why this construction is useful?

In fact, the same idea shows that incompressible matrix has minors of big rank (see LV for details).

20 Incompressible graphs

Any graph with n vertices can be represented by a bit string of length n(n− 1)/2. We call a graph
incompressible if this string is incompressible.

Let us show that incompressible graph is connected. Indeed, imagine that it can be divided into
two connected components, and one of them (smaller) has k vertices (k < n/2). Then the graph can be
described by

(1) numbers of k vertices in this component (k logn bits)
(2) k(k−1)/2 and (n− k)(n− k−1)/2 bits needed to describe both components.
In (2) (compared to the full description of the graph) we save k(n− k) bits for edges that go from

one component to another one, and k(n− k) > O(k logn) for big enough n (recall that k < n/2).

21 Incompressible tournaments

Let M be a tournament, i.e., a complete directed graph with n vertices (for any two different vertices i
and j there exists either edge i → j or j → i but not both).

A tournament is transitive if vertices are linearly ordered by the relation i → j.
Lemma. Each tournament of size 2k −1 has a transitive sub-tournament of size k.
Proof. (Induction by n) Let x be any vertex. Then 2k − 2 remaining vertices are divided into two

groups: “smaller” than x and “greater” than x. At least one of the groups has 2k−1 − 1 elements and
contains transitive sub-tournament of size k− 1. Adding x to it, we get a transitive sub-tournament of
size k.

This lemma gives a lower bound on the size of graph that does not include transitive k-tournament.
The incompressibility method provides an upper bound: an incompressible tournament with n ver-

tices may have transitive sub-tournaments of O(logn) size only.
A tournament with n vertices is represented by n(n−1)/2 bits. If a tournament R with n vertices has

transitive sub-tournament R′ of size k, then R can be described by:
(1) numbers of vertices in R′ listed according to linear R′-ordering (k logn bits)
(2) remaining bits in the description of R (except for bits that describe relations inside R′)
In (2) we save k(k−1)/2 bits, and in (1) we use k logn additional bits. Since we have to lose more

than we win, k = O(logn).

22 Discussion

All these results can be considered as direct reformulation of counting (or probabilistic arguments).
Moreover, counting gives us better bounds without O()-notation.
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But complexity arguments provide an important heuristics: We want to prove that random object x
has some property and note that if x does not have it, then x has some regularities that can be used to
give a short description for x.

Problems

1. Let x be an incompressible string of length n and let y be a longest substring of x that contains
only zeros. Prove that |y|= O(logn)

2∗. Prove that |y|= Ω(logn).
3. (LV, 6.3.1) Let w(n) be the largest integer such that for each tournament T on N = {1, . . . ,n} there

exist disjoint sets A and B, each of cardinality w(n), such that A×B ⊆ T . Prove that w(n) 6 2dlogne.
(Hint: add 2w(n)dlogne bit to describe nodes, and save w(n)2 bits on edges. Source: P. Erdös and
J. Spencer, Probabilistic methods in combinatorics, Academic Press, 1974.)

23 k- and k +1-head automata

A k-head finite automaton has k (numbered) heads that scan from left to right an input string (which is
the same for all heads). Automaton has a finite number of states. Transition table specifies an action for
each state and each k-tuple of input symbols. Action includes new state and the set of heads to be moved.
(We may assume that at least one head should be moved; otherwise we can precompute the transition.)

One of the states is called an initial state. Some states are accepting states. An automaton A accepts
string x if A comes to an accepting state after reading x starting from the initial state. (Reading x is
finished when all heads leave x. We require that this happens for any string x.)

For k = 1 we get the standard notion of finite automaton.
Example: A 2-head automaton can recognize strings of form x#x (where x is a binary string). The

first head moves to #-symbol and then both heads move and check whether they see the same symbols.
It is well known that this language cannot be recognized by 1-head finite automaton, so 2-head

automata are more powerful that 1-head ones.
Our goal is to prove separation for bigger k.

Theorem 17 For any k there exists a language that can be recognized by (k + 1)-head automaton but
not by k-head one.

The language is similar to the language considered above. For example, for k = 2 we consider a
language consisting of strings

x#y#z#z#y#x

Using three heads, we can easily recognize this language. Indeed, the first head moves from left to right
and ignores the left part of the input string. While it reaches (right) y, another head is used to check
whether y on the left coincides with y on the right. (The first head waits till the second one crosses x and
reaches y.) When the first head then reaches x, the third head is used to check x. After that the first head
is of no use, but second and third heads can be used to check z.

The same approach shows that an automaton with k heads can recognize language LN that consists
of strings

x1#x2# . . .#xN#xN# . . .#x2#x1

for N = (k−1)+(k−2)+ . . .+1 = k(k−1)/2 (and for all smaller N).
Let us prove now that k-head automaton A cannot recognize LN if N is bigger than k(k− 1)/2. In

particular, no automaton with 2 heads recognizes L3 and even L2)
Let us fix a string

x = x1#x2# . . .#xN#xN# . . .#x2#x1
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where all xi have the same length l and the string x1x2 . . .xN is an incompressible string (of length Nl).
String x is accepted by A. In our argument the following notion is crucial: We say that (unordered) pair
of heads “covers” xm if at some point one head is inside the left instance of xm while another head is
inside the right instance.

After that the right head can visit only strings xm−1, . . . ,x1 and left head cannot visit left counterparts
of those strings (they are on the left of it). Therefore, only one xm can be covered by any given pair of
heads.

In our example we had three heads (and, therefore, three pairs of heads) and each string x1,x2,x3
was covered by one pair.

The number of pairs is k(k−1)/2 for k heads. Therefore there exists some xm that was not covered
at all during the computation. We show that conditional complexity of xm when all other xi are known
does not exceed O(log l). (The constant here depends on N and A, but not on l.) This contradicts to the
incompressibility of x1 . . .xN (we can replace xm by self-delimiting description of xm when other xi are
known and get a shorter description of incompressible string).

The bound for the conditional complexity of xm can be obtained in the following way. During the
accepting computation we take special care of the periods when one of the heads is inside xm (any of two
copies). We call there periods critical sections. Note that each critical section is either L-critical (some
heads are inside left copy of xm) or R-critical but not both (no pair of heads covers xm). Critical section
starts when one of the heads moves inside xm (other heads can also move in during the section) and ends
when all heads leave xm. Therefore, the number of critical sections during the computation is at most 2k.

Let us record the positions of all heads and the state of automaton at the beginning and at the end
of each critical section. This requires O(log l) bits (note that we do not record time and may assume
without loss of generality that heads do not move more than one cell out of the input string).

We claim that this information (called trace in the sequel) determines xm if all other xi are known.
To see why, let us consider two computations with different xm and x′m but the same xi for i 6= m and the
same traces.

Equal traces allow us to “cut and paste” these two computations on the boundaries of critical sections.
(Outside the critical sections computations are the same, because the strings are identical except for xm

and state and positions after each critical section are included in a trace.) Now we take L-critical sections
from one computation and R-critical sections from another one. We get a mixed computation that is an
accepting run of A on a string that has xm on the left and x′m on the right. Therefore, A accepts string that
it should not accept. (End of proof.)

24 Heap sort: time analysis

(This section assumes that you know what heapsort is.)
Let us assume that we sort numbers 1,2, . . . ,N. We have N! possible permutations. Therefore, to

specify any permutation we need about logN! bits. Stirling formula says that N!≈ (N/e)N , therefore the
number of bits needed to specify one permutation is N logN +O(N). As usual, most of the permutations
are incompressible in the sense that they have complexity at least O(N logN)−O(N). We estimate the
number of operations for heap sort in case of incompressible permutation.

Heap sort consists of who phases. First phase creates a heap out of array. (The indexes in array
a[1..N] form a tree where 2i and 2i+1 are sons of i. Heap property says that ancestor has bigger value
that any of its descendants.)

Transforming array into a heap goes as follows: for each i = N,N − 1, . . . ,1 we make the heap out
of subtree rooted at i. Doing this for node i, we need O(k) steps where k is the distance between node i
and the leaves of the tree. Therefore, k = 0 for about half of nodes, k = 1 for about 1/4 of nodes etc.,
the average number of steps per node is O(∑k2−k) = O(1), and the total number of operations is O(N).
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Important observation: after the heap is created, the complexity of array a[1..N] is still N logN +
O(N), if the initial permutation was incompressible. Indeed, heapifying means composition of initial
permutation with some other permutation (which is determined by results of comparisons between array
elements). Since total time for heapifying is O(N), there are at most O(N) comparisons and their results
form a bit string of length O(N) that determines the heapifying permutation. The initial (incompressible)
permutation is a composition of the heap and O(N)-permutation, therefore heap has complexity at least
N logN−O(N).

The second phase transforms heap into sorted array. At any stage array is divided into parts: a[1..n]
is still a heap, but a[n + 1..N] is the end of the sorted array. One step of transformation (it decreases
n by 1) goes as follows: the maximal heap element a[1] is taken out of the heap and exchanged with
a[n]. Therefore, a[n..N] is now sorted, and heap property is almost true: ascendant has bigger value that
descendant unless ascendant is a[n] (that is now in root position). To restore heap property, we move
a[n] down the heap. The question is how many steps do we need. If the final position is dn levels above
the leaves level, we need logN−dn exchanges, and the total number of exchanges is N logN−∑dn.

We claim that ∑dn = O(N) for incompressible permutation, and, therefore, the total number of
exchanges is N logN +O(N). (There are different implementation of heapsort. A careful one first looks
for the possible path for the new element, then looks for its position (starting from the leaves) and
then actually moves new element, thus making only N logN + O(N) assignments and 2N logN + O(N)
comparisons. See LV for details.)

So why ∑dn is O(N)? Let us record the direction of movements while elements fall down through
the heap (using 0 and 1 for left and right). We don’t use delimiters to separate strings that correspond
to different n and use N logN −∑di bits altogether. Separately we write down all dn in self-delimiting
way. This requires ∑(2logdi + O(1)) bits. All this information allows us to reconstruct all moves
during the second phase, and therefore to reconstruct initial state of the heap before the second phase.
Therefore, the complexity of heap before the second phase (which is N logN −O(N)) does not exceed
N logN −∑dn + ∑(2logdn) + O(N), therefore, ∑(dn − 2logdn) = O(N). Since 2logdn < 0.5dn for
dn > 16 (and all smaller dn have sum O(N) anyway), we conclude that ∑dn = O(N).

Problems

1∗. Prove that for most pairs of binary strings x,y of length n any common subsequence of x and y
has length at most 0.99n (for large enough n).

25 Infinite random sequences

There is some intuitive feeling saying that a fair coin tossing cannot produce sequence

00000000000000000000000 . . .

or
01010101010101010101010 . . . ,

therefore, infinite sequences of zeros and ones can be divided in two categories. Random sequences
are sequences that can appear as the result of infinite coin tossing; non-random sequences (like two
sequences above) cannot appear. It is more difficult to provide an example of a random sequence (it
somehow becomes non-random after the example is provided), so our intuition is not very reliable here.

26 Classical probability theory

Let Ω be the set of all infinite sequences of zeros and ones. We define an uniform Bernoulli measure
on Ω as follows. For each binary string x let Ωx be the set of all sequences that have prefix x (a subtree
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rooted at x).
Consider a measure P such that P(Ωx) = 2−|x|. Lebesgue theory allows us to extend this measure to

all Borel sets (and even farther).
A set X ⊂ Ω is called null set, if P(X) is defined and P(X) = 0. Let us give a direct equivalent

definition that is useful for constructive version:
A set X ⊂ Ω is a null set if for every ε > 0 there exists a sequence of binary strings x0,x1, . . . such

that
(1) X ⊂ Ωx0 ∪Ωx1 ∪ . . .;
(2) ∑

i
2−|xi| < ε .

Note that 2−|xi| is P(Ωxi) according to our definition. In words: X is a null set if it can be covered by
a sequence of intervals Ωxi whose total measure is as small as we wish.

Examples: Each singleton is a null set. A countable union of null sets is a null set. A subset of a
null set is a null set. The set Ω is not a null set (compactness). The set of all sequences that have zeros
at positions with even numbers is a null set.

27 Strong Law of Large Numbers

Informally, it says that random sequence x0x1 . . . has limit frequency 1/2, i.e.,

lim
n→∞

x0 + x1 + . . .+ xn−1

n
=

1
2
.

However, the word “random” here is used only as a shortcut: the full meaning is that the set of all
sequences that do not satisfy the Strong Law of Large Numbers (do not have limit frequency or have it
different from 1/2) is a null set.

In general, “P(ω) is true for random ω ∈ Ω” means that the set

{ω | P(ω) is false}

is a null set.
Proof sketch: it is enough to show that for every δ > 0 the set Nδ of sequences that have frequency

greater than 1/2 + δ for infinitely many prefixes, has measure 0. (After that we use that a countable
union of null sets is a null set.) For each n consider the probability p(n,δ ) of the event “random string
of length n has more than (1/2+δ )n ones”. The crucial observation is that

∑
n

p(n,δ ) < ∞

for any ε > 0. (Actually, p(n,ε) is exponentially decreasing when n → ∞; proof uses Stirling’s approxi-
mation for factorials.) If the series above has a finite sum, for every ε > 0 one can find an integer N such
that

∑
n>N

p(n,δ ) < ε.

Consider all strings z of length greater than N that have frequency of ones greater than 1/2 + δ . The
sum of P(Ωz) is equal to ∑n>N p(n,δ ) < ε, and Nε is covered by family Ωz. (End of proof sketch.)

28 Effectively null sets

The following notion was introduced by Per Martin-Löf. A set X ⊂ Ω is an effectively null set if there
is an algorithm that gets a rational number ε > 0 as input and enumerates a set of strings {x0,x1,x2, . . .}
such that
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(1) X ⊂ Ωx0 ∪Ωx1 ∪Ωx2 ∪ . . .;
(2) ∑

i
2−|xi| < ε .

The notion of effectively null set remains the same if we allow only ε of form 1/2k, or if we replace
“<” by “6” in (2).

Any subset of an effectively null set is also an effectively null set (evident observation).
A singleton {ω} (containing some infinite sequence of zeros and ones) is a null set if ω is computable

(or non-random, see below).
An union of two effectively null sets is an effectively null set. (Indeed, we can find enumerable

coverings of size ε/2 for both and combine them.)
More general statement requires preliminary definition. By “covering algorithm” for an effectively

null set we mean algorithm mentioned in the definition (that gets ε and generates a covering sequence
of strings with sum of measures less than ε).

Lemma. Let X0,X1,X2, . . . be a sequence of effectively null sets such that there exists an algorithm
that for any input i produces (some) covering algorithm for Xi. Then ∪Xi is an effectively null set.

Proof. To get an ε-covering for ∪Xi, we put together (ε/2)-covering for X0, (ε/4)-covering for X1,
etc. To generate this combined covering, we use algorithm that produces covering for Xi from i. (End of
proof.)

29 Maximal effectively null set

Up to now the theory of effectively null sets just repeats classical theory of null sets. The crucial
difference is in the following theorem (proved by Martin-Löf):

Theorem 18 There exists a maximal effectively null set, i.e., an effectively null set N such that X ⊂ N
for any effectively null set X.

(Trivial) reformulation: the union of all effectively null sets is an effectively null set.
We cannot prove this theorem by applying Lemma above to all effectively null sets (there are un-

countably many of them, since any subset of an effectively null set is an effectively null set).
But we don’t need to consider all effectively null sets; it is enough to consider all covering algo-

rithms. For a given algorithm (that gets positive rational number as input and generates binary strings)
we cannot say (effectively) whether it is a covering algorithm or not. But we may artificially enforce
some restrictions: if algorithm (for given ε > 0) generates strings x0,x1, . . ., we can check whether
2−|x0| + . . .+ 2−|xk| < ε or not; if not, we delete xk from generated sequence. Let us denote by A′ the
modified algorithm (if A was an original one). It is easy to see that

(1) if A was a covering algorithm for some effectively null set, then A′ is equivalent to A (the condi-
tion that we enforce is never violated).

(2) For any A algorithm A′ is (almost) a covering algorithm for some null set (the only difference is
that the infinite sum ∑2−|xi| can be equal to ε even if all finite sums are strictly less than ε .

But this is not important: we can apply the same arguments (that were used to prove Lemma) to all
algorithms A′

0,A
′
1, . . . where A0,A1, . . . is a sequence of all algorithms (that get positive rational numbers

as inputs and generate binary strings). (End of proof.)
Definition. A sequence ω of zeros and ones is called (Martin-Löf) random with respect to uniform

Bernoulli measure if ω does not belong to maximal effectively null set.
(Reformulation: “. . . if ω does not belong to any effectively null set.” )
Therefore, to prove that some sequence is non-random, it is enough to show that it belongs to some

effectively null set.
Note also that a set X is an effectively null set if and only if all elements of X are non-random.
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This sounds like a paradox for people familiar with classical measure theory. Indeed, we know that
measure somehow reflects the “density” of set. Each point is a null set, but if we have too many points,
we get a non-null set. Here (in Martin-Löf theory) if any element of a set forms an effectively null
singleton (i.e., is non-random), then the whole set in an effectively null one.

Problems

1. Prove that if sequence x0x1x2 . . . of zeros and ones is (Martin-Löf) random with respect to uniform
Bernoulli measure, then the sequence 000x1x2 . . . is also random. Moreover, adding any finite prefix to
random sequence, we get a random sequence, and adding any finite prefix to non-random sequence, we
get a non-random sequence.

2. Prove that any (finite) binary string appears infinitely many times in any random sequence.
3. Prove that any computable sequence is non-random. Give an example of a non-computable

non-random sequence.
4. Prove that the set of all computable infinite sequences of zeros and ones is an effectively null set.
5∗. Prove that if x0x1 . . . is not random, then n−K(x0 . . .xn−1|n)→ ∞ as n → ∞.

30 Gambling and selection rules

Richard von Mises suggested (around 1910) the following notion of a random sequence (he uses German
word Kollektiv) as basis for probability theory. A sequence x0x1x2 . . . is called (Mises) random, if

(1) The limit frequency of 1’s in 1/2, i.e.,

lim
n→∞

x0 + x1 + · · ·+ xn−1

n
=

1
2

;

(2) the same is true for any infinite subsequence selected by an admissible selection rule.
Examples of admissible selection rules: (a) select terms with even indices; (b) select terms that

follow zeros. The first rule gives 0100 . . . when applied to 00100100 . . . (selected terms are underlined).
The second rule gives 0110 . . . when applied to 00101100 . . .

Mises gave no exact definition of admissible selection rule (at that time the theory of algorithms was
not developed). Later Church suggested the following formal definition of admissible selection rule.

An admissible selection rule is a total computable function S defined on finite strings that has values
1 (“select”) and 0 (“do not select”). To apply S to a sequence x0x1x2 . . . we select all xn such that
S(x0x1 . . .xn−1) = 1. Selected terms form a subsequence (finite or infinite). Therefore, each selection
rule S determines a mapping σS : Ω → Σ, where Σ is the set of all finite and infinite sequences of zeros
and ones.

For example, if S(x) = 1 for any string x, then σS is an identity mapping. Therefore, the first require-
ment in Mises approach follows from the second one, and we come to the following definition:

A sequence x = x0x1x2 . . . is Mises–Church random, if for any admissible selection rule S the se-
quence σS(x) is either finite or has limit frequency 1/2.

Church’s definition of admissible selection rules has the following motivation. Imagine you come
to a casino and watch the outcomes of coin tossing. Then you decide whether to participate in the next
game or not, applying S to the sequence of observed outcomes.

31 Selection rules and Martin-Löf randomness

Theorem 19 Applying admissible selection rule (according to Church definition) to Martin-Löf random
sequence, we get either finite or Martin-Löf random sequence.

21



Proof. Let S be a function that determines selection rule σS.
Let Σx be the set of all finite of infinite sequences that have prefix x (here x is a finite binary string).
Consider the set Ax = σ

−1
X (Σx) of all (infinite) sequences ω such that selected subsequence starts

with x. If x = Λ (empty string), then Ax = Ω.
Lemma. The set Ax has measure at most 2−|x|.
Proof. What is A0? In other terms, what is the set of all sequences ω such that the selected subse-

quence (according to selection rule σS) starts with 0? Consider the set B of all strings z such that S(z) = 1
but S(z′) = 0 for any prefix z′ of string z. These strings are places where the first bet is made. Therefore,

A0 = ∪{Ωz0 | z ∈ B}

and
A1 = ∪{Ωz1 | z ∈ B}.

In particular, the sets A0 and A1 have the same measure and are disjoint, therefore

P(A0) = P(A1) 6
1
2
.

From the probability theory viewpoint, P(A0) [P(A1)] is the probability of the event “the first selected
term will be 0 [resp. 1]”, and both events have the same probability (that does not exceed 1/2) for
(almost) evident reasons.

We can prove in the same way that A00 and A01 have the same measure. (See below for details.)
Since they are disjoint subsets of A0, both of them have measure at most 1/4. The sets A10 and A11 also
have equal measure and are subsets of A1, therefore both have measure at most 1/4, etc.

[Let us give an explicit description of A00. Let B0 be the set of all strings z such that
(1) S(z) = 1;
(2) there exists exactly one proper prefix z′ of z such that S(z′) = 1;
(3) z′0 is a prefix of z.
In other terms, B0 corresponds to the positions where we are making our second bet while our first

bet produces 0. Then
A00 = ∪{Ωz0 | z ∈ B0}

and
A01 = ∪{Ωz1 | z ∈ B0}.

Therefore A00 and A01 indeed have equal measures.] (Lemma in proved.)
It is also clear that Ax is the union of intervals Ωy that can be effectively generated if x is known.

(Here we use the computability of S.
Let σS(ω) be an infinite non-random sequence. Then {ω} is effectively null singleton. Therefore,

for each ε one can effectively generate intervals Ωx1 ,Ωx2 , . . . whose union covers σS(ω). The preimages
σ
−1
S (Ωx1),σ

−1
S (Ωx2), . . . cover ω . Each of these preimages is an enumerable union of intervals, and

if we combine all these intervals we get a covering for ω that has measure less than ε . Thus, ω is
non-random (a contradiction).

Theorem is proved.

Theorem 20 Any Martin-Löf random sequence has limit frequency 1/2.

Proof. By definition this means that the set ¬SLLN of all sequences that do not satisfy Strong Law
of Large Numbers is an effectively null set. As we have mentioned, this is a null set and the proof relies
on an upper bound for binomial coefficients. This upper bound is explicit, and the argument showing
that the set ¬SLLN is a null set can be extended to show that ¬SLLN is an effectively null set. (End of
proof.)

Combining these two results, we get the following

Theorem 21 Any Martin-Löf random sequence is also Mises–Church random.
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Problems

1. The following selection rule is not admissible according to Mises definition: choose all terms
x2n such that x2n+1 = 0. Show that (nevertheless) it gives (Martin-Löf) random sequence if applied to a
Martin-Löf random sequence.

2. Let x0x1x2 . . . be a Mises–Church random sequence. Let aN = |{n < N | an = 0,an+1 = 1}|. Prove
that aN/N → 1/4 as N → ∞.

32 Probabilistic machines

Consider a Turing machine that has access to source of random bits. It has some special states a,b,c with
the following properties: after machine comes to a, it jumps to one of the states b and c with probability
1/2 for each.

Or consider a program in some language that allows assignments

a := random;

where random is a keyword and a is a variable that gets value 0 or 1 (with probability 1/2; each new
random bit is independent of others).

For a deterministic machine output is a function of input. Now it is not the case: for a given input
machine can produce different outputs, and each output has some probability. In other terms, for any
given input machine’s output is a random variable.

Our goal is to find out what distribution this random variable may have. But let us consider a simpler
question first. Let M be a machine that does not have input. (For example, M can be a Turing machine
that is put to work on an empty tape, or a Pascal program that does not have read statements.) Now
consider probability of the event “M terminates”. What can be said about this number?

More formally, for each sequence ω ∈ Ω we consider the behaviour of M if random bits are taken
from ω . For a given ω the machine either terminates or not. Then p is the measure of the set T of all ω

such that M terminates using ω . It is easy to see that T is measurable. Indeed, T is a union of Tn, where
Tn is the set of all ω such that M stops after at most n steps using ω . Each Tn is a union of intervals Ωt

for some strings t of length at most n (machine can use at most n random bits if it runs in time n) and
therefore is measurable.

A real number p is called enumerable from below or semicomputable from below if p is a limit of
increasing computable sequence of rational numbers: p = lim pi, where p0 6 p1 6 p2 6 . . . and there is
an algorithm that computes pi given i.

Lemma. A real number p is enumerable from below if and only if the set Xp = {r ∈ Q | r < p} is
enumerable.

Proof. (1) Let p be the limit of computable increasing sequence pi. For any rational number r

r < p ⇔∃i r < pi.

Let r0,r1, . . . be a computable sequence of rational numbers such that any rational number appears
infinitely often in this sequence. The following algorithm enumerates Xp: at ith step, compare ri and pi;
if ri < pi, output ri.

(2) If Xp is enumerable, let r0,r1,r2, . . . be its enumeration. Then pn = max(r0,r1, . . . ,rn) is an
increasing computable sequence of rational numbers that converges to p. (End of proof.)

Theorem 22 (a) Let M be a probabilistic machine without input. Then M’s probability of termination
is enumerable from below.

(b) Let p be any real number in [0,1] enumerable from below. Then there exists a probabilistic
machine that terminates with probability p.
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Proof. (a) Let M be any probabilistic machine. Let pn be the probability that M terminates after at
most n steps. The number pn is a rational number with denominator 2n that can be effectively computed
for any given n. (Indeed, machine M can use at most n random bits during n steps. For each of 2n

binary strings we simulate behaviour of M and see for how many of them M terminates.) The sequence
p0, p1, p2 . . . is an increasing computable sequence of rational numbers that converges to p.

(b) Let p be any real number in [0,1] enumerable from below. Let p0 6 p1 6 p2 6 . . . be an increasing
computable sequence that converges to p. Consider the following probabilistic machine. It treats random
bits b0,b1,b2 . . . as binary digits of a real number

β = 0.b0b1b2 . . .

When i random bits are generated, we have lower and upper bounds for β that differ by 2−i. If the upper
bound βi turns out to be less than pi, machine terminates. It is easy to see that machine terminates for
given β = 0.b0b1 . . . if and only if β < p. Indeed, if upper bound for β is less than lower bound for p,
then β < p. On the other hand, if β < p, then βi < pi for some i (since βi → β and pi → p as i → ∞).
(End of proof.)

Now we consider probabilities of different outputs. Here we need the following definition: A se-
quence p0, p1, p2 . . . of real numbers is enumerable from below, if there is a computable total function p
of two variables (that range over natural numbers) with rational values (with special value −∞ added)
such that

p(i,0) 6 p(i,1) 6 p(i,2) . . .

and
p(i,0), p(i,1), p(i,2), . . .→ pi

for any i.
Lemma. A sequence p0, p1, p2, . . . of reals is enumerable from below if and only if the set of pairs

{〈i,r〉 | r < pi}

is enumerable.
Proof. Let p0, p1, . . . be enumerable from below and pi = limn p(i,n). Then

r < pi ⇔∃n [r < p(i,n)]

and we can check r < p(i,n) for all pairs 〈i,r〉 and for all n. If r < p(i,n), pair 〈i,r〉 is included in the
enumeration.

On the other hand, if the set of pairs is enumerable, for each n we let p(i,n) be the maximum value
of r for all pairs 〈i,r〉 (with given i) that appear during n steps of the enumeration process. (If there are
no pairs, p(i,n) =−∞.) Lemma is proved.

Theorem 23 (a) Let M be a probabilistic machine without input that can produce natural numbers as
outputs. Let pi be the probability of the event “M terminates with output i”. Then sequence p0, p1, . . . is
enumerable from below and ∑i pi 6 1.

(b) Let p0, p1, p2 . . . be a sequence of non-negative real numbers that is enumerable from below, and
∑i pi 6 1. Then there exists a probabilistic machine M that outputs i with probability (exactly) pi.

Proof. Part (a) is similar to the previous argument: let p(i,n) be the probability that M terminates
with output i after at most n steps. Than p(i,0), p(i,1), . . . is a computable sequence of increasing
rational numbers that converges to pi.

(b) is more complicated. Recall the proof of the previous theorem. There we had a “random real” β

and “termination region” [0, p) where p was the desired termination probability. (If β is in termination
region, machine terminates.)
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Now termination region is divided into parts. For each output value i there is a part of termination
region that corresponds to i and has measure pi. Machines terminates with output i if and only if β is
inside ith part.

Let us consider first a special case when sequence pi is a computable sequence of rational numbers,
Then ith part is a segment of length pi. These segments are allocated from left to right according to
“requests” pi. One can say that each number i comes with request pi for space allocation, and this
request is granted. Since we can compute the endpoints of all segments, and have lower and upper
bound for β , we are able to detect the point when β will for sure be inside i-th part. (And if β is inside
ith part, this will be detected at some step.)

In general case construction should be modified. Now each i come to space allocator many times
with increasing requests p(i,0), p(i,1), p(i,2) . . . Each time the request is granted by allocating addi-
tional segment of length p(i,n)− p(i,n−1). Note that ith part is not contiguous: it consists of infinitely
many segments separated by other parts. But for now it is not important. Machine terminates with input
i when current lower and upper bounds for β guarantee that β is inside ith part. The interior of ith part
is a countable union of intervals, and if β is inside this open set, machine will terminate with output i.
Therefore, termination probability is the measure of this set, i.e., equals limn p(i,n).

Theorem is proved.

Problems

1. Probabilistic machine without input terminates for all possible coin tosses (there is no sequence
of coin tosses that leads to infinite computation). Prove that the computation time is bounded by some
constant (and machine can produce only finite number of outputs).

2. Let pi be the probability of termination with output i for some probabilistic machine and ∑ pi = 1.
Prove that all pi are computable, i.e., for any given i and for any rational ε > 0 we can find (algorithmi-
cally) an approximation to pi with absolute error at most ε .

33 A priori probability

A sequence of real numbers p0, p1, p2, . . . is called an enumerable from below semimeasure if there exists
a probabilistic machine (without input) that produces i with probability pi. (As we know, p0, p1, . . . is a
enumerable from below semimeasure if and only if pi is enumerable from below and ∑ pi 6 1.)

The same definition can be used for real-valued functions on strings instead of natural numbers
(probabilistic machines produce strings; the sum ∑ p(x) is taken over all strings x, etc.)

Theorem 24 There exists a maximal enumerable from below semimeasure m (for any enumerable from
below semimeasure m′ there exists a constant c such that m′(i) 6 cm(i) for all i).

Proof. Let M0,M1, . . . be a sequence of all probabilistic machines without input. Let M be a machine
that starts with choosing natural number i at random (so that any outcome has positive probability) and
then emulates Mi. If pi is the probability that i is chosen, m is the distribution on the outputs of M and
m′ is the distribution on the outputs of Mi, then m(x) > pim′(x) for any x.

The maximal enumerable from below semimeasure is called a priori probability. This name can
be explained as follows. Imagine that we have a black box that can be turned on and prints a natural
number. We have no information about what is inside. Nevertheless we have an “a priori” upper bound
for probability of the event “i appears” (up to a constant factor that depends on the box but not on i).
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34 Prefix decompression

A priory probability is related to a special complexity measure called prefix complexity. The idea is
that description is self-delimited; the decompression program had to decide for itself where to stop
reading input. There are different versions of machines with self-delimiting input; we choose one that is
technically convenient though may be not the most natural one.

A computable function whose inputs are binary strings is called a prefix function, if for any string
x and its prefix y at least one of the values f (x) and f (y) is undefined. (So a prefix function cannot be
defined both on a string and its prefix or continuation.)

Theorem 25 There exists a prefix decompressor D that is optimal among prefix decompressors: for any
computable prefix function D′ there exists some constant c such that

KD(x) 6 KD′(x)+ c

for all x.

Proof. To prove similar theorem for plain Kolmogorov complexity we used

D(p01y) = p(y)

where p is a program p with doubled bits and p(y) stands for the output of program p with input y. This
D is a prefix function if and only if all programs compute prefix functions. We cannot algorithmically
distinguish between prefix and non-prefix programs (this is an undecidable problem). However, we may
convert each program into a prefix one in such a way that prefix programs remain unchanged.

Let
D(p01y) = [p](y)

where [p](y) is computed as follows. We apply in parallel p to all inputs and get a sequence of pairs
〈yi,zi〉 such that p(yi) = zi. Select a “prefix” subsequence by deleting all 〈yi,zi〉 such that yi is a prefix
of y j or y j is a prefix of yi for some j < i. This process does not depend on y. To compute [p](y), wait
until y appears in the selected subsequence, i.e. y = yi for a selected pair 〈yi,zi〉, and then output zi.

The function y 7→ [p](y) is a prefix function for any p, and if program p computes a prefix function,
then [p](y) = p(y).

Therefore, D is an optimal prefix decompression algorithm. Theorem is proved.
Complexity with respect to an optimal prefix decompression algorithm is called prefix complexity

and denoted by KP(x) [LV use K(x) while using C(x) for plain Kolmogorov complexity.]

35 Prefix complexity and length

As we know, K(x) 6 |x|+ O(1) (consider identity mapping as decompression algorithm). But identity
mapping is not a prefix one, so we cannot use this argument to show that KP(x) 6 |x|+O(1), and in fact
this is not true, as the following theorem shows.

Theorem 26
∑
x

2−KP(x) 6 1

Proof. For any x let px be the shortest description for x (with respect to given prefix decompression
algorithm). Then |px|= KP(x) and all strings px are incompatible. (We say that p and q are compatible if
p is a prefix of q or vice versa.) Therefore, intervals Ωpx are disjoint; they have measure 2−|px| = 2−KP(x),
so the sum does not exceed 1. (End of proof.)
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If KP(x) 6 |x|+O(1) were true, then ∑x 2−|x| would be finite, but it is not the case (for each natural
number n the sum over strings of length n equals 1).

However, we can prove weaker lower bounds:

Theorem 27

KP(x) 6 2|x|+O(1);
KP(x) 6 |x|+2log |x|+O(1);
KP(x) 6 |x|+ log |x|+2loglog |x|+O(1)

etc.

Proof. The first bound is obtained if we use D(x01) = x. (It is easy to check that D is prefix function.)
The second one uses

D(bin(|x|)01x) = x

where bin(|x|) is the binary representation of the length of string x. Iterating this trick, we let

D(bin(|bin(|x|)|)01bin(|x|)x) = x

and get the third bound etc. (End of proof.)
Let us note that prefix complexity does not increase when we apply algorithmic transformation:

KP(A(x)) 6 KP(x)+O(1) for any algorithm A. Let us take optimal decompressor (for plain complexity)
as A. We conclude that KP(x) does not exceed KP(p) where p is any description of x. Combining this
with theorem above, we conclude that KP(x) 6 2K(x)+ O(1), that KP(x) 6 K(x)+ 2logK(x)+ O(1),
etc.

36 A priory probability and prefix complexity

We have now two measures for a string (or natural number) x. A priori probability m(x) measures how
probable is to see x as an output of a probabilistic machine. Prefix complexity measures how difficult is
to specify a string in a self-delimiting way. It turns out that these two measures are closely related.

Theorem 28
KP(x) =− logm(x)+O(1)

(Here m(x) is a priori probability; log stands for binary logarithm.)
Proof. Function KP is enumerable from above; therefore, x 7→ 2−KP(x) is enumerable from below.

Also we know that ∑x 2−KP(x) 6 1, therefore 2−KP(x) is an enumerable from below semimeasure. There-
fore, 2−KP(x) 6 cm(x) and KP(x) > − logm(x)+ O(1). To prove that KP(x) 6 − logm(x)+ O(1), we
need the following lemma about memory allocation.

Let the memory space be represented by [0,1]. Each memory request asks for segment of length
1,1/2,1/4,1/8, etc. that is properly aligned. Alignment means that for segment of length 1/2k only
2k positions are allowed ([0,2−k], [2−k,2 · 2−k], etc.). Allocated segments should be disjoint (common
endpoints are allowed). Memory is never freed.

Lemma. For each computable sequence of requests 2−ni such that ∑2−ni 6 1 there is a computable
sequence of allocations that grant all requests.

Proof. We keep a list of free space divided into segments of size 2−k. Invariant relation: all segments
are properly aligned and have different size. Initially there is one free segment of length 1. When a new
request of length w comes, we pick up the smallest segment of length at least w. This strategy is some-
times called “best fit” strategy. (Note that if the free list contains only segments of length w/2,w/4, . . . ,
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then the total free space is less than w, so it cannot happen by our assumption.) If smallest free segment
of length at least w has length w, we simple allocate it (and delete from the free list). If it has length
w′ > w, then we divide w′ into parts of size w,w,2w,4w, . . . ,w′/4,w′/2 and allocate the left w-segment
putting all others in the free list, so the invariant is maintained. Lemma is proved.

Reformulation: . . . there is a computable sequence of incompatible strings xi such that |xi| = ni.
(Indeed, an aligned segment of size 2−n is Ix for some string x for length n.)

Corollary: . . . KP(i) 6 ni.
(Indeed, consider a decompressor that maps xi to i. Since all xi are pairwise incompatible, it is a

prefix function.)
Now we return to the proof. Since m is enumerable from above, there exists a function M : 〈x,k〉 7→

M(x,k) of two arguments with rational values that is non-decreasing with respect to the second argument
such that limk M(x,k) = m(x).

Let M′(x,k) be the smallest number in the sequence 1,1/2,1/4,1/8, . . . ,0 that is greater than or
equal to M(x,k). It is easy to see that M′(x,k) 6 2M(x,k) and that M′ is monotone.

We call pair 〈x,k〉 “essential” if k = 0 or M′(x,k) > M′(x,k−1). The sum of M′(x,k) for all essential
pairs with given x is at most twice bigger than its biggest term (because each term is at least twice
bigger than preceding one), and its biggest term is at most twice bigger than M(x,k) for some k. Since
M(x,k) 6 m(x) and ∑m(x) 6 1, we conclude that sum of M′(x,k) for all essential pairs 〈x,k〉 does not
exceed 4.

Let 〈xi,ki〉 be a computable sequence of all essential pairs. (We enumerate all pairs and select
essential ones.) Let ni be an integer such that 2−ni = M′(xi,ki)/4. Then ∑2−ni 6 1.

Therefore, KP(i) 6 ni. Since xi is obtained from i by an algorithm, we conclude that KP(xi) 6
ni +O(1) for all i. For a given x one can find i such that xi = i and 2−ni > mi/4, i.e., ni 6− logm(x)+2,
therefore KP(x) 6− logm(x)+O(1).

Theorem is proved.

37 Prefix complexity of a pair

We can define KP(x,y) as prefix complexity of some code [x,y] of pair 〈x,y〉. Different computable
encodings give complexities that differ at most by O(1).

Theorem 29
KP(x,y) 6 KP(x)+KP(y)+O(1).

Note that now we don’t need O(logn) term that was needed for plain complexity.
Let us give two proofs of this theorem using prefix functions and a priori probability.
(1) Let D be the optimal prefix decompressor used in the definition of KP. Consider a function D′

such that
D′(pq) = [D(p),D(q)]

for all strings p and q such that D(p) and D(q) are defined. Let us prove that this definition makes sense,
i.e., that it does not lead to conflicts. Conflict happens if pq = p′q′ and D(p),D(q),D(p′),D(q′) are
defined. But then p and p′ are prefixes of the same string and are compatible, so D(p) and D(p′) cannot
be defined at the same time unless p = p′ (which implies q = q′).

Let us check that D′ is a prefix function. Indeed, if it is defined for pq and p′q′ and pq is a prefix
of p′q′, then (as we have seen) p and p′ are compatible and (since D(p) and D(p′) are defined) p = p′.
Then q is a prefix of q′, so D(q) and D(q′) cannot be defined at the same time.

D′ is computable (for given x we try all decompositions x = pq in parallel). So we have a prefix
algorithm D′ such that KD([x,y]) 6 KP(x)+ KP(y) and KP(x,y) 6 KP(x)+ KP(y)+ O(1). (End of the
first proof.)
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(2) In terms of a priori probability we have to prove that

m([x,y]) > εm(x)m(y)

for some positive ε and all x and y. Consider the function m′ determined by the equation

m′([x,y]) = m(x)m(y)

(m′ is zero for inputs that do not encode pairs of strings). We have

∑
z

m′(z) = ∑
x,y

m′([x,y]) = ∑
x,y

m(x)m(y) = ∑
x

m(x)∑
y

m(y) 6 1 ·1 = 1.

Function m′ is enumerable from below, so m′ is a semimeasure. Therefore, it is bounded by maximal
semimeasure (up to a constant factor). (End of the second proof.)

Prefix complexity and randomness

Theorem 30 A sequence x0x1x2 . . . is Martin-Löf random if and only if there exists some constant c such
that

KP(x0x1 . . .xn−1) > n− c

for all n.

Proof. We have to prove that sequence x0x1x2 . . . is not random if and only if for any c there exists n
such that

KP(x0x1 . . .xn−1) < n− c.

Proof. (if) A string u is called c-defective if KP(u) < |u| − c. We have to prove that the set of all
sequences that have c-defective prefix for any c, is an effectively null set. It is enough to prove that the
set of all sequences that have c-defective prefix can be covered by intervals with total measure 2−c.

Note that the set of all c-defective strings is enumerable (since KP is enumerable from above). It
remains to show that the sum ∑2−|u| over all c-defective u does not exceed 2−c. Indeed, if u is c-
defective, then by definition 2−u 6 2−c2−KP(u). On the other hand, the sum of 2−KP(u) over all u (and
therefore over defective u) does not exceed 1.

(only-if) Let N be the set of all non-random sequences. N is an effectively null set. For each integer
c consider a sequence of intervals

Ωu(c,0),Ωu(c,1),Ωu(c,2), . . .

that cover N and have total measure at most 2−2c. Definition of effectively null set guarantees that such
a sequence exists (and its elements can be effectively generated for any c).

For each c, i consider the integer n(c, i) = |u(c, i)| − c. For a given c the sum ∑i 2−n(c,i) does not
exceed 2−c (because the sum ∑i 2−|u(c,i)| does not exceed 2−2c. Therefore the sum ∑c,i 2−n(c,i) over all c
and i does not exceed 1.

Consider a semimeasure M such that M(u(c, i)) = 2−n(c,i). Correction: It may happen that u(c, i)
coincide for different pairs c, i. So the correct definition is

M(x) = ∑{2−n(c,i) | u(c, i) = x}.

M is enumerable from below since u and n are computable functions. Therefore, if m is univer-
sal semimeasure, m(x) > εM(x), so KP(x) 6 − logM(x) + O(1), and KP(u(c, i)) 6 n(c, i) + O(1) =
|u(c, i)|− c+O(1).

If some sequence x0x1x2 . . . belongs to the set N of non-random sequences, then it has prefixes of
form u(c, i) for any c, and for these prefixes the difference between length and KP is not bounded.

(End of proof.)
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38 Strong law of large numbers revisited

Let p,q be positive rational numbers such that p+q = 1. Consider the following semimeasure: a string
x of length n with k ones and l zeros has probability

µ(x) =
c
n2 pkql

where constant c is chosen in such a way that ∑n c/n2 6 1. It is indeed a semimeasure (sum over all
strings x is at most 1, because sum of µ(x) over all strings x of given length n is 1/n2; pkql is a probability
to get string x if coin is biased and has probabilities p and q).

Therefore, we conclude that µ(x) is bounded by a priori probability (up to a constant) and we get an
upper bound

KP(x) 6 2logn+ k(− log p)+ l(− logq)+O(1)

for fixed p and q and for any string x of length n that has k ones and l zeros. If p = q = 1/2, we get
the bound KP(x) 6 n + 2logn + O(1) that we already know. The new bound is biased: If p > 1/2 and
q < 1/2, then − log p < 1 and − logq > 1, so we count ones with less weight than zeros, and new bound
can be better for strings that have many ones and few zeros.

Assume that p > 1/2 and the fraction of ones in x is greater that p. Then our bound implies

KP(x) 6 2logn+np(− log p)+nq(− logq)+O(1)

(more ones make our bound only tighter). It can be rewritten as

KP(x) 6 nH(p,q)+2logn+O(1)

where H(p,q) is Shannon entropy for two-valued distribution with probabilities p and q:

H(p,q) =−p log p−q logq.

Since p+q = 1, we have function of one variable:

H(p) = H(p,1− p) =−p log p− (1− p) log(1− p).

This function has a maximum at 1/2; it is easy to check using derivatives that H(p) = 1 when p = 1/2
and H(p) < 1 when p 6= 1/2.

Corollary. For any p > 1/2 there exist a constant α < 1 and a constant c such that

KP(x) 6 αn+2logn+ c

for any string x where frequency of 1’s is at least p.
Therefore, any infinite sequence of zeros and ones that has infinitely many prefixes with frequency

of ones at least p > 1/2, is not Martin-Löf random. This gives us a proof of a constructive version of
Strong Law of Large Numbers:

Theorem 31 For any Martin-Löf random sequence x0x1x2 . . . of zeros and ones

lim
n→∞

x0 + x1 + . . .+ xn−1

n
=

1
2
.
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Problems

1. Let D be a prefix decompression algorithm. Give a direct construction of a probabilistic machine
that outputs i with probability at least 2−KD(i).

2.∗ Prove that KP(x) 6 K(x)+KP(K(x))
3. Prove that there exists an infinite sequence x0x1 . . . and a constant c such that

K(x0x1 . . .xn−1) > n−2logn+ c

for all n.

Final exam

Note that:
A. It is not needed to solve all problems (some of them are quite difficult) to get a maximal grade:

solving half of them is a very good result.
B. You are allowed to look in the books, including Li–Vitanyi book (this is especially useful for

some problems, e.g., 12). However, you should prove all results that you use.

1. Let kn be average complexity of binary strings of length n:

kn =

[
∑
|x|=n

K(x)

]
/2n.

Prove that kn = n+O(1) (|kn−n|< c for some c and all n).
2. Prove that for Martin-Löf random sequence a0a1a2a3 . . . the set of all i such that ai = 1 is not

enumerable (there is no program that generates elements of this set).
3. (Continued) Prove the same result for Mises–Church random sequence.
4. String x = yz of length 2n is incompressible: K(x) > 2n; strings y and z have length n. Prove that

K(y),K(z) > n−O(logn).
5. (Continued) Is the reversed statement (if y and z are incompressible, then K(yz) = 2n+O(logn))

true?
6. Prove that if K(y|z) > n and K(z|y) > n for strings y and z of length n, then K(yz) > 2n−O(logn).
7. Prove that if x and y are strings of length n and K(xy) > 2n, then the length of any common

subsequence u of x and y does not exceed 0.99n. (A string u is a subsequence of a string v if u can be
obtained from v by deleting some terms. For example, 111 is a subsequence of 010101, but 1110 and
1111 are not.)

8. Let a0a1a2 . . . and b0b1b2 . . . be Martin-Löf random sequences and c0c1c2 . . . be a computable
sequence. Can sequence (a0 ⊕ b0)(a1 ⊕ b1)(a2 ⊕ b2) . . . be a non-random one? (Here a⊕ b denotes
a+b mod 2.)

9. (Continued) The same question for (a0⊕ c0)(a1⊕ c1)(a2⊕ c2) . . .
10. True or false: K(x,y) 6 KP(x)+K(y)+O(1)?
11. Prove that for any c there exists x such that KP(x)−K(x) > c.
12. Let m(x) be a priori probability of string x. Prove that binary representation of real number

∑x m(x) is a Martin-Löf random sequence.
13. Prove that K(x)+K(x,y,z) 6 K(x,y)+K(x,z)+O(logn) for strings x,y,z of length at most n.
14. (Continued) Prove the similar result for prefix complexity with O(1) instead of O(logn).
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