Correction du controle continu 2
Partie modeles stables

Jean-Francois Baget baget@lirmm.fr https://www.lirmm.fr/~baget

3 décembre 2025

- N
Dans ce document, vous trouverez & la fois le sujet du contréle continu (sur fond blanc), le corrigé
lui-méme (dans des boites jaunes), des versions alternatives du corrigé (dans des boites oranges),
de nombreux commentaires (dans des boites vertes telles que celle-ci) et (nouveauté) des rappels
de cours (dans des boites grises). Si vous avez des questions, n’hésitez pas & me contacter par mail.

& J

A Dissue de la correction de la partie modeles stables (sur 8 points), je suis limite déprimé par vos
copies. Mon objectif était pourtant un sujet facile, ne portant que sur les exercices types vus et
revus en cours. Les statistiques sont pourtant celles-ci:

Nombre d’observations : 42
Min / max observés : 0 / 6,5
Moyenne : 2,18

Médiane : 2,0

Ecart-type : 1,75

Q1 (25 %) : 0,75

Q3 (75 %) : 3,0

Un quart des étudiants a moins de 2/20, et les trois quarts ont moins de 8/20. Il s’agit donc
essentiellement d’un manque flagrant de travail (et peut-étre de présence ou d’attention en cours).
Méme parmi ceux qui ont bien réussi (seuls 7 étudiants ont la moyenne, bravo & eux), il reste
des incompréhensions. Pour tous, je ne peux que vous encourager a travailler cette correction
(pas seulement la lire). Il n’est pas possible de chercher des optimisations (ni méme de modéliser
correctement) si les mécanismes de raisonnement de base ne sont pas parfaitement intégrés.

& J

1 Partie modeles stables

Attention, dans tout ce qui suit, les régles sont des regles existentielles avec négation, et pas des regles
ASP. Tl peut y avoir de subtiles différences...

Ici, les subtiles différences concernaient les corps négatifs non normaux qui vous ont beaucoup
perturbé...

Question 1 Calculez une dérivation persistante et complete du programme suivant. Vous détaillerez
chaque étape de ’application, en explicitant pourquoi les déclencheurs sont ou ne sont pas bloqués, et
en précisant pourquoi la dérivation est persistante et complete.

baget@lirmm.fr
https://www.lirmm.fr/~baget

p(a, b). q(b,). qlc, b).
p(a, a). q(a, c). q(a, a).
s(X) :- p(X,), not (q(Y, Z), r(Z)), not q(Z, Y).

N\

On cherche d’abord les déclencheurs de la regle R dans les atomes de la base de faits F', c’est a dire les
homomorphismes de p(X,Y") (le corps positif) dans F. On en trouve deux by = {X — a,Y — b} et
hs = {X — a,Y — a}. Or il existe un homomorphisme du deuxiéme corps négatif ¢(Z,Y") qui étend
hi (c’est & dire qui envoie les mémes variables sur les mémes valeurs), c’est b} = {Z — ¢, Y — b}.
Ceci suffit & prouver que h; est bloqué. De la méme facon, le méme deuxieme corps négatif bloque
he par b, = {Z — a,Y — a}. Tous les déclencheurs de R sont bloqués, et donc la regle n’est pas
applicable.

Aucune reégle n’est donc applicable sur le dernier (et premier) ensemble d’atomes de la dérivation,
celle-ci est donc compléte. Et comme aucune regle n’a été appliquée, aucune ne peut étre remise en
compte plus tard dans la dérivation, qui est donc persistante.

Tout d’abord, toutes mes excuses pour une typo, qui a rendu I’exercice plus facile que ce que j’avais
prévu. En effet, le programme que je voulais donner était celui-ci (le dernier ¢(a, a) devait étre un

q(a,0)).

pa,). q(b, c). qlc, b).
pla, a). q(a, c). q(a, b).
s(X) :- p(X, Y), not (q(Y, Z), r(Z)), not q(Z, Y).

Ceci ne changeait pas le blocage de hy, toujours avec le méme h}. Par contre, he n’était cette fois-ci
plus bloqué, et il aurait fallu le justifier par le fait que ni le premier corps négatif, ni le second ne
pouvaient bloquer ho. Il aurait alors fallu dire, par exemple:

e il n’y a pas d’homomorphisme du premier corps négatif ¢(Y, Z),r(Z) dans F' qui étend hy car
il n’y a pas d’homomorphisme de ¢(a, Z),r(Z) dans F,

e de la méme fagon, il n’y a pas d’homomorphisme du second corps négatif ¢(Z,Y) qui étend
hg car il n’y a pas d’homomorphisme de ¢(Z,a) dans F.

La regle est donc applicable suivant le trigger ho, et cette application sur F' = F;y dans notre
dérivation produit un ensemble d’atomes F; = F U {s(a)}. Il n’y a pas de nouveau trigger dans
F1, donc plus aucune regle n’est applicable, la dérivation est donc compléte. On vérifie alors que
Papplication sur Fy suivant hs est toujours une application sur F suivant hy (évident, ’ajout d’un
s(a) ne risque pas de créer un blocage): la dérivation est alors persistante.

Soyez malins, gagnez du temps ! Dans de (trop) nombreuses copies, vous avez justifié (parfois
sur plus de 10 lignes) que le premier corps négatif n’était pas bloquant avant de montrer que le
second 1'était. Non seulement c’est de la perte de temps (puisque un blocage suffit a bloquer), mais
des arguments maladroits (je suis gentil) sur la partie inutile ne font qu’énerver le correcteur, sans
possibilité de points a la clé. Plusieurs d’entre vous se sont plaint de la longueur de ’examen, mais
il faut aussi que vous fassiez des efforts de votre coté.

La petite boutique des horreurs, épisode 1: dans 5 ou 6 copies, j’ai vu une “définition” de
I’applicabilité qui ressemblait a ceci: je considere toutes les variables du corps, ici X,Y, Z, qu’elles
soient dans le corps positif ou dans le corps négatif. Je choisis maintenant un mapping de ces
variables dans les termes de F, par exemple h = {X — a,Y — b,Z — b}. Si maintenant ce
mapping est un homomorphisme du corps positif dans F' mais n’est un homomorphisme d’aucun

corps négatif dans F, alors la regle est applicable suivant h. C’est joli, mais ce n’est pas ma
définition, et ¢a ne donne pas le méme résultat: d’apres cette “définition”, la regle serait applicable
suivant h, c’est a dire hp, et on a bien vu que ce n’était pas le cas.

Pour ceux qui ont fait ¢a (j’ai les noms), essayez de bien comprendre pourquoi ¢’est faux ! L’idée
est la suivante:

e avec la définition donnée en cours, il suffit de trouver un homomorphisme du corps négatif
pour bloquer;

e avec cette “définition”, il suffit de trouver un mapping qui n’est pas un homomorphisme pour
ne pas bloquer, méme si il y en a un autre qui est un homomorphisme, et qui devrait donc
bloquer suivant la définition standard (et correcte).

& J

Question 2 Mettre le programme suivant sous forme propositionnelle. Veuillez indiquer soigneuse-
ment les étapes de la méthode qque vous suivez. Si le programme obtenu est trop long, donnez
suffisamment de regles pour montrer que vous avez bien compris...

p(a).
s(X, Z) :- p(X), not (q(X, V), r(Y)).

()

Un exercice qui aurait du étre facile, mais sur lequel j’ai vu des choses tres surprenantes. Ma
correction ci-dessous est volontairement longue, puisqu’elle contient de nombreux rappels que je
juge malheureusement nécessaires.

& J

s N

Rappel de I’algorithme de propositionnalisation La mise sous forme propositionnelle se fait
en trois étapes successives:

Skolemisation: on vérifie que la base faits ne contient pas de variables, sinon on associe & chaque
nom de variable dans la base une nouvelle (fresh) constante, et on remplace chaque variable par sa
constante associée (freeze).

Puis on vérifie chaque regle: & chaque nom de variable existentielle dans la téte de la regle (celles
qui sont dans la téte mais pas dans le corps), on associe un terme fonctionnel construit de la fagon
suivante. Le nom de fonction est unique a la régle et & ce nom de variable (par exemple f£ pour la
variable X dans la régle R, mais si il n’y a qu'une régle et une variable, f suffit largement). Pour
les termes de cette fonction, nous avons vu en cours 3 méthodes:

e la corps-skolemisation utilise toutes les variables qui sont dans le corps positif de la regle;

e la frontiére-skolemisation utilise toutes les variables de la frontiére de la régle (celles qui sont
communes a la téte et au corps négatif);

e la piece-skolemisation, qui est plus compliquée.

Ensuite, il n’y a plus qu’a remplacer chaque variable existentielle par son terme fonctionnel associé.
Ici, les trois skolémisations produisaient la méme chose:

p(a).
s(X, £(X)) :- p(X), not (q(X, V), r(Y)).

Mise sous forme normale: un corps négatif est normal quand toutes ses variables apparaissent
dans le corps positif. Une regle est mormale quand tous ses corps négatifs sont normaux. Ici, la
regle n’est pas normale car la variable Y du corps négatif n’est pas dans le corps positif.

Si on a un corps négatif anormal, on peut le normaliser de la fagon suivante: on associe un
nouveau (fresh) nom de prédicat m a ce corps négatif, et on considere le tuple X de variables qui

—

sont & la fois dans le corps positif et ce corps négatif. On remplace le corps négatif par m(X)
(en gardant bien le not). On rajoute une régle dont le corps est le corps négatif original (le not

—

disparait) est dont la téte est m(X). Ici on obtient:

p(a).
s(X, £(X)) :- p(X), not m(X).
n(X) :- qX, V), r(Y).

Instanciation (grounding): Il faut calculer maintenant le domaine de Herbrand H. Vous
'initialisez avec toutes les constantes de la base de connaissances (celles des faits, et éventuellement
celles des regles), puis calculez le plus petit ensemble tel que: si f est une fonction d’arité k (issue
de votre skolémisation) et h un k-tuple d’éléments de H, alors f (l_i) est aussi un élément de H. Ici,

nous obtenions:
H ={a, f(a), f(f(a)), f(f(f(a))), -}

Ensuite, il faut instancier (ce qui peut étre infini) chaque régle par 'ensemble de regles obtenues
en substituant de toutes les fagons possibles chacune de ses variables par des termes de H. Ici nous
aurons la base de connaissances avec un nombre infini de regles:

[p(a).
s(a, f(a) :- p(a), not m(a).
s(f(a)), f(£f(a))) :- p(f(a)), not m(£f(a)).

m(a) :- q(a, a), r(a).
m(a) :- q(a, f(a)), r(f(a)).
m(f(a)) :- q(f(a), a), r(a).

[Une réponse suffisante pourrait étre:

-

Skolemisation:

'p(a).
s(X, £(X)) :- p(X), not (q(X, Y), r(Y)).

Mise sous forme normale:

[p(a).
s(X, £(X)) :- p(X), not m(X).
n(X) :- qX,), r(Y).

Instanciation: Le domaine de Herbrand

H= {a,f(a),f(f(a)),f(f(f(a))L}

est infini, nous avons donc l'instanciation infinie suivante:

p(a).
s(a, f(a) :- p(a), not m(a).
s(f(a)), £(£f(a))) :- p(f(a)), not m(£f(a)).

m(a) :- q(a, a), r(a).
m(a) :- q(a, f(a)), r(f(a)).
m(f(a)) :- q(f(a), a), r(a).

La petite boutique des horreurs, épisode 2: je ne pensais pas voir autant d’inventivité dans
des skolémisations qui ne marchent pas.

e il y a tout d’abord les 3 étudiants qui ont répondu a cette question avec le programme de la
question 1, mais en faisant quelque chose comme ¢a: si on se donne une regle p(X, Y) :-
q(X), not r(X, Z), alors leur skolémisation obtenue est p(X,Y) — ¢(X), not (X, f(X)).

— alors soit ils n’ont pas compris que le h : —b en “notation prolog” se traduit par un b — h
en “notation logique” (ce que je pourrai regretter, mais admettre), mais dans ce cas ils
n’ont pas compris qu’il n’y a jamais de not dans une téte de régle;

— soit ¢’est juste une étourderie dans le sens de la fleche < traduisant : - qui devient machi-
nalement un —, mais dans ce cas ils n’ont rien compris a ’étape de skolémisation qui
doit skolémiser les variables existentielles (dans la téte), et pas les variables “anormales”
des corps négatifs (celles qui sont dans un corps négatif mais pas dans le corps positif).

Bref, ces trois étudiants m’ont fait entrer dans un univers alternatif de la correction, oli non
seulement on mélange les questions posées mais aussi toutes les notions de base du cours. . .

e il y a aussi les nombreux étudiants qui ont répondu, comme je le fais parfois sur mes cor-
rections, “déja skolémisé”. Jadmets que la remarque suffit, quand c’est effectivement le
cas. Mais ici ce n’est juste pas vrai. Et je me demande alors ce qu’ils ont compris de
la skolémisation. Cas particulier, un étudiant a justifié la non nécessité de skolémiser par
Pargument suivant (je paraphrase) “il n’y a pas de variables existentielles car il n’y a pas de
3X dans la téte de la régle”. Je dois alors rappeler que la définition d’une variable existen-
tielle est “une wariable qui est dans la téte mais pas dans le corps (positif)”. La notation
h(X) — Y p(X,Y) est redondante, et a été adoptée par Marie-Laure Mugnier pour souligner
que Y est une variable existentielle, a ’attention de nos colleques qui viennent du monde
ASP et qui, intuitivement, les comprendraient comme des variables universelles ou de nos
étudiants qui ont du mal a calculer I'intersection de deux petits ensembles. Et méme si, par
souci d’uniformité, j’adoptais cette convention pour la “notation logique” des regles, j’aurais
du mal dans la “notation prolog” p(X, Y) :- h(X), en ASCII.

vars(head(R)) vars(positiveBody(R))

existential Vars(R)

e enfin, parmi ceux qui ont effectivement skolemisé la variable existentielle de la téte de la regle,
j’al quand méme pu voir des méthodes aussi fausses qu’étranges:

— il y a ceux qui suppriment purement et simplement la variable existentielle ! Ainsi
p(X, Y) :- h(X) devient p(X) :- h(X). Ca a l’avantage de la simplicité, mais c’est du
grand n’importe quoi, une raison suffisante étant qu’on transforme un prédicat binaire
en prédicat unaire. ..

— il y a ceux (trop nombreux) qui utilisent les variables des corps négatifs comme variables
de la fonction de Skolem. Ceci ne fait pas partie des 3 méthodes vues en cours (et
rappelées ci-dessus), et donne un résultat surprenant. Prenons par exemple p(X, Y) :-
q(X), not (X, Z). Cette “skolémisation” produirait p(X, £(X, Z)) :- q(X), not
r(X, Z). Et ceci n’a aucun sens, puisque f(X, Z) serait fonction de 'image qui n’existe
pas de la variable Z !

— enfin, il y a ceux qui skolémisent les variables anormales du corps négatif. J’avais bien
dit, plusieurs fois, qu’il ne fallait pas. Car si on skolémise (toujours le méme mini-
example) par p(X, £(X)) :- qX), not r(X, gX)), cette regle “skolémisée” ne sera
pas applicable sur q(a), r(a, a), alors que la régle initiale l’est !

La petite boutique des horreurs, épisode 3: je croyais avoir tout vu avec la skolémisation,
mais la mise sous forme normale me réservait encore des surprises. La bonne nouvelle, c’est que
tout le monde a vu qu’il fallait normaliser. La mauvaise, c’est que la fagon dont la normalisation
est faite montre que vous n’avez peut-étre pas tous compris pourquoi il faut normaliser. . .

p(a).
s(X, Z) :- p(X), not (qX, V), r(Y)).

Tout d’abord, il fallait bien considérer que, dans la regle proposée, ¢(X,Y), r(Y) était un unique
corps négatif (ce que j’avais souligné en le parenthésant, comme promis en cours). Ensuite il fallait
bien comprendre que ce corps négatif était anormal pour la seule présence de la variable Y. Petite
tentative de compréhension et de critique de différentes réponses que j’ai pu voir. . .

p(a).
[R1] s(X, Z) :- p(X), not m(X, Y).
[R2] m(X, Y) :- q(X, Y), r(Y).

Ici, il y a au moins un point positif, c’est que la transformation est correcte (elle préserve les
raisonnements). Le probleme, c’est que la régle R1 n’est toujours pas sous forme normale (la variable
Y n’est pas dans le corps positif). Donc le programme a juste été inutilement complexifié.

p(a).
[R1] s(X, Z) :- p(X), not (m(X), r(x)).
[R2] m(X) :- q(X, V).

Il y a aussi ceux qui, comme ci-dessus, ont créé un prédicat intermédiaire qui ne portait que sur le
premier atome. Pourquoi ? Les deux contenaient la “variable anormale” Y. Alors pourquoi pas les
deux ? J’avoue n’avoir aucune idée de la justification, mais en tout cas ¢a ne marche pas:

e il y a ceux qui ont gardé la variable * = Y, dans ce cas il y a deux problémes, dont chacun
est suffisant: (i) le programme obtenu n’est toujours pas sous forme normale; et (ii) on perd
la jointure nécessaire entre la variable * et la variable Y & l'intérieur du corps de la regle.

e il y a ceux qui ont renommé la variable en * = X pour obtenir un truc sous forme normale.
Mais le probleme (ii) du cas précédent est toujours d’actualité.

s N

La petite boutique des horreurs, épisode 4: Ici peu de choses vraiment surprenantes, a part
la construction du domaine de Herbrand. Sinon, vous arrivez a faire des substitutions correctes.

e quand vous n’avez pas skolémisé, le domaine de Herbrand devrait étre H = {a}, et donc vous
obtenez 1 ou deux régles (suivant que vous ayez normalisé ou pas).

e il y a ceux qui ont skolémisé, mais qui ont laissé le domaine de Herbrand & H = {a}. Un peu
de cohérence s'il vous plait.

e je ne sais plus si il avait skolémisé ou pas, mais un étdudiant m’a donné H = {a,b,c}.
Certainement parce qu’il a vu que a ne suffisait pas pour exprimer la variable existentielle,
mais alors pourquoi 3 éléments ? Et pas 2 7 Ou une infinité ? En tout cas, ¢a ne marche pas.

& J

Question 3 On considére le programme propositionnel suivant.

a.
e :- a, d, not (b, c).
b :- a, not e.
c :- d, not b.
d :- a, not f.
f :- b, not d.
4 N\

La premiere chose a faire, c’est de nommer tous les objets du programme II pour simplifier les
explications.

[F] a.
[R1] e :- a, d, not (b, c).
[R2] b :- a, not e.
[R3] ¢ :- d, not b.
[R4] d :- a, not f.
[R5] f :- b, not d.
| J

1. dire, en utilisant la méthode du point fixe, si {a, ¢, d, e} est un modele stable du programme
2. dire, en utilisant la méthode su point fixe, si {a, b, f} est un modele stable du programme

3. dire si {d, f} est un modele stable du programme, par la méthode de votre choix (qui devra étre
soigneusement justifiée)

4. dire si {a,c,d, e, f} est un modele stable du programme, par la méthode de votre choix (qui devra
étre soigneusement justifiée)

5. dire si {a, f} est un modele stable du programme, par la méthode de votre choix (qui devra étre
soigneusement justifiée)

6. sans dessiner le graphe de dépendance des prédicats, déduire de ce qui précede que le programme
n’est pas stratifiable.

[Certainement la partie la mieux réussie, mais le not (b, c) a posé quelques problemes.]

1. dire, en utilisant la méthode du point fixe, si {a, ¢, d, e} est un modele stable du programme

1. E; ={a,c,d,e}
On calcule tout d’abord le programme réduit I, .

[F] a. 7 on garde toujours les fatits

[R1] e :- a, d. %, not (b, c). on positive car {b, c} E1
%[R2] b :- a, not e. on supprime car {e} C EI1

[R3] ¢ :-d. %, not b. on positive car {b} € E1

[R4] d :- a. 7, not f. on positive car {f} € E1

Z%[R5] f :- b, not d. on supprime car {d} C Ei

Ensuite on calcule (II)z,)* = {a,c,d, e} la saturation de ce programme. On a (II|g,)* = E1, et on
en déduit que F; est un modele stable de II.

&

Rappel du cours un petit rappel du cours avant de passer a la critique de vos productions. Pour
prouver que E (un ensemble d’atomes propositionnels) est un modele stable d’'un programme II
par la méthode du point fixe, on commence par construire le programme réduit 1z, qui est un
programme positif (donc sans négation dans les regles). Comme c’est un programme propositionnel
positif, on peut donc parler de sa saturation (IIjz)*. Et le théoreme vu en cours nous dit que E
est un modele stable si et seulement si E = (II|5)*.

Construction du programme réduit (version faible): je vous ai donné en cours une seule
version de cette construction. C’est ce que j’appelle la version faible du programme réduit. Elle
differe de la version forte (les noms sont entierement de mon fait, et donc ne les utilisez pas en
dehors des examens que je devrai corriger) en ce qu’elle ne s’intéresse pas au corps positif des regles.
Pour chaque regle:

e si il existe un corps négatif not (al, - - - , ax) qui bloquerait dans E un déclenchement éventuel
de la regle, alors on supprime la régle. Remarquons que cette condition s’exprime plus sim-
plement par {ai, - ,a;} C E.

e si il n’existe aucun corps négatif qui bloquerait dans £ un déclenchement éventuel de la regle,
alors on positive la regle, c’est a dire qu’on lui enléve tous ses corps négatifs.

Construction du programme réduit (version forte): cette fois-ci, on ne regarde pas seulement
les corps négatifs des regles, mais on s’intéresse également au corps positif. Le principe est le suivant:

e silaregle n’est pas déclenchable dans F, alors elle n’est déclenchable dans aucun sous-ensemble
de F, et en particulier dans aucun des ensembles d’atomes obtenus au cours de la saturation
(IT}g)*. En conséquence, si son corps positif C' n’est pas inclus dans £, alors on peut supprimer
la regle.

e sinon, on procede comme dans la version faible.

Alors, me direz-vous, si la version forte n’est pas vraiment plus compliquée & comprendre (ou &
implémenter) que la version faible, et qu’elle peut donner des programmes réduits plus petits (ce
qui n’est pas le cas pour cette question 1, mais le sera pour la question 2), pourquoi ne pas avoir
directement donné la version forte en cours ? Je n’ai pas le temps de vraiment développer cette
question ici, et donc je dirai juste que ces deux versions ont des propriétés subtilement différentes (et
moins intuitives dans le cas de la version forte). Pour plus d’information, vous pouvez vous référer
a la question 9 de 'examen de janvier 2025 https://www.lirmm.fr/~baget/docs/hai9331/2025.
01.correction.pdf

https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf

La petite boutique des horreurs, épisode 5: Dans I’ensemble, cette partie était meilleure et je
n’y ai pas vu (ou j’ai oublié depuis hier) de choses vraiment abominables. Voici cependant quelques
erreurs récurrentes.

Il y a d’abord tous ceux qui m’ont écrit quelque chose comme “par la méthode du point fixe, je
prouve que Ey est un modéle stable”. Point, exercice suivant. Si je vous demande une méthode,
je veux pouvoir vérifier que cette méthode a bien été appliquée, et ici ¢a passe par ’écriture du
programme réduit. Je suis peut-étre un peu trop old school, mais je n’ai pas a faire confiance a celui
qui m’affirme, en mode “tkt mon frére”, qu’il a bien fait ma méthode et qu’il a trouvé le résultat
(surtout quand ce résultat est un booléen).

Le plus gros probleme a été, pour la majorité des étudiants, la gestion d'un corps négatif
contenant 2 atomes dans la regle R;. Il vous a ainsi suffi de trouver un des deux atomes dans
E; pour en déduire que la regle était bloquée, et donc la supprimer. Pourtant, c’est exactement
le théeme du premier exercice “application de regle” du premier cours des modeles stables: si un
corps négatif contient 2 atomes, alors on bloque si on trouve un homomorphisme des 2 atomes qui
étend le déclencheur dans la base de faits. En version propositionnelle, ca se traduit naturellement
(puisqu’on n’a pas besoin d’homomorphisme) par: on trouve les 2 atomes dans la base de faits.

Un truc qui ne me plait vraiment pas: parmi les étudiants qui ont supprimé par erreur la regle
R, beaucoup m’ont assuré, la main sur le coeur promis juré craché, qu’ils avaient trouvé E; par
la saturation et donc que F; était un modele stable. Or la regle générant e avait disparu, et votre
affirmation était trivialement fausse. Et comme je suppose que, en M2, vous pouvez sans vous
tromper saturer un petit programme propositionnel de 2 regles, ca veut dire que vous essayez juste
de cacher une erreur que vous ne trouvez pas sous le tapis. Ceci n’a pas sa place en sciences.

Enfin, une remarque plus cosmétique. J’ai parfois eu du mal, dans votre programme réduit,
a voir ce qui était supprimé ou positivé. J’ai déja indiqué a l'une d’entre vous que g¢a aurait pu
lui cotiter des points. En peu de pitié pour le correcteur! Vous ne pouvez pas, comme dans ce
document, commenter ce que vous souhaitez supprimer, mais vous pouvez le rayer, comme je le
faisais au tableau. Et vous aurez mon éternelle reconnaissance si, en plus, vous le rayez dune
couleur différente (pour le différencier de vos erreurs), et que vous rajoutez un micro commentaire
comme je lai fait ici.

2. dire, en utilisant la méthode su point fixe, si {a,b, f} est un modele stable du programme

-

&

2. E1 = {a,b,f}
On calcule tout d’abord le programme réduit 11, .

a. J on garde car c’est un fatit

e :-a, d. %, not (b, c).J on positive car {b, c} € E2
b :- a. %, not e. J on positive car {e} € E2

Ac := d, not b. % on supprime car {b} C E2

%d := a, not f. X on supprime car {f} C E2

f :-b. J, not d. % on positive car {d} Z E2

Ensuite on calcule (IIjg,)* = {a,b, f} la saturation de ce programme. On a (I|g,)* = E», et on en
déduit que Fs est un modele stable de II.

-

-

~

Cette fois-ci, on avait un résultat légerement différent en utilisant la version forte du programme
réduit, comme le montre la réponse alternative suivante.

2. E2 = {a,b,f}
On calcule tout d’abord le programme réduit 1|z, .

a. / on garde car c’est un fait

%e := a, d, not (b, c). X% on supprime car {a, d} € E2 (version forte)
b :- a. J, not e. [on positive car {e} Z E2

jc := d, not b. [on supprime car {b} C E2

%d := a, not f. X on supprime car {f} C E2

f :-b. J, not d. % on positive car {d} £ E2

Ensuite on calcule (Ijg,)* = {a, b, f} la saturation de ce programme. On a (I|g,)* = E», et on en
déduit que Fs est un modele stable de II.

& J

Un probleme de conscience pour le correcteur: ici, comme a la question précédente, la
))
grande majorité des étudiants a supprimé la regle R;. J’aurais pu considérer qu’ils avaient raison
de le faire, puisque la version forte I’y autorise. Bon, elle n’était pas vue en cours, mais vous auriez
pu la découvrir en parcourant mes archives (ou dans les cours de Michel Leclere). J’ai compté juste
quand vous aviez bien justifié la suppression de la régle ou quand vous 'aviez gardée a la question
1 et supprimée a la question 2. Sinon, j’ai enlevé un quart de point en considérant que vous aviez

raison, mais par hasard.
- J

3. dire si {d, f} est un modele stable du programme, par la méthode de votre choix (qui devra étre
soigneusement justifiée)

3. E3 ={d,f}

L’atome a est un fait de II. Il sera donc dans tous les programmes réduits, donc dans tous les
saturés de programme réduit, donc dans tout les modeles stables. Comme a ¢ E3, E3 n’est pas un
modele stable.

| J

4 N\

La question 3 a été en général bien faite, méme si les explications étaient parfois laborieuses.

Pour aller plus loin: cet argument disant que les faits sont présents dans tous les modeles
stables est un cas particulier de la notion d’atomes garantis sur lesquels vos camarades avaient
travaillé année derniére (exercice 5) https://www.lirmm.fr/~baget/docs/hai933i/2024.12.
correction.pdf.

Pourtant, dans cette question comme dans la 4 et 5, certains ont systématiquement continué
a appliquer la méthode du point fixe (parfois en supplément d’un autre argument). Ceci appelle
deux remarques:

e ne donnez jamais deux arguments distincts pour une méme réponse! Si les deux sont justes,
¢a ne donne pas plus de points. Si 'un des deux est faux, ¢a montre que vous n’avez pas bien
compris et tout devient faux.

e la formulation des questions 3, 4 et 5 montrait bien que, cette fois, je n’attendais pas la
méthode du point fixe qui prend du temps. Appliquer systématiquement cette méthode peut
vous rassurer, mais vous fait perdre beaucoup de temps...Ne venez pas vous plaindre apres
que le sujet est trop long. ..

& J

4. dire si {a,c,d, e, f} est un modele stable du programme, par la méthode de votre choix (qui
devra étre soigneusement justifiée)

10

https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf

4. E4 ={a,c,d e, f}
Nous avons F; C FEy4. Or F; est un modele stable, et nous savons que ceux-ci sont maximaux
par inclusion. Donc E4 n’est pas un modele stable.

| J

4)\

Ici, plusieurs étudiants ont utilisé un autre argument, correct mais souvent avancé de fagon mal-
adroite. Je pouvais accepter quelque chose ressemblant a ceci:

- J

4. (version 2)

La regle Rs est la seule pouvant générer l'atome f. Or cette regle est supprimée dans le
programme réduit II} 5, (car {d} C E;). Donc la saturation (IIjg,)* ne contiendra pas f et ne sera
pas un modele stable.

& J

4 N\
Cette explication a 'intéréet d’utiliser les propriétés du programme réduit, sans le calculer entierement.
Une autre version, utilisant cette fois-ci les dérivations persistantes et completes, aurait pu étre:

& J

4. (version 3)

Supposons que E4 est un modele stable, alors il existe une dérivation persistante et complete
dont il est le résultat. L’atome f n’a pu étre produit que par la régle Rs. On sait que d € E4. Donc
aucune application de R5 ne peut étre persistante. E4 n’est donc pas un modele stable.

- J

Regardez attentivement ces petites démonstration 4.(version 2) et 4.(version 3). Ce sont des “pat-
terns de preuve” que vous pouvez réutiliser. Il est important de lire et de travailler de telles preuves,
car les votres sont souvent maladroites. De nombreuses preuves similaires peuvent étre trouvées
dans les corrections https://www.lirmm.fr/~baget/docs/hai9331/2024.12.correction.pdf et
https://www.lirmm.fr/~baget/docs/hai9331/2025.01.correction.pdf, si vous souhaitez vous
entrainer.

& J

5. dire si {a, f} est un modele stable du programme, par la méthode de votre choix (qui devra étre
soigneusement justifiée)

5. E5 = {a, f}

Nous avons E5 C Fs. Supposons E5 modele stable. Alors, puisque les modeles stables sont
maximaux, Es ne serait pas un modele stable, ce qui est absurde puisque nous avons prouvé (2.)
qu’il en était un. Fs n’est donc pas un modele stable.

| J

4)\

Cette question a été un peu moins bien faite que la précédente, puisque plusieurs étudiants ont fait
la méme démonstration directe qu’a la Q4, outrepassant ainsi ce qu’affirmait le théoreme vu en
cours. Mais je pense avoir fait cette preuve au moins 2 fois au tableau. D’autres ont essayé d’autres
idées: le point fixe, bien sir (la méthode magique que vous voulez essayer a toutes les sauces, un
peu comme les tables de vérité que découvrent les étudiants avec la logique des propositions), mais
aussi d’autres schémas de preuve que j’essaye de préciser ici.

- J

5. (version 2)

La regle Rs est la seule permettant de générer 'atome f dans Ejy. Il faut donc ne pas supprimer
cette regle dans le programme réduit. Or la version forte la supprime, puisque b n’est pas dans Ej.
L’ensemble E5 n’est donc pas un modele stable.

11

https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2024.12.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf
https://www.lirmm.fr/~baget/docs/hai933i/2025.01.correction.pdf

5. (version 3)

La regle Rj5 est la seule permettant de générer ’atome f dans Fs5. Considérons une dérivation
persistante et compléte qui produit E5. Alors Ry doit nécessairement avoir été appliquée. Mais elle
ne peut étre appliquée que sur un ensemble d’atomes contenant son corps positif b, et b sera alors
produit par la dérivation, qui ne produit donc pas F5. Alors E5 n’est pas un modele stable.

6. sans dessiner le graphe de dépendance des prédicats, déduire de ce qui précede que le programme

n’est pas stratifiable.

-

N

6. Nous avons vu que le programme avait au moins deux modeles stables, E; et E5. Or nous avons
vu en cours qu’'un programme stratifiable avait un et un seul modele stable. Donc le programme
n’est pas stratifiable.

Ici, je n’ai pas vraiment vu d’horreur, mais plutot des maladresses.

Non respect des consignes: plusieurs, pour une raison ou une autre, n’ont pas respecté la
consigne “sans dessiner le graphe de dépendances”. Alors ils ont déguisé plus ou moins ¢a en parlant
des corps négatifs qui bloquaient des corps positifs et finissaient par exhiber un circuit, mais c’était
du bla-bla pour éviter de dessiner le graphe. Ca respectait effectivement la lettre de la consigne,
mais pas l'esprit: je ne voulais pas savoir si vous pouviez calculer la stratifiabilité, mais si vous
connaissiez le rapport de cette notion avec les modeles stables.

Le (mauvais) raisonnement statistique J’ai vu des assertions du type “comme nous ’avons
vu dans les questions précédentes, le programme n’a pas de (ou n’a qu'un) modele(s) stable(s)”.
Mauvaise nouvelle: vous avez seulement exploré 5 ensembles d’atomes possibles, il en reste 26 — 5 a
explorer. Vous n’avez donc exploré que 7.8% des cas. Vous ne pouvez donc pas déduire le nombre
de modeles stables du minime échantillon proposé dans les questions 1 a 5.

Le cas ou vous avez trouvé un modele stable: vous ne pouvez doublement pas conclure.
Tout d’abord pour la raison précédente (il peut y en avoir plein d’autres que vous n’avez pas vus).
Ensuite parce que le théoreme dit: “si le programme est stratifiable, alors il admet un et un seul
modele stable”. Bien entendu, la contraposée est toujours vraie: “si le nombre de modeles stables
est différent de 1, alors le programme n’est pas stratifiable”. C’est ce que j’ai utilisé dans ma
réponse (j’ai trouvé deux MS, il y en a peut-étre plus, mais c’est en tout cas différent de 1). Par
contre, j'avais lourdement insisté en cours sur le fait que la réciproque n’était pas vraie en général.
Done, méme si vous aviez pu prouver, d’'une maniére ou d’une autre (et dans ce cas la meilleure
méthode reste ASPERIX), qu’il y a exactement un modele stable, vous n’auriez pas pu conclure.

Question 4 En utilisant Palgorithme ASPERIX (dans sa version propositionnelle), donnez tous les
modeles stables du programme de la question 3.

-

N\

Tout d’abord, toutes mes excuses: le graphe ASPERIX complet était plus gros que prévu, et donc
I’objectif de donner tous les modeles stables du programme était un peu ambitieux. J’ai donc classé
vos productions en trois niveaux approximatifs:

e ceux qui arrivent a développer un arbre sans trop se tromper;
e ceux qui arrivent & le faire sans se tromper, méme sur le cas difficile (Ry);

e ceux qui, en plus, ont développé une branche compléte et ’ont correctement analysée.

12

J’ai cependant vu de grosses erreurs dans le développement de ’arbre, aussi on va commencer par
de petits rappels.

|

-

Rappel: évaluation d’une regle sur une feuille de ’arbre Chaque sommet de I’arbre est
représenté par un rectangle divisé en trois parties: de gauche a droite, IN, OUT, MBT.

e la partie IN contient un ensemble d’atomes et représente ce qui a été prouvé;
e la partie OUT contient un ensemble de contraintes et représente ce qui est interdit;

e la partie MBT contient un ensmble de disjonctions de contraintes et représente ce qui reste a
prouver.

Pour gagner en lisibilité, je n’indique sur chaque sommet que les éléments qui ont été créés a I’étape
de création de ce sommet. On lira donc le contenu d’un champ d’un sommet en faisant I'union des
contenus des champs de méme type sur tous ses ancétres.

Evaluabilité d’une régle sur une feuille Soit s une feuille de ’'arbre ASPERIX. Une regle R
est évaluable sur s quand il y a un déclencheur non bloqué o de R dans IN(s). Dans ce cas, on
peut évaluer la regle. C’est a dire quand elle est applicable au sens du premier cours MS https:
//www.lirmm.fr/~baget/docs/hai933i/coursl.pdf (slide 12), comme expliqué dans lexercice
qui suivait (slide 14).

Si la regle R est évaluable sur s suivant o, alors on peut maintenant I’évaluer. Notons au passage
que si plusieurs évaluations sont possibles sur s, alors il faut en choisir une. Apres 1’évaluation, s
ne sera plus une feuille, condition nécessaire pour 1’évaluation. Mais ces évaluations non choisies
seront peut-étre encore évaluables sur les feuilles du sous-arbre issu de s. Au vu de certaines erreurs
sur vos copies, j’ai décidé d’adopter ici une nouvelle représentation de ’arbre d’évaluation. J’espere
qu’elle évitera a l'avenir ces erreurs. Vous me direz ce que vous pensez de cette nouvelle version, si
vous la trouvez mieux, je 'adopterai a 'avenir (et je devrai refaire mes slides).

Structure induite par 1’évaluation Lorsque j’évalue R sur s suivant o, je crée tout d’abord un
fils r de s, qui identifie a la fois la regle R et ’homorphisme o utilisé. C’est ce qui est nouveau dans
cette représentation. J’espere que ¢a va vous forcer a comprendre que le fils gauche et le fils droit
doivent étre issus d’'une méme évaluation. Ce sommet/évaluation , est représenté ici par un ovale.
Le sommet/évaluation a 2 successeurs (1 seul si la régle est positive, c’est & dire ne contient pas
de corps négatifs). Le ou les successeurs sont des sommets/état (contenant les 3 champs IN, OUT
et MBT). L’unique successeur dans le cas d’une regle positive représente I’application de la regle.
Sinon, par convention, le successeur gauche représente I’application de la regle et le successeur droit
sa non application.

Sommet représentant ’application de régle (sommet gauche) On rajoute au champ IN les
atomes de o53€(tete(R)). Puis, pour chaque corps négatif C' de la régle (qui est une conjonction),
on rajoute dans le champ OUT la contrainte (C, o), symbolisant qu’il ne fait pas trouver dans IN un
homomorphisme de C' qui étend o. Dans le cas d’une régle positive (pas de corps négatif), ce champ
OUT reste vide. On ne rajoute rien au champ MBT. Alors cette notion de contrainte est un peu
compliquée, mais c’est le cas général. On peut parfois I’exprimer de fagon plus simple. Supposons
une reégle avec deux corps négatifs C; = p(X,Y),r(X) et Cy = ¢(Z,Y),r(Y). Je vous conseille
fortement de suivre 'explication suivante avec papier/crayon en main. Examinons ce qu’on rajoute
au champ OUT suivant différents homomorphismes o:

e Si toutes les valeurs de o sont des constantes Si 0 = {X — a,Z — b}, alors on rajoute
a ouT les contraintes (p(X,Y) Ar(X),0) et (¢(Z,Y) Ar(Y),0). Mais ces contraintes sont
compléetement équivalentes (vérifiez le) a (p(a,Y) A r(a),0) et (q(b,Y) Ar(Y),D), que I'on

13

https://www.lirmm.fr/~baget/docs/hai933i/cours1.pdf
https://www.lirmm.fr/~baget/docs/hai933i/cours1.pdf
https://www.lirmm.fr/~baget/docs/hai933i/cours1.pdf
https://www.lirmm.fr/~baget/docs/hai933i/cours1.pdf

peut simplifier en p(a,Y) A r(a) et g(b,Y) A r(Y). On peut donc rajouter au champ ouT
p(a,Y) Ar(a), ¢(b,Y) A r(Y). Remarquez l'utilité de mon introduction de la notation A:
la virgule sépare les contraintes, le A sépare les atomes qui sont dans une méme contrainte
(et qui, pour obtenir une violation de contrainte, devront étre tous envoyés dans IN par
homomorphisme). Nous erons dans ce cas quand la base de faits ne contient pas de variables
et si les regles ne créent pas de variables: c’est a dire soit ce sont des regles datalog, soit ce
sont des reégles propositionnelles que 1'on a skolémisées (donc ga peut étre intéressant de le
faire pour avoir des représentations plus lisibles).

e Sinon, on ne peut pas (autant) simplifier et on a dans ce cas bien besoin de la notion
de contraintes. En effet, prenons 0 = {X — a,Z — B} (cette fois-ci, 'image de Z n’est pas
une constante mais une variable). Imaginons qu’on fasse la méme simplification que dans le
cas précédent pur obtenir p(a,Y) Ar(a), ¢(B,Y) Ar(Y). Alors si on a ¢(C, D), r(D) dans IN,
il y aura violation de la deuxieme contrainte (avec {B — C,Y — D}). Et ce n’est pas ce que
I'on veut ! Car ce que 'on voulait, c’est interdire tout g(*,Y"), 7(Y") mais avec * = B | On est
donc obligés de garder I’homomorphisme a étendre, méme si on peut simplifier au maximum
avec par exemple p(a,Y) Ar(a), (¢(Z,Y)Ar(Y),{Z — B}).

Sommet représentant la non application de la régle (sommet droit) Pour avoir eu raison
de ne pas appliquer, il faut qu’au moins un des corps négatifs bloque & un moment dans le sous-abre
de s. Le champ IN reste inchangé (on n’a pas appliqué, donc on ne déduit rien), le champ OUT non
plus, mais on va ajouter au champ MBT une disjonction des contraintes (C;, o), pour chaque corps
négatif C; de la regle. Attention, lorsque je lis not (a, b, c) dans une regle, c’est bien a, b, ¢
que j’appelle corps négatif: le symbole not n’est qu'un moyen syntaxique de l'identifier comme un
corps négatif (ne rigolez pas, j’ai trop souvent vu l'erreur). Comme dans le sommet gauche, on va
pouvoir simplifier ’écriture lorsque toutes les images du déclencheur sont des constantes.

e Si toutes les valeurs de o sont des constantes Si 0 = {X — a,Z — b}, alors on rajoute
a MBT la disjonction (p(X,Y)Ar(X),0)V (¢(Z,Y)Ar(Y),0). Comme dans le cas précédent,
on peut simplifier I’écriture des contraintes pour obtenir p(a, Y)Ar(a)Vq(b,Y)Ar(Y). Dans le
cas ou il n’y a qu’un corps négatif, la disjonction de taille 1 est réduite a une seule contrainte,
et on n’aura pas beoin du symbole V.

e Sinon, on ne peut pas (autant) simplifier Si 0 = {X — a,Z — B}, on est, comme
pour le fils gauche, obligés de garder I’homomorphisme a étendre, mais on peut également
simplifier au maximum avec p(a,Y) Ar(a),V(¢(Z,Y)Ar(Y),{Z — B}).

Bon, désolé d’avoir été aussi pontilleux sur la théorie, mais je pense que ce qui précede est a
bien comprendre. Pour se reposer (bon, pas moi, je dois taper le tikz), on va voir les conséquences
de ce qui précede sur quelques exemples, du plus compliqué au plus simple (car oui, je commence
par le cas général et on voit ce que ¢a donne dans les cas ou ¢a peut se simplifier).

Exemple 1: régle existentielle non skolémisée On se donne la régle R représentée ci-dessous,
et un sommet feuille d’identifiant 0 telle que R est évaluable suivant o dans son champ IN. Supposons
o ={X - m,Y — V}. Notre critére d’évaluabilité veut dire que IN contient a(m,V),b(V), mais
ne contient pas quelque chose de la forme c(m,), d(*), ni quelque chose de la forme e(V,), ou
plus formellement: il n’y a pas d’homomorphisme de ¢(m, Z),d(Z) dans IN, ni d’homomorphisme
de e(Y,T) dans IN qui étend o.

[[R] £(X, U, g(U, Y) :- a(X, Y), b(¥), not (c(X, Z), d(Z)), not e(Y, T).]

14

a(m,V),b(V),---

c(m, Z) N d(Z),
(e(Y,T),0)

f(m,Uo), g(Uo, V) c(m, Z) Nd(Z) V (e(Y,T), o)

Exemple 2: regle existentielle skolémisée On considere maintenant que nos regles on été
skolémisées, que la base de faits ne contient pas de variables, et donc que les images des déclencheurs
ne seront jamais des variables. La regle représentée ci-dessous est la skolémisation de la regle
précédente. La regle est évaluable suivant un déclencheur 0 = {X — m,Y — s(m,r(n))}. Notre
critere d’évaluabilité veut dire que IN contient a(m, s(m,r(n))), b(s(m,r(n))), mais qu’il n’y a pas
d’homomorphisme de ¢(m, Z),d(Z) dans IN, ni d’homomorphisme de e(s(m,r(n)),T) dans IN.

[[R] £(X, s(X, Y)), g(s(X, V), V) :- a(X, Y), b(Y), not (c(X, Z), d(Z)), not e(X, T).]

a(mv S(mv r(n))), b(s(m’ T(n)))v e

f(m, s(m, s(c(m, Z) N d(Z),
g(s(m, s(m,r(n))), s(m,r(n)))| e(s(m,r(n)),T)

E
3
—~
S
=
N
N
o

c(m, Z) Nd(Z) V e(s(m,r(n)),T)

Exemple 3: regles datalog On considere maintenant que nos regles n’ont pas de variables exis-
tentielles, que la base de faits ne contient pas de variables, et donc que les images des déclencheurs
sont toujours des constantes. Ca va alléger Iécriture. La regle ci-dessous est évaluable suiv-
ant un déclencheur ¢ = {X — m,Y — n}. Notre critére d’évaluabilité veut dire que IN contient
a(m,n),b(n), mais qu’il n’y a pas d’homomorphisme de ¢(m, Z), d(Z) dans IN, ni d’homomorphisme
de e(n,T) dans IN.

[[R] £(X, V), g(¥, X) :- a(X, Y), b(¥), not (c(X, 2), d(Z)), not e(X, T).]

15

a(m,n),b(n),---

c(m, Z) N\ d(Z),
e(n,T)

f(m,n), g(n,m) c(m, Z) Nd(Z) V e(n,T)

Exemple 4: regles propositionnelles On considére maintenant que les faits et regles sont
propositionnels (ce qu’on peut voir comme “tous les prédicats sont d’arité 0”). On suppose que la
reégle ci-dessous est évaluable (et il n’y a pas besoin de déclencheurs, puisque ce serait un déclencheur
vide). Ceci veut dire que {a,b} C 1N, que {c,d} € IN, et que {e} Z IN.

[[R]f,g:—a,b,not(c,d),note.]

a,b, -

f’gc/;d, cANdVe

4 N\

On a maintenant tous les outils en main pour commencer a construire ’arbre ASPERIX demandé
dans l'exercice, dont je rappelle ici le programme.

[F] a.
[R1] e :- a, d, not (b, c).
[R2] b :- a, not e.
[R3] ¢ :- d, not b.
[R4] d :- a, not f.
[R5] £ :- b, not d.
| J

Arbre ASPERIX, partie 1

16

N
Te bAc bAc Tbe

Par exemple, ici, la régle R1 peut s’évaluer sur le sommet 1 car son corps positif {a,d} C IN,
et son corps négatif {b,c} Z IN. On rappelle que, malgré notre représentation simplifiée, le IN du
sommet 1 est I'union des IN de la racine jusqu’a ce sommet.

|

Branche complete

p
La petite boutique des horreurs, épisode 6 Avec les rappels que vous venez de lire atten-
tivement, vous allez maintenant comprendre facilement pourquoi je me suis arraché les cheveux en
regardant certains de vos arbres ASPERIX. Notez au passage qu’'un simple début de développement
de l'arbre bien réalisé comme ci-dessus vous aurait assuré la moitié des points. Il y a malheureuse-
ment eu beaucoup d’imprécisions, et surtout deux grosses erreurs que j’ai vu régulierement.

e Certains, trop nombreux, avaient le vague souvenir qu’il fallait développer un arbre binaire,
et l'ont fait en générant un fils gauche qui était le résultat de I'application d’une regle et un
fils droit qui était le résultat de I’application d’une autre regle. Autant dire que ¢a génere
n’importe quoi, qu’on n’est plus assuré de trouver tous les modeles stables (j’en suis certain),
et je ne vois pas tres bien ce que pourrait étre le test pour vérifier si on a bien un modele
stable. C’est pour ne plus jamais voir ¢a que j'adopte ici une représentation qui met bien en
lumiere le mécanisme d’évaluation dans le dessin de ’arbre.

e Un truc que je ne m’explique pas, et que j’ai vu tres souvent, est I’évaluation de la regle R1
directement, parfois sur le sommet racine de 'arbre, alors que cette régle n’est méme pas
déclenchable. En effet, le corps positif de la régle {a,d} n’est pas inclus & ce moment dans
le IN. Mais ce n’est pas grave, vous avez quand méme lancé 1’évaluation. Puis, saisis de
remords et d’effroi, vous vous étes quand méme rendu compte qu’il manquait un d quelque
part. Alors, au choix, ce d a été soit supprimé, soit rajouté dans le IN, le OUT ou le MBT, du
sommet gauche et/ou du sommet droit. Et, pendant la correction, je me suis dit que c’était
du grand n’importe quoi. Mais le lendemain matin, la nuit étant censée porter conseil, je
me suis dit qu’il y avait peut-étre une solution pour faire marcher ¢a, et je me suis inquiété
d’avoir arnaqué des étudiants...

Evaluer une régle non déclenchable On va se donner une regle R, non déclenchable sur une
feuille donnée (mais quand méme non bloquée parce qu’il ne faut pas exagérer), et on va essayer

17

de I’évaluer quand méme, malgré ce que dit le cours. Et pour c¢a, on va reprendre la regle R1 de
I’examen.

[[R1] e :- a, d, not (b, c).]

On va tenter d’imaginer, dans le cas du fils gauche qui correspond a ’application, une construction
valable pour I’évaluation.

elbAc

Tout d’abord, on ne peut pas supprimer purement et simplement d: ¢a voudrait dire que la regle
e:- a, d est équivalente & e :- a. On ne va pas non plus (comme beaucoup ont fait) le mettre
dans le IN: ¢a voudrait dire que la regle e :- a, d est équivalente a e, d :- a. Le mettre dans le
OUT n’a vraiment aucun sens. Mais le mettre dans le MBT peut sembler intéressant. C’est ce que
j’ai représenté dans le dessin ci-dessus. En effet, ¢a pourrait se comprendre comme “il me manque
le d pour I'instant pour évaluer, mais j’évalue quand méme et il me faudra prouver d plus tard”.
OK, admettons. Mais maintenant, considérons la régle suivante:

[[R2] d :- e.]

L’application de cette régle sur la feuille 1 produit un sommet dont le IN est {a, e, d}, dont le oUT
est {b A c}, et dont le MBT est {d}. Comme nous le préciserons un peu plus loin, IN serait alors
bien un modele stable. Mais pourtant, je vous mets au défi de trouver la moindre dérivation (et a
fortiori la moindre dérivation persistante et compléte) qui produirait cet ensemble. Donc {a, e, d}
n’est pas un modele stable et ce mécanisme d’évaluation, aussi satisfaisant soit-il a premiere vue,
ne fonctionne pas.

C’est peut-étre une mauvaise nouvelle pour ceux d’entre vous qui auraient proposé cette con-
struction, mais c’est une bonne nouvelle pour moi qui n’ai arnaqué personne et n’aurai pas a me
replonger dans vos copies.

&

-

Rappel: analyse d’un arbre APERIX Nous avons vu précédemment comment construire un
arbre ASPERIX. Nous allons maintenant voir comment ’analyser pour en extraire les modeles
stables. Il est important de noter que, par souci de simplicité, toutes les définitions données ici sont
dans le cas d’un arbre fini. Tout serait beaucoup plus long a mettre en place dans le cas infini, et
cette correction a déja pris beaucoup trop d’ampleur.

Complétude d’une branche Une branche est dite complete lorsque toutes les évaluations pos-
sibles sur la feuille de cette branche ont été évaluées le long de la branche. Attention, dans le cas
propositionnel, cette condition est équivalente a “toutes les regles évaluables ont été évaluées”, mais
en premier ordre, ceci veut dire “si R est évaluable pour le déclencheur o sur la feuille, alors R a
déja été évaluée suivant o le long de la branche.”

18

Violation d’une interdiction Soit s un sommet quelconque d’un arbre, et (¢, o) un élément de
son champ oUT (je rappelle que dans le cas général, la contrainte (¢, o) est donnée par une conjonc-
tion d’atomes ¢ et un homomorphisme partiel o). Alors s viole (¢, o) si il existe un homomorphisme
de ¢ dans le champ IN de s qui étend o.

Satisfaction d’une obligation Soit s une feuille d’une branche compléte et d = (¢1,01) V-V
(ck,0x) un élément de son champ MBT (toujours dans le cas général). Alors s satisfait d si il existe
une contrainte (¢;,0;) dans d et un homomorphisme de ¢; dans le champ IN de s qui étend o;.

Simplification des tests de contraintes La violation comme la satisfaction reposent sur un
test “il existe un homomorphisme de ¢ dans le champ IN qui étend ¢”. Suivant la nature des regles
que l'on considere, ce test peut s’exprimer de facon plus simple:

e dans le cas des regles skolémisées ou des regles datalog, une contrainte de OUT est réduite a la
conjonction d’atomes ¢ et un élément de MBT est une disjonction de conjonctions d’atomes.
Le test précédent peut s’exprimer par “il existe un homomorphisme de ¢ dans le champ IN”
(il n’y a plus besoin de o).

e dans le cas des regles propositionnelle s, ce test peut s’exprimer encore plus simplement
puisqu’il suffit de tester “c C IN”.

Modeéle stable Le théoreme vu en cours dit que “un ensemble d’atomes F est un modele stable
du programme si et seulement si il est le champ IN de la feuille d’une branche compléte qui ne viole
aucun élément de son OUT et qui satisfait tous les éléments de son MBT”.

Optimisation Supposons qu'un sommet s viole un élément de son OUT. Voir que, pour tout
descendant de s, il y aura encore violation de cet élément (qui sera encore dans le ouT). Donc
aucun descendant de s ne sera un modele stable. On peut donc couper l'exploration de I’arbre
ASPERIX sur le sommet s.

Arbre ASPERIX, partie 2 La branche qui va de la racine au sommet 6 est une branche complete.
En effet, son champ IN ne contient que a, les régles R2 et R4 ont déja été évaluées, et plus aucune
regle n’est déclenchable.

La feuille 6 ne satisfait cependant pas e, donc elle ne correspond pas a un modele stable.

Un étudiant qui se serait arrété ici aurait déja pratiquement tous les points sur cet exercice. Je
continue juste au cas oll vous vous poseriez encore des questions et que, puisqu’on en est déja a 18
pages, autant se lacher. Et puis, si je ne réponds pas completement a la question qu j’ai moi-méme
eu le tort de poser, qui le fera ?

-

Arbre ASPERIX, partie 3 On continue le développement de I'arbre a partir du sommet 3 de
Uarbre ASPERIX, partie 1.

19

N\

clb

Branche compléte Branche compleéte
Modele Stable

A partir du sommet 3 de Parbre (partie 1), les régles R2 et R5 sont déja bloquées (et le seront
encore, donc jamais évaluables, dans tous les descendants de 3). Par contre, la régle R3 est évaluable
et on ’évalue comme ci-dessus. Les deux sommets obtenus sont les feuilles de branches completes.

Le sommet 7 a un MBT vide, donc tous ses élements sont satisfaits, et on vérifie que 7 ne viole
aucun élément du oUT. Le champ IN de 7 contient donc un modele stable: c’est le F; de la question
3.1.

Le sommet 8 ne satisfait pas I’élément b de son MBT, ce n’est donc pas un modele stable.

g
Avec c¢a en plus, c’était parfait, vous aviez tous les points et mes félicitations en prime. Mais moi
je dois continuer. Et si, vous, vous n’étes pas encore certain de la technique, continuez également,
en essayant de le faire sur une feuille de papier.

-

Arbre ASPERIX, partie 4 On continue le développement de l'arbre a partir du sommet 4 de
Uarbre ASPERIX, partie 1.

a,d|flbAc

9]

b

Branche complete On prouve l'inutilité de continuer

A partir du sommet 4 de l'arbre (partie 1), la regle R2 est évaluable et on ’évalue comme
ci-dessus.

Le sommet 9 est la feuille d’'une branche compléte: ni R3 (bloquée par b), ni R5 (bloquée par
d) ne sont évaluables. Le sommet 9 ne satisfait cependant pas I’élément b A ¢ de son MBT, il ne
correspond pas a un modele stable.

Le sommet 10 ne correspond pas a une branche complete, car la regle R3 est encore évaluable.
Par contre, la seule régle pouvant produire e, R1, a déja été évaluée. Aucun successeur de 10 ne
pourra donc contenir e dans son IN. Et donc aucun successeur de 10 ne pourra satisfaire 1’élément
e du MBT, et ainsi 10 ne peut pas mener a un modele stable.

|

20

s N

Le petit argument sur le sommet 10 ci-dessus vous montre comment, parfois, on peut couper plus
tot arbre ASPERIX a condition de bien le justifier. Dans le cas présent, faire I’économie de la
derniere évaluation possible, R3, ne valait peut-étre pas le coup de prendre le risque de se lancer
dans une mini-démonstration.

& J

N\

Arbre ASPERIX, partie 5 On continue le développement de I’arbre a partir du sommet 5 de
Uarbre ASPERIX, partie 1.

R5

fld d

Branche complete Branche complete

A partir du sommet 5 de Parbre (partie 1), la régle R5 est évaluable et on ’évalue comme
ci-dessus.

Les deux sommets 11 et 12 sont les feuilles de branches complétes: ni R1 (il manque d), ni R3
(il manque également d) ne sont évaluables.

Voir que le sommet 11 ne viole aucun élément de son OUT (ni e ni d ne sont dans le IN), et qu’il
satisfait tous les éléments de son MBT (f est dans le IN). Il correspond & un modele stable, ¢’est
méme le modele stable Ey de la question 3.2.

Le sommet 12 ne satisfait pas ’élément d du MBT, ce n’est donc pas un modele stable.

& J

Voila, c’est fini. On a bien retrouvé les deux modeles stables de la question 3, et on a prouvé (si
on ne s’est pas trompé quelque part) qu’il n’y en a pas d’autres. Mais pour avoir confirmation, on
peut demander a Clingo. Il faut modifier un peu le programme, car il n’accepte pas deux atomes
dans une négation.

' N

a.
e :- a, d, not bc.

bc :- b, c. J simulation de b,c par l’unique atome bc

b :- a, not e.

c :- d, not b.

d :- a, not f.

f :- b, not d.

Et on obtient:

Solver: clingo version 5.8.0

Models: 2 (no)

Calls: 1

Time: Total: 0s, Solve: 0s, Model: 0s
Result : SATISFIABLE

Answer 1/2
a, f, b

21

Answer 2/2
a, d, c, e

Et pour finir bonnes vacances et surtout, bonnes révisions.

22

	Partie modèles stables

