
Université de Montpellier - Master informatique Janvier 2026

Théorie des bases de données et de connaissances (HAI933I)

Correction Examen

Durée totale : 2 heures
Document autorisé : 1 feuille A4 manuscrite recto-verso

Cette correction concerne la partie règles existentielles et la partie modèles stables. Au moment
où j’écris cette correction, je n’ai corrigé que la partie modèles stables des 45 copies (sur 8
points). Le résultat n’est pas vraiment glorieux: 28 copies ont 2 pts ou moins sur cette partie,
et seulement 7 copies ont la moyenne.

Bref, une correction qui m’a déprimé, heureusement qu’un étudiant a pris le temps de me
faire une blague (Et oui, nous y croyons encore), ce qui me montre que la mienne n’est pas
passée inapperçue.

1 First-order queries (3 pts)

Consider the following database:

Films

Title Director Actor

The Imitation Game Tyldum Cumberbatch

The Imitation Game Tyldum Knightley

.

Internet’s Own Boy Knappenberger Swartz

Internet’s Own Boy Knappenberger Lessig

Internet’s Own Boy Knappenberger Berners-Lee

.

Dogma Smith Damon

Dogma Smith Affleck

Venues

Cinema Address Phone

UFA St. Petersburger Str. 24 4825825

Schauburg Königsbrücker Str. 55 8032185

.

Program

Cinema Title Time

Schauburg The Imitation Game 19:30

Schauburg Dogma 20:45

UFA The Imitation Game 22:45

.

Question Write the following queries using the relational algebra OR a first-order query.

1. Return all actors who appear in a movie that is being shown at the cinema “Schauburg”.

2. Return all domain elements of the database that are not actors.

3. Return the titles of all movies that are featured in exactly two cinemas.

2 Acyclicity and Width (3.5 pts)

2.1 Analyzing a specific query (1.5 pts)

Consider the conjunctive query Q given by

∃w.R1(x, y) ∧R2(y, z) ∧R3(z, w) ∧R4(z, x),

and the database D given by

{R1(a, b), R2(b, c), R3(c, d), R3(c, e), R4(c, a)}.

Question 1 It Q acyclic? Explain using one of the ways we learned in class.

Question 2 What is the treewidth of Q? Give a tree decomposition with this width.

Question 3 How many answers does Q have over D? Specify all answers.

1

2.2 General questions (2 pts)

For each of the following items, does there exist a conjunctive query satisfying the requirements?
If so, give such an example and explain why it satisfies the requirements. Otherwise, explain why
it cannot exist.

Question 1 An acyclic query with treewidth 2.

Question 2 A cyclic query with generalized hypertree width 2.

3 Règles existentielles (5 pts)

Je vous propose mon corrigé de cette partie de l’examen, proposée par Marie-Laure Mugnier.
J’avais fait cette correction pour vérifier que les questions correspondaient bien à ce que je vous
avais raconté en cours.

Par contre, je n’ai pas corrigé vos copies sur cette partie, aussi les commentaires seront
réduits au minimum (les trucs qui m’ont sauté aux yeux quand je parcourais vos copies).

Dans ce qui suit, les bases de connaissances sont de la forme (F,R), où F est une base de faits
et R un ensemble (fini) de règles existentielles (positives).

Question 1 On considère un modèle universel de (F,R). Que signifie universel ici ?

Une interprétation universelle U d’une base de connaissances K est une interprétation plus
générale que tout modèle de K: pour tout modèle de K, il existe un homomorphisme de U dans
K.

La question de cours la plus simple à laquelle on pouvait penser. Vous aviez droit à une feuille
de notes manuscrites. Et pourtant j’ai vu de nombreuses erreurs (principalement dans le sens
des homomorphismes).

Si vous ne travaillez pas un minimum, on ne peut rien faire.

Question 2 Quel est l’intérêt de la notion de modèle universel pour répondre à des (unions de)
requêtes conjonctives ?

Dans le cours, nous avons appelé représentant d’une base de connaissances K une interprétation
I telle que: pour toute (union de) requête conjonctive Q, K |= Q si et seulement si I |= Q.
Disposer d’un représentant permet ainsi de répondre à toute (union de) requête conjonctive par
un simple calcul d’homomorphisme dans I, en ignorant les règles.

Nous avons également prouvé en cours que tout modèle universel est un représentant.

Attention, la réciproque n’est pas vraie. Nous avons prouvé en cours que le résultat d’un core
chase infini n’était pas un modèle (et donc pas un modèle universel), et avons affirmé (sans le
démontrer) que c’était bien un représentant.

Mais je ne pense pas que cette subtilité était exigée par Marie-Laure.

Question 3 Toute base de connaissances (F,R) admet-elle un modèle universel ? Justifiez votre
réponse.

Nous avons vu en cours que le résultat d’un chase monotone (quand aucune règle ne peut générer
⊥) était un modèle universel. Donc toute base de connaissances admet un modèle universel.

2

Attention, la justification par un chase quelconque ne marche pas, comme on vient de le voir
pour le core chase. La preuve n’est valide qu’en exhibant un chase monotone comme l’oblivious,
le semi-oblivious, ou le restricted chase.

MAs là encore, il est bien possible que Marie-Laure accepte un chase quelconque.

Question 4 Soit la règle R1 : p(x, y) → ∃z p(y, z).
a- Donnez une base de faits F1 telle que (F1, {R1}) ait un modèle universel fini.
b- Donnez une base de faits F2 telle que (F2, {R1}) n’ait aucun modèle universel fini.

a- Si on prend F1 = ∅, alors un chase monotone (comme l’oblivious chase) produira F ∗
1 = ∅:

c’est un modèle universel (voir question 3), et il est bien fini.
b- Si on prend F2 = {p(a, b)}, alors le core chase produira F ∗

2 = {p(a, b), p(b, Z0), p(Z0, Z1), · · · }.
Comme le core chase ne s’arrête pas, la base de connaissances n’admet pas de modèle universel
fini (voir question 6).

Question 5 On considère la base de faits F = {p(a, b)} et l’ensemble de règles R = {R1, R2},
où R1 est la règle vue plus haut :

R1 : p(x, y) → ∃z p(y, z)
R2 : p(x, y) ∧ p(y, z) → p(z, y).

a- En utilisant une variante de chase dont vous donnerez le nom, montrez que la base de connais-
sances (F,R) a à la fois un modèle universel infini et un modèle universel fini.
b- Quelle est la relation entre les différents modèles universels d’une base de connaissances ? Soyez
précis dans votre formulation.

Nous avons vu dans un exercice que le restricted chase était le seul qui avait un comportement
différent suivant l’ordre d’application des règles. La réponse doit tourner autour de ça.

Beuacoup d’étudiants ont assez bien réussi cette partie, qui avait fait l’objet d’un exercice
que j’avais corrigé en cours.

a- Si on utilise le restricted chase avec une stratégie “Datalog-first”, c’est à dire en appli-
quant en priorité la règle R2, alors, après application de R1 puis de R2, on obtient I2 =
{p(a, b), p(b, Z0), p(Z0, b)} et le restricted chase s’arrête ici (toute nouvelle application de règle
se replie sur I2). I2 est donc un modèle universel fini.

Maintenant, utilisons une autre stratégie: nous allons toujours appliquer R1 une fois de plus
avant d’appliquer R2. Nous obtenons alors I∗ = {p(a, b), p(b, Z0), p(Z0, Z1), p(Z0, b), p(Z1, Z2),
p(Z1, Z0), · · · } et l’atome introduit par application de R2 arrive toujours “trop tard” pour
pouvoir replier celui introduit par l’application de R1. Avec cette stratégie, le restricted chase
produit ici un modèle universel infini.
b- Un modèle universel s’envoie par homomorphisme dans tous les modèles (donc en particulier
dans tous les modèles universels), les modèles universels sont donc tous équivalents.

Pour la partie b., j’ai vu passer un isomorphe à la place de équivalent ! Or {p(a)} et {p(a), p(X)}
sont équivalents et sont tous deux des modèles universels de ({p(a)}, ∅), mais ils ne sont pas
isomorphes.

Question 6 Existe-t-il une variante de chase dont l’arrêt est garanti sur toute base de connais-
sances possédant un modèle universel fini ? Justifiez votre réponse.

Par une propriété vue en cours, le core chase est la seule variante du chase qui garantit l’arrêt
sur toute base de connaissances possédant un modèle universel fini.

3

Question 7 Revenons à la question 2 : la notion de modèle universel garde-t-elle son intérêt
pour répondre à des requêtes du premier ordre quelconques (donc pas forcément des (unions de)
requêtes conjonctives) ? Expliquez.

La démonstration du théorème “les modèles universels sont des représentants” repose sur une
étape importante: si Q s’envoie par homomorphisme dans un modèle universel MU , alors
pour tout modèle M , comme MU s’envoie par homomorphisme dans M , alors Q s’envoie par
homomorphisme dans M (par composition).

Si on veut généraliser à d’autres requêtes que les (union de) requêtes conjonctives, la com-
position d’homomorphismes que nous avons utilisée devient “si il y a une réponse à Q dans
MU et MU s’envoie par homomorphisme dans M , alors il y a une réponse à Q dans M”. En
d’autres termes, les réponses aux requêtes doivent être stables par homomorphisme.

Si on a des requêtes qui n’ont pas cette propritété de stabilité par homomorphisme, la preuve
devient fausse et il y a de bonnes chances que le théorème devienne faux aussi. On va donc
tenter un contrexemple avec des requêtes utilisant la négation par l’échec.

Soit la base de connaissance K = ({p(a, a)}, ∅). Parmi ses modèles universels, considérons
M = {p(a, a)} et M ′ = {p(a, a), p(a, Y)}.

Considérons maintenant la requête ?() :- p(X, Y), not p(Y, Y).

La réponse à cette reqête est faux dans M et vrai dans M ′. Avec une telle requête (qui n’est
pas stable par homomorphisme), deux modèles universels ne donnent pas les mêmes réponses:
il ne peuvent donc pas être utilisés comme représentants.

La seule question un peu compliquée de cette partie.

4 ASPeRIX: questions de cours (4 pts)

Soit un arbre de recherche ASPeRIX dont la racine est le sommet d’étiquette 0 dans le dessin
ci-dessous, où les trois champs des sommets sont, dans l’ordre, in, out et mbt. L’évaluation d’une
règle R a produit deux successeurs : le sommet 1 (fils gauche) représente son application.

p(a, b)

R, σ = {X → a, Y → b}

q(a, U0), q(U0, b)
r(a, Z) ∧ s(Z).

t(a, T).
? ? ?

0

1 2

Question 1 Donnez la règle R (qui ne contient aucune constante) dont l’application a produit
le sommet 1.

La règle R qui a généré le sommet 1 est celle-ci:

[R] q(X, U), q(U, Y) :- p(X, Y), not(r(X, Z), s(Z)), not t(X, T).

Dans l’ensemble cette question a été bien faite.
Dans les horreurs, j’ai vu trop de règles avec des parties négatives qui se retrouvaient dans

la tête (de la négation par l’échec en tête de règle, ça n’a aucun sens).
Plus surprenant, certains étudiants n’ont pas souhaité mettre 2 atomes en tête de règle.

Pourtant, la définition le prévoit (H, B+ et les B−
i sont des ensembles d’atomes).

4

Alors il y a eu la solution ”pas trop moche” qui consiste à créer deux règles (ce qui donne un
arbre équivalent, mais pas égal à celui que j’avais imposé), et les solutions ”vraiment fausses”
qui consistent à oublier un des 2 atomes de la tête, voire à l’intégrer dans un corps positif ou
négatif.

Question 2 Remplissez les champs in, out et mbt du sommet 2 représentant la non application
de la règle R.

p(a, b)

R, σ = {X → a, Y → b}

q(a, U0), q(U0, b)
r(a, Z) ∧ s(Z).

t(a, T).
(r(a, Z) ∧ s(Z)) ∨ t(a, T).

0

1 2

Seuls 2 étudiants ont correctement répondu à cette question ! Presque tous ont rajouté 2 con-
jonctions dans le mbt (r(a, Z), s(Z) et t(a, T)), alors qu’il faut la disjonction de ces conjonctions
pour indiquer que l’une d’elles doit être prouvée. Je pensais avoir assez insisté là-dessus (par
oral et par écrit) lors de la correction du contrôle continu.

Plus surprenant, un étudiant a rajouté r(X,Z), s(Z) et t(X,T) dans le mbt, tout en se
demandant si il ne vaudrait pas mieux spécialiser X par a. Et ce qui m’a le plus surpris, c’est
qu’à la question suivante, il spécialise correctement les corps négatifs. Je suppose qu’il avait
répondu à sa question, mais trop tard.

Question 3 Evaluez, si c’est possible, la règle S suivante sur les feuilles de l’arbre ASPeRIX :

[S] t(X, X) :- p(X, Y), q(X, Z), not q(Y, X).

La règle S n’est pas évaluable sur le sommet 2 (il n’y a pas d’atome de prédicat q dans son
champ in), mais nous pouvons l’évaluer sur le sommet 1.

p(a, b),

q(a, U0), q(U0, b)

r(a, Z) ∧ s(Z).

t(a, T).

S, σ = {X → a, Y → b, Z → U0}

t(a, a) q(b, a). q(b, a).

1

3 4

Dans l’ensemble, une question bien traitée (quand il n’y a qu’un corps négatif, tout se passe
mieux), mais trop d’étudiants ont essayé d’évaluer la règle sur le sommet 2 (elle n’était pas
évaluable), et certains n’ont indique que le fils gauche lors de l’évaluation sur le sommet 1.
Pourtant, j’avais fait exprès de vous fournir un exemple d’évaluation dès la première question !

5

Rappel (pour les questions suivantes) Dans un arbre ASPeRIX complet et fini, la détection des
modèles stables se fait en vérifiant, sur les feuilles, l’absence de violation de out et la satisfaction
de tous les mbt.

Ceux qui lisent l’énoncé ont bien compris qu’on doit vérifier sur les feuilles.

Question 4 Expliquez pourquoi la violation du out dans le fils gauche du sommet 1 permet de
couper l’arbre de recherche sur ce sommet, sans attendre d’avoir construit une branche complète.

La contrainte t(a, T) dans le champ in du sommet 1 est encore présente dans tous les descendants
du sommet 1, en particulier dans le sommet 3 dont le champ in viole cette contrainte (il y a un
homomorphisme de t(a, T) dans t(a, a)).

Dans tout successeur de 3 (et en particulier les feuilles d’un arbre complet), t(a, a) sera
encore dans le champ in (car l’application de règle ne fait qu’ajouter des atomes) et t(a, T) sera
encore dans le champ out.

Aucun successeur de 3 ne peut donc mener à un modèle stable, et on peut immédiatement
couper l’arbre de recherche.

D’accord, c’est un peu verbeux, mais je voulais bien expliquer. J’ai accepté (même si ça empiète
un peu sur la question 6) la réponse: aucune dérivation commençant par cette branche ne sera
persistante, donc la branche ne mènera pas à un modèle stable. J’avoue ne pas avoir pensé à
cette méthode. Plus court, mais fait intervenir de l’artillerie lourde à la place d’un argument
très simple. Mais comme l’élégance est un facteur subjectif, j’ai compté tous les points.

Beaucoup d’étudiants ont juste dit: ”il y a violation du out, donc on coupe l’arbre de
recherche.” C’est bien, c’est l’algorithme vu en cours, mais je voulais une explication.

Question 5 Expliquez pourquoi la non satisfaction du mbt dans le fils droit du sommet 1 ne
permet pas de couper l’arbre de recherche sur ce sommet, sans attendre d’avoir construit une
branche complète.

La contrainte (r(a, Z) ∧ s(Z)) ∨ t(a, T). n’est pas satisfaite dans le champ in du sommet 1.
Pourtant, elle pourrait être satisfaite dans un successeur du sommet 1, si, par exemple,

l’application d’une règle rajoutait t(a, d) dans le champ in.
On ne peut donc pas couper l’arbre de recherche en cas de non satisfaction du mbt.

En général mieux fait que la question précédente. Encore une fois, trop d’étudiants répondent
juste ”la satisfaction du mbt ne peut se vérifier que sur les feuilles”, sans aucune explication
justifiant pourquoi le comportement est différent du cas précédent.

Remarque Le but de deux prochaines questions est de prouver, de façon un peu différente de
ce qui a été fait en cours, que l’arbre de recherche ASPeRIX énumère effectivement les résultats
possibles des dérivations (finies) persistantes et complètes. Afin de simplifier vos démonstrations,
vous pourrez considérer que la base de faits ne contient pas de variables et que les règles utilisées
ne comportent pas de variables existentielles (ni de symboles de fonctions de Skolem).

Pour ceux qui ont le tort de ne pas lire les remarques: si je veux une preuve différente de
l’équivalence entre les résultats des bonnes branches et ceux des dérivations persistantes et
complètes, c’est à dire une nouvelle preuve qu’ASPeRIX produit des modèles stables, ce n’est
pas pour que vous utilisiez l’argument ”comme le résultat d’ASPeRIX est un modèle stable”
dans votre démonstration.

Les deux questions suivantes ont été peu traitées.

Question 6 Soit D = (F0, . . . , Fk) une dérivation (finie) persistante et complète telle que chaque
Fi est obtenu par application de Ri sur Fi−1 suivant hi.

On considère maintenant la branche B d’un arbre de recherche ASPeRIX quelconque construite
de la façon suivante:

6

� la racine a pour champs (F0, ∅, ∅);

� nous évaluons à chaque étape la règle Ri suivant l’homomorphisme hi (dans l’ordre de la
dérivation D) et considérons uniquement dans la branche B les fils gauches de cette évaluation
(c’est à dire ceux qui correspondent à l’application de la règle).

Vous montrerez que la branche B est une branche complète, qu’elle ne viole aucun out et
satisfait tous les mbt (c’est donc un résultat d’ASPeRIX, qui est exactement Fk).

Nous prouvons successivement que la branche B est complète, qu’elle ne viole aucun out, et
qu’elle satisfait tous les mbt.

1. complétude voir que le champ in de la feuille f de B contient exactement Fk. Supposons
de B n’est pas complète. Alors il existe une règle R évaluable sur f qui n’a pas encore été
évaluée dans B. Ceci veut dire, par construction, qu’il y a une régle applicable sur Fk qui
n’a pas encore été appliquée dans D. Ceci est absurde, puisque D est complète.

2. non violation des OUT supposons qu’une contrainte du out introduite par l’évaluation
d’un trigger (R, σ) soit violée dans la feuille f de B. Ceci voudrait dire que la règle R
n’est plus applicable suivant σ dans Fk. Ceci est absurde, puisque D est persistante.

3. satisfaction des MBT puisque la branche B ne contient que des fils gauches, alors tous
ses champs mbt sont vides. Par vacuité, la feuille b de B satisfait tous les mbt.

Il y avait trois arguments principaux à exposer:

1. puisque D est complète, alors B est complète;

2. puisque D est persistante, alors il n’y a aucune violation du out dans B;

3. puisque B ne contient que des fils gauches, alors ses mbt sont tous vides et donc la feuille
de B les satisfait tous.

Je voulais absolument voir quels arguments sur D étaient utilisés pour chaque conclusion sur B.
Beaucoup ont commencé en disant que D était persistante et complète, ont continué par

un gloubi-boulga (ceux qui on la ref n’ont plus l’âge d’être en M2) incompréhensible où il
est impossible de reconnaitre ce qui sert à quoi, puis ont conclu. Je ne sais pas si vous avez
conscience que vous essayez de m’arnaquer, mais ça ne marche pas.

Enfin, il y a ceux qui n’ont pas compris l’esprit de l’exercice et on dit que Fk était un modèle
stable, donc le résultat de la branche était un modèle stable, et donc la branche ne violait aucun
out et satisfaisait tous les mbt. Alors tout d’abord, vous utilisez le résultat qu’on cherche
à prouver. Et ensuite, la démonstration est quand même fausse. En effet, on peut avoir des
arbres ASPeRIX qui produisent deux sommets ayant même champ in, mais l’un est une bonne
branche et pas l’autre. Pour vous en persuader, vous pouvez construire l’arbre ASPeRIX du
programme suivant, en évaluant R1 avant R2.

a.

[R1] c :- a, not b.

[R2] c :- a.

Question 7 Réciproquement, considérons maintenant une branche complète finie B de l’arbre
de recherche ASPeRIX qui ve viole aucun out et satisfait tous les mbt. Notez que, contrairement
à celle que nous avons construite à la question précédente, cette branche peut contenir aussi bien
des fils gauches (application) que des fils droits.

Vous montrerez comment extraire de cette branche une dérivation dont le résultat (le dernier
Fk) est le même que celui de la branche B (l’union de tous ses in). Vous démontrerez que cette
dérivation est persistante et complète.

Nous construisons la dérivation D qui correspond à toutes les applications de règles. Nommons
S0, · · · , Sk une partie des sommets de B, avec S0 sa racine et le reste des Si correspondant aux

7

sommets gauches de la branche (ordonnés de la racine jusquà la feuille).

� F0 est le champ in de F0;

� Pour i ≥ 1, si Si a été créé par évaluation de (R, σ) sur p(Si), alors on pouvait déjà évaluer
(R, σ) sur Si−1 (car les fils droits entre Si−1 et Si n’ont rien rajouté au champ in). On
peut donc construire Fi par application de (R, σ) sur Fi−1, et on vérifie que Fi contient
les mêmes atomes que le champ in de Si.

Reste à vérifier que la dérivation D que nous avons construite est bien persistante est
complète.

1. persistance si on a appliqué (R, σ) sur Fi, alors (R, σ) est encore applicable sur σ sinon
un élément du champ out de Si serait violé dans Sk.

2. complétude supposons (R, σ) applicable sur Fk qui n’a pas encore été appliqué dans la
dérivation. Alors, puisque B est complète, (R, σ) a été utilisée pour générer un fils droit
de B. La feuille f de B contient donc dans son champ mbt la disjonction D des σ(B−

i)
(où les B−

i sont les corps négatifs de R). Puisque B satisfait tous les mbt, alors le champ
in de f satisfait D. Voir que Sk a le même champ in que f , et donc Sk satisfait D. Donc
Fk satisfait D, ce qui veut dire que (R, σ) est bloqué dans Fk, ce qui est absurde.

Parmi les rares étudiants qui ont tenté cette question, beaucoup ne m’ont pas explicité comment
ils construisaient leur dérivation: c’était donc une démonstration dans le vide.

Seule une étudiante a correctement identifié que c’est la satisfaction des mbt qui assurait la
complétude de la dérivation (bravo Sonia).

5 Modélisation : un problème d’emploi du temps (4,5 pts)

Dans cet exercice, nous considérons une base de faits qui liste des groupes d’étudiants qui doivent
présenter leur travail, ainsi que des dates et des salles disponibles pour ces soutenances. Le code
ci-dessous présente une partie de cette base de faits. L’objectif de l’exercice est d’affecter chaque
groupe à une salle et à une date, tout en respectant certaines contraintes. Les questions 2 et 3
peuvent être traitées de façon indépendante.

Vous utiliserez des règles conjonctives : autrement dit vous avez droit à la négation stable,
mais pas à la disjonction en tête de règle. Vous avez également droit aux contraintes négatives
(règles avec ⊥ en tête).

groupe(g1). groupe(g2). % liste de tous les groupes

salle(s1). salle(s2). % liste de toutes les salles

date(d1). date(d2). % liste de toutes les dates/créneaux horaires

Question 1 Une solution possible du problème est un ensemble d’atomes (sans variable) de la
forme affectation(G, S, D) (signifiant “le groupe G soutiendra dans la salle S à la date D”)
tel que :

1. pour tout groupe g, il existe un et un seul atome de la forme affectation(g, S, D).

2. pour tout couple (s, d), il existe au plus un atome de la forme affectation(G, s, d).

Vous écrirez un programme dont les modèles stables correspondent aux solutions possibles.

affectation(G, S, D) :- groupe(G), salle(S), date(D), not autre affectation(G, S, D).

% attention: deux cas d’autrre affectation !

autre affectation(G, S, D) :- salle(S), date(D), affectation(G, S1, D1), S != S1.

autre affectation(G, S, D) :- salle(S), date(D), affectation(G, S1, D1), D != D1.

% ne pas oblier que 2 groupes ne peuvent passer au même endroit au même moment

! :- affectation(G, S, D), affectation(G1, S, D), G != G1.

8

Ici, je demandais une légère modification du pattern du choix multiple qui a été vu de nom-
breuses fois en cours, et sur lequel j’avais insisté: il peut servir à toutes les modélisations que
je propose. Et bien seule une étudiante l’a fait (presquea) correctement (bravo Sonia).

aDans le corps de la règle qui génère autreAffectation, vous avez mis S != S2 et D != D2. Le problème est
que si un seul des 2 est différent, ça ne génèrera pas autreAffectation, alors qu’il le faudrait.

Le pattern du choix multiple on connait tous les éléments d’un domaine et tous les éléments
d’un codomaine, et on veut générer les modèles stables correspondant à chaque fonction de
domaine dans codomaine. Et bien ça s’écrit comme ça:

dom(d1).dom(d2).

cod(c1). cod(c2).

image(D, C) :- dom(D), cod(C), not autre image(D, C).

autre image(D, C) :- image(D, C1), cod(C), C != C1.

Intuitivement, la première règle veut dire ”si D est un domaine et C un codomaine, et que
je n’ai pas autre chose que C comme image de D, alors C est image de D”. La deuxième règle
explicite ce que veut dire ”avoir autre chose que C comme image de D”: il faut avoir trouvé
une image C1 de D, et il faut C1 distinct de C.

Le problème est que ce pattern ne résiste pas à des modifications, oublis ou improvisations.
Oublier la différence dans la deuxième règle fait que plus aucune application de la première
ne sera persistante (vous pouvez dérouler l’arbre ASPeRIX pour le vérifier), et vouloir éviter
le prédicat auxiliaire autre image ne peut mener qu’à une catastrophe (vous ne pourrez pas
mettre la différence dans le not, car ce serait une imbrication de not).

En résumé, ce pattern aurait dû être sur votre fiche.

Erreur très fréquente que j’ai vue sur cet exercice: une règle positive qui dit ”si j’ai un groupe,
une salle et une date, alors je les affecte” puis des contraintes dont vous espérez qu’elles vont
virer ce qui ne marche pas. Mais votre règle sans corps négatif ne génère qu’une unique branche,
que vos contraintes vont invalider, et il n’y aura pas de modèle stable.

Enfin, il ne fallait pas oublier la dernière contrainte pour éviter que 2 groupes se retrouvent
au même endroit au même moment. A ce sujet, beaucoup d’étudiants ont écrit leurs contraintes,
comme en clingo, avec une tête vide. Attention, ceci vient du fait que, en clingo, la tête est une
disjonction et donc que la tête vide est absurde. Or nous généralisons ici les règles existentielles,
la tête est une conjonction et donc la tête vide est valide. Il aurait donc fallu le symbole ⊥ (ou
!) pour la tête des contraintes. N’étant pas très pointilleux sur la syntaxe, je ne vous ai pas
enlevé de points.

Question 2 Afin de gérer la disponibilité des différentes personnes , nous ajoutons à la base de
faits les informations suivantes (là encore, il ne s’agit que d’une partie des informations disponibles).
Ces atomes listent les membres, tuteurs et jurys de chaque groupe, ainsi que les indisponibilités
des personnes (l’atome indisponible(P, D) signifiant que la personne P ne pourra pas assister
à une soutenance à la date D). Pour gérer les indisponibilités de ces personnes, on ajoute à la
base de faits les informations suivantes (là encore, il ne s’agit que d’une partie des informations
données).

membre(john, g1), membre(paul, g1), membre(george, g1), membre(ringo, g1).

tuteur(brian, g1), jury(yoko, g1).

indisponible(yoko, d1), indisponible(yoko, d3), indisponible(yoko, d4).

Ecrivez les règles permettant de gérer les contraintes découlant de ces nouvelles connaissances.
En particulier :

1. si une personne est liée (membre, tuteur ou jury) à deux groupes, alors ces deux groupes ne
pourront pas soutenir à la même date;

9

2. si une personne est liée à un groupe, alors ce groupe ne peut pas soutenir à une date déclarée
indisponible pour cette personne.

dans groupe(T, G) :- tuteur(T, G).

dans groupe(J, G) :- jury(J, G).

dans groupe(M, G) :- membre(M, G).

! :- affectation(G, S, D), affectation(G1, S1, D), G != G1,

dans groupe(P, G), dans groupe(P, G1).

! :- affectation(G, S, D), dans groupe(P, G), indisponible(P, D).

Question mieux réussie dans l’ensemble. Attention, beaucoup d’étudiants ont ici écrit des règles
et pas des contraintes, ce qui ne permettait pas de filtrer les modèles stables. L’oubli des trois
premières règles ”utilitaires” a souvent mené à de trop nombreuses contraintes, ou à utiliser
de la disjonction (membre ou jury ou tuteur) dans les corps, ce qui n’est pas autorisé par la
syntaxe vue en cours.

Question 3 De la même façon, les salles ne sont pas toutes équipées de la même manière, et
certains groupes ont besoin d’un équipement particulier. Ceci est exprimé dans la base de faits de
la façon suivante.

nécessite(g2, vr). nécessite(g3, visio).

equipement(s1, vr). equipement(s1,visio). equipement(s2, visio).

Ecrivez la ou les règles exprimant que si un groupe a besoin (nécessite) d’un certain équipement,
alors il doit passer dans une salle qui fournit cet équipement particulier.

! :- necessite(G, E), affectation(G, S, D), not equipement(S, E).

Certainement la question la plus simple, et pourtant j’ai vu du grand n’importe quoi. Il fallait
juste une contrainte disant qu’il est impossible d’avoir un groupe qui a besoin d’un équipement
qui n’est pas dans la salle dans laquelle ce groupe passe.

Question 4 Malheureusement, la première fois que l’on fait tourner le programme sur le cas
d’étude, aucun modèle stable n’est généré car le programme est surcontraint. Réécrivez les règles
de la question 2 de façon à ce qu’elles ne génèrent plus absurde, mais un atome impossible(P,

G) voulant dire que P ne pourra pas assister à la soutenance du groupe G. Attention, il faudra
dans vos règles veiller à ce que, si une personne est liée à deux groupes qui soutiennent à la même
date, un seul atome “impossible” soit généré.

impossible(P, G) :- affectation(G, S, D), in(P, G), indisponible(P, D).

impossible(P, G1) :- affectation(G, S, D), affectation(G1, S1, D), G < G1,

dans groupe(P, G), dans groupe(P, G1).

La première règle a été pas mal faite. Dans la seconde règle, personne n’a eu l’idée d’utiliser le
< pour la rupture de symétrie. Ca vous a souvent obligé à faire des règles du type ”si (P,G2)
n’est pas impossible, alors (P,G1) est impossible.” mais là encore, si vous ne rompez pas la
symétrie à un moment, ça ne mènera à aucun modèle stable.

Epilogue On pourrait ensuite (ce qui n’est pas demandé ici) utiliser un opérateur d’aggrégation
pour compter le nombre d’impossibilités par personne, et borner ce nombre pour éliminer les modèles
stables ayant “trop” d’impossibilités, ce qui pourait être fait de la façon suivante en Clingo :

% Pas plus d’une impossibilité par personne

:- lieA(P, G), N = #count{ : impossible(P, G) }, N > 1.

10

Dans une future version d’Integraal, ceci s’écrira plutôt comme ça, mais ça nécessite tout d’abord
l’aboutissement d’un stage de M2.

! :- dans groupe(P, G), C(P, G) := impossible(P, G), count(C) > 2.

11

	First-order queries (3 pts)
	Acyclicity and Width (3.5 pts)
	Analyzing a specific query (1.5 pts)
	General questions (2 pts)

	Règles existentielles (5 pts)
	ASPeRIX: questions de cours (4 pts)
	Modélisation : un problème d'emploi du temps (4,5 pts)

