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Introduction

Existential rules have become a major formalism to represent ontologies in Knowledge Representation (KR). Though
they form a subset of First-Order Logics, they originated from two fields of KR: conceptuals graphs [1]|, and
more precisely the formalisation work initiated by Chein, Mugnier and Book, and independently from relational
databases, as extension of the Datalog language [2].

In this formalism, the fondamental problem is to check whether or not a query is entailed by a knowledge base
, i.e a database and an ontology. The database can be seen as a set of ground atoms (as done in this document)
encoding existential knowledge, and the ontology is a set of existential rules encoding universal knowledge. As an
example of such a rule (in its logical form), let us consider:

VX VT ((student(X),learns(X,T), topic(T)) — Y (has — teacher(X,Y), teacher(Y), knows(Y,T)))

asserting that every student learning a topic has a teacher knowing that topic. The existential variable Y introduces
a new entity that is not present in the database. This is the main difference between existential rules (also called
Datalog+) and Datalog: this possibility, called value invention in KR, is considered very important when writing
ontologies.

Finally, the query is usually a conjunctive query (in this document, we will restrict our study to boolean
queries, that only answer true or false). This EXISTENTIAL RULES DEDUCTION problem is undecidable (it is
indeed a computation model), and a lot of efforts have been brought to exhibit multiple decidable (and sometimes
tractable) fragments of existential rules, without sacrificing the expressivity required to write ontologies [3].

Two main subsets of decidable fragments are those for which the forward chaining algorithm halts, and those
for which the backward chaining algorithm halts.

The forward chaining algorithm is the simpler to understand: we consider in a first step uniquely the database
and the ontology, and use the ontology to saturate the database, adding to it every atom that can be deduced by
using rules. As a very basic example, if the database contains Man(socrates) and the ontology VX (Man(X) —
Mortal(X)), then we add the deduced atom Mortal(socrates) to the database. When this algorithm halts, we
obtain a universal model, and the resulting database can be queried in a second step independently of the ontology,
for instance with the query Mortal(socrates). In database, this algorithm is known as the chase.

We can obtain the same results by using the backward chaining algorithm. In that case, we consider in the
first step uniquely the ontology and the query. The query is rewritten according to the ontology, generating
a union of conjunctive queries (UCQ). With our previous and simple example, the rewritten query would be
Man(socrates) V Mortal(socrates). Then we have only in a second step to evaluate the rewritten query against
the database. The usual rewriting mechanism studied in logic programming is made more complex by the presence
of existential variables in the conclusion of rules, and we have to rely on piece unifiers [4]. When this algorithm
halts, it has several benefits: we do not have to saturate the database, saving a lot of disk space, and if the database
changes, we do not have to compute its saturation again. Theoretically, as soon as we are in a decidable fragment
of the language, we are also in ACO in data complexity (a complexity measure often used in databases, where the
size of the query and of the ontology are considered as constants).

This miraculous data complexity is, in practical terms, a mirage. Consider the very simple query A;(X),---, A,(X),
and suppose there is k different ways to prove each A; (for instance, for 1 <4 < p, for 1 < j < k there is a rule of
form VX (AJ(X) — A;(X))). In that case, the rewriting of the query would consist in the union of an exponential
number k0 of conjunctive queries. It is often the case that an obtained UCQ is too big to be evaluated against a



database. To tackle this problem, [5] suggested to compile some rules. Those compilable rules are not used in the
rewriting mechanism, leading to smaller UCQs, and the compilation is used at the evaluation step.

The problem is that compilable rules form only a strict subset of linear rules (with body and head of size 1).
Though a great part of ontologies consist in type hierarchies, that are translated to compilable rules, we felt it was
possible to factorize the UCQ rewriting.

1 Starting definitions and theorems

1.1 Facts and Queries

Usually the equality symbol is not used, however in this paper we will use it. It is however a separate predicate,
that has a fixed interpretation.

1.1.1 Syntax

We begin by defining the vocabulary on which facts, rules and queries will be defined.

Definition 1 (Vocabulary). A vocabulary is a triple V = (P,C) where P is a set of predicate symbols and C is a
set of constant symbols. To each predicate is associated an integer called its arity.

Though it is not part of the vocabulary, we also consider a set X’ of variables. In this paper, predicate and con-
stants symbols will be in lowerscript letters, while variable names will begin with an upperscript letter. Constants
as well as variables are denoted as terms.

In what folllows, atoms on a vocabulary will be either

e standard atoms of the form p(t1,...,t;) where p is a predicate of arity k£ and the ¢; are terms

e cquality atoms of the form ¢t = ¢’ where both ¢t and ' are terms.

The basic building block for facts, queries and rules is called a conjunct. It is essentially a conjunction of atoms,
but is traditionally represented as a set of atoms. Note that even though the set representation does not allow for
multiple occurences of the same atom in a conjunction, it is without loss of generality.

Definition 2 (Conjunct). A conjunct on a vocabulary V is a set of atoms onV. The FOL formula ¢(C) associated
with a congunct C' is the conjunction of its atoms. We denote by var(C) the set of variables of a conjunct C'.

Remark. Note that the formula ¢(C) is not necessarily closed.

In knowledge representation, knowledge is usually split into factual and ontological knowledge. Here, factual
knowledge will be encoded by a conjunct that is sometimes called facts base, but that we will simply call a fact.
Databases require a fact to be grounded (i.e., without variables), but we do not enforce that restriction here (we will
see anyway that applying a rule to a grounded fact creates a fact that is not necessarily grounded fact). Moreover,
since adding equality to facts would add neither expressivity to our formalism nor effficiency to our algorithms, we
can simplify our definitions by forbidding equality atoms to appear in such facts.

Definition 3 (Fact). A fact on a vocabulary V is a set of standard atoms. We denote by F the set of facts. The
FOL formula ®(F') associated with a fact F is the existential closure of the conjunction of its atoms.

Definition 4. A conjunctive query with equality (or ECQ) is a conjunct (thus possibly with equality atoms). A
conjunctive query (or CQ) is an ECQ that has no equality atom. To each ECQ Q we associate a FOL formula
®(Q) which is the existential closure of the conjunction ¢(Q) of its atoms.

Note that CQs and Facts have the same syntax and logical form. ECQs only add equality atoms (whose interest
will become clearer later in this paper). Note also that since ECQs are closed formulae, they should really be called
boolean conjunctive queries (we are not interested in the answers to the query, but in the existence of an answer).
We are only interested in boolean queries in this paper.

Example 1. {p(X,a),q(Y),p(b,Y), X = Y} and {p(X,a),q(Y),p(b,Y)} are two conjuncts on the vocabulary
{p(2),q(1)},{a(0),b(0)},{P(2)}). The first, containing an equality atom, can only be considered as an ECQ, while
the second, without any equality atom, could be considered as a Fact or an ECQ (which would also be a CQ). Their
associated FOL formulae are respectively 3X 3Y p(X,a)Aq(Y)Ap(b,Y)ANX =Y and 3X 3Y p(X,a)Aqg(Y)Ap(b,Y).



1.1.2 Semantic

We begin with the classic notions of interpretations in first order logics, on which is based entailment (or semantic
consequence). We will the be able to characterize entailment of a query by a fact using an operation called
homomorphism.

Definition 5 (Interpretation). An interpretation of a vocabulary V = (P,C,ER) is a pair I = (A,.1) where A is
a non empty set called the interpretation domain and . is an interpretation function such that:

1. VeeC,cl e A;
2. Vp € P,p! C AF where k is the arity of p.

Definition 6 (Value of a term). Let I = (A,.1) be an interpretation of a vocabulary (P,C), and A an affectation
of the variables into A. We define the value of a term t in I for X (noted [t];) by t! if t € C or A(t) if t is a
variable.

Definition 7 (Truth of a formula). Let I = (A,.7) be an interpretation of a vocabulary (P,C), and X an affectation
of the variables into A. We define the truth of a formula ¢ in I for A (noted I, X = ¢) by induction:

o LAED(t,...,tn) = ([tilrs-- - [tal1n) € P! if p is a predicate;
o [Nt =ty <= [ti]r) = [t2]r.n;

e [NE—p = IAyp;

e [NEoANY <= [ AEy¢ and [,\|E1;

e AoV <= I[LAEporl,\E1y;

e [NEp—=Y = I[LAE-pVY;

e [ NEVXyp < forallde AJI,\X — d] E ¢;

o I\ 3IXp < there exists d € A such that [, \[X — d] E ¢.
The previous definition can be simplified for Facts and ECQs.

Proposition 1 (Truth of an ECQ). The formula ®(Q) associated to an ECQ Q is true in an interpretation I iff
there exists an affectation A of the variables of Q) to the interpretation domain such that:

1. for each standard atom a in Q, I, \ = a;
2. for each equality atom t =t" in Q, A(t) = \(t).

Since Facts and CQs have the same syntax and associated formulas as ECQs without equality atoms, their
truth value is also characterized by the previous proposition (though the second criteria obviously does not have
to be verified).

When restricting ourselves to ECQs, SATISFIABILITY and VALIDITY are not interesting problems: an ECQ is
always satisfiable (unless the unique name assumption is made and an equality between two distinct constants
can be inferred), and the only valid ECQs contain only equality atoms of form ¢ = ¢. In what follows, we will be
interested in the following DEDUCTION PROBLEM: given a fact F' and an ECQ @, does F entails @) 7

1.1.3 Homomorphisms

Entailment It is well known that the existence of an homomorphism from a CQ @ to a fact F' characterizes
entailment of @ by F. In what follows, we extend that notion to E-homomorphisms (for equality preserving
homomorphisms) from an ECQ @ to a fact F.

Definition 8 (E-Homomorphism). An equality-preserving homomorphism (for short E-homomorphism) from an
ECQ Q to a fact F is a substitution © from the variables of Q (var(Q)) to the terms of F' (term(F)) such that:



1. for each standard atom a € Q, w(a) € F;
2. for each equality atom t =t € Q, w(t) = w(t').
When there is such an E-homomorphism, we say that QQ E-maps to F.

It is immediate to check that when @ is a CQ, the previous definition becomes "a substitution 7 such that
m(Q) C F", and an E-homomorphism from a CQ is thus a homomorphism (and we can say that ¢ maps to F).
The homomorphism theorem then states that, when @ is a CQ, F' = @ iff there is a homomorphism (i.e., an
E-homomorphism) from @ to F. It remains now to prove that E-homomorphisms characterize ECQ entailement.

Example 2. Let F = {p(X,a),q(Y),p(b,Y)}, Q = {p(U,V),q(W)} and Q" = Q U{V = W} be three conjuncts.
Then 7 = {(U,X),(V,a),(W,Y)} is an E-homomorphism (and an homomorphism) from Q to F, but it is not an
homomorphism nor an E-homomorphism from Q' to F. On the other hand, 7' = {(U,b), (V,Y),(W,Y)} is both an
homomorphism from Q to F and an E-homomorphism from Q' to F.

To prove that E-homomorphisms effectively characterize ECQ entailment, we introduce an operation (which
will also be used later in this paper) called equalization. Basically, the equalization of an ECQ is a CQ having the
same semantics.

Definition 9 (Equalizable ECQs). An ECQ is equalizable when no equivalence class of terms contains two distinct
constants.

Example 3. The ECQ {p(X,Y,Z,T,U),X =a, X =Y, Y =b,Z =T,T = U} contains two equivalence classes of
terms, namely {X,Y,a,b} and {Z,T,U}. Since the first equivalence class contains the two constants a and b, the
ECQ is non-equalizable.

Proposition 2. Let F be a fact and Q be a non-equalizable ECQ. Then F [~ Q

Proof. See that the isomorphic model of F' assigns a distinct element of the domain to each constant. It follows
that it is not a model of Q. O

Thus non-equalizable ECQs do not need to be transformed into CQs.

Definition 10 (Equalization). Let Q@ = Qs U Q. be an equalizable ECQ, where Qs contains only standard atoms
and Q. only equality atoms. An equalization substitution of @) is a substitution o that associates to each variable
X of Qe a term representing its equivalence class [X].

1. if [X] contains a (necessarily unique) constant a, then o(X) = a;

2. otherwise, for each'Y € [X], o(Y) = Z, where Z is a variable representing the equivalence class [X]: Z is
either a variable of [X] or a variable that is not in Q.

If o is an equalization substitution of Q, then o(Qs) is an equalization CQ of Q.

Note that an equalization CQ is indeed a CQ. In what follows, and when there is no ambiguity, we will call
equalization either the substitution or the CQ it can produce. Moreover, we arbitrarily decide to chose as a
representant of [X] (unless it contains a constant) the smallest variable ranked by alphabetical order in [X]. We
can thus obtain the equalization of Q.

Example 4. Let Q = {p(U,V),q(W),p(W,T),U = T,V = T} be an ECQ. The only equivalence class induced
by its equality atoms is {U,V, T}, and Q is thus equalizable. Possible equalization substitutions of Q) associate the
same variable to the variables U, V and T. Though we could choose either one of those variables (or even another
variable X, but not W which is in @), we choose T for the equalization substitution of Q. The equalization CQ of

Q is {p(T,T),q(W),p(W,T)}.
Proposition 3. Let Q be an equalizable ECQ and Q' be an equalization of Q. Then Q = Q'.

Proof. Tt follows from proposition 1. O



The following proposition prepares for the characterization of ECQ entailment.

Proposition 4. Let Q be an equalizable ECQ and F be a fact. Let Q' be an equalization of Q. Then there is an
E-homomorphism from Q to F iff there is an homomorphism from Q' to F.

These two propositions allow us to extend the homomorphism theorem to one that links ECQ entailment and
E-homomorphisms:

Theorem 1 (E-Homomorphism). Let F' be a fact and Q be an equalizable ECQ. Then there is an E-homomorphism
from Q to F if and only if F = Q.

Note that, as for CQ-ENTAILMENT, ECQ-ENTAILMENT is an NP-complete problem. Indeed, an E-homomorphism
is a polynomial certificate, and CQ-ENTAILMENT is a particular case of ECQ-ENTAILMENT. Polynomial subclasses
of the CQ-ENTAILMENT problem involve mainly bounding the number of variables in the query or its treewidth.
Those polynomial subclasses naturally adapt to ECQ-ENTAILMENT by using equalization.

1.2 Vd-rules
1.2.1 Syntax and semantic

We present here the syntax and semantics of rules. There was no need to introduce equality neither in the hypothesis
nor the conclusion of rules. Adding equality in the hypothesis would add no expressivity (thanks to equalization),
and, contrary to queries, no optimization issue was at stake. Adding equality in the conclusion (as done in EGDs —
Equality Generating Dependencies) leads to more complex properties of derivations, and more complex rewritings.
It is not considered in this paper.

Definition 11 (V3-rule). A V3-rule (later simply called rule) is a pair of conjuncts without any equality atom
R = (H,C) (commonly noted H — C'). H is called the hypothesis (or body), noted hyp(R) and C is called the
conclusion (or head), noted conc(R). The frontier of R is fr(R) = var(H) Nwvar(C). We denote by V3-R the set
of all V3-rules.

The FOL formula ®(R) associated with a rule R = (H,C) is VX(¢(H) — IY $(C)), where X contains all

variables appearing in H and Y those appearing only in C.

As for facts and queries, the general definition of the truth value of a formula in an interpretation can be
simplified in the case of rules:

Proposition 5 (Truth of a rule). The formula ®(R) associated to a rule R = (H,C) is true in an interpretation I
iff for any affectation X of the variables of H such that I, \ = ¢(H), there exists an affectation N of the variables
of C that extends A (i.e., if X is a frontier variable of R, then \(X) = XN (X)) such that I, N = ¢(C).

Now our main problem becomes the ECQ-DEDUCTION problem. Given an ECQ @ and a knowledge base K
containing a fact F' and a set of rules R, is @) entailed by K (i.e., is every interpretation that is a model for F' and
every rule in R also a model of Q7). In what follows, we present the two great families of algorithm designed to
answer that problem, forward and backward chaining.

1.2.2 Forward chaining

The Forward Chaining algorithm (also called chase in databases) enriches incrementally the fact F'. The elementary
operation of this algorithm is the rule application mechanism: every time the hypothesis of a rule is proven true in
F (by an homomorphism), its conclusion is added to F'. A derivation is a fact created by a succession of such rule
applications.

Application of a rule Intuitively, to apply a rule is to know that the hypothesis is true in F' (thanks to an
homomorphism 7), in order to add the conclusion 7(H) to the facts. This is a very standard mechanism. A
subtle difference comes from the presence of existential variables in the conclusion. Suppose a rule human(X) —
hasParent(X,Y") and a fact {human(bob), human(sam)}. By mapping X to bob, we have a first proof of the hypoth-
esis in F', and we can add hasParent(bob,Y") to the fact. By mapping X to sam, we also add hasParent(sam,Y")



to the fact. Now, bob and sam have the same parent Y, which was not the intended meaning of the rule. In the
following definition, we will take care to replace existential variables with fresh ones (say Y0 on the first application,
and Y1 on the second).

Definition 12 (Application of a rule). A rule R = (H,C) is said applicable to a fact F' if there is a homomorphism
7 from H to F. The fact obtained after application of R is o(F, R, ) = F UT*Y¢(C) where n°¥¢(C) is C in which
we substituted the variables of fr(R) by their image by m and we renamed the others with fresh variables. a(F, R, )
1s called an immediate derivation from F.

Example 5. Let F = {q(U),p(U,V),p(V, W)} and R = ({¢(X),p(X,Y)}, {q(Y),r(Y,W)}). R is applicable to
F with the homomorphism © = {(X,U),(Y,V)}, and o(F,R,7) = F U m°%(C) = F U {q(V),r(V,Wy)} =
{Q(U)vp(Uv V),p(V, W)MJ(V);?“(V, WO)}

Definition 13 (Derivation). An R-derivation of a fact F' is either F or a fact obtained after application of a rule
of R to an R-derivation of F.

As in the absence of rules, and for the same reasons, a knowledge base can never entails a non equalizable ECQ.
The following theorem characterizes entailment of equalizable ECQs.

Theorem 2. Let F be a fact and Q be an equalizable ECQ. F, R = Q if and only if there exists F' an R-derivation
of F such that F' = Q (i.e. Q E-maps to F').

Proof. The usual version of that theorem states that F,R | @ (where @ is a CQ) iff @ maps to the (possibly
infinite) fact built from the union of all facts created along a complete sequence of rule applications (complete
meaning that all possible rule applications have been done at some time). Let us call F* this fact. Since any
derivation F' is included in F*, then @) maps to F* whenever (Q maps to F'. Conversely, let us number the atoms of
F* according to their appearance in the sequence of rule applications. If 7 maps @ to F*, w(Q) is a finite subset
of F*, admitting an element with greater numbering N. All these elements will be created in a (finite)derivation
using at most N rule applications. Then the homomorphism from ) to F* is an homomorphism from ) to that
derivation.

We conclude for equalizable ECQs by using proposition 4. O

Since rules can simulate Turing Machines, ECQ-DEDUCTION is an undecidable problem (even with a single
rule and a vocabulary restricted to a single binary predicate). More precisely, the problem is semi-decidable: if we
build our derivation in a fair way (for instance with a breadth-first ordering of rule applications, that will not miss
any one of them) and test for a mapping of @ at each step, our algorithm will stop whenever K = Q. When there
is no deduction, however, nothing ensures that the algorithm will halt.

To improve the chances of reaching a complete derivation, improvements have been added to the algorithm, by
simplifying the fact after each rule application and thus trying to avoid infinite redundant parts. The restricted
chase tries to fold the added conclusion to the previous fact after each rule application. The core chase computes
the minimal equivalent fact after each rule application: though the simplification is optimal, the overhead cost is
tremendous.

Finally, an important research effort has been dedicated to identifying decidable, yet expressive, subclasses of
the CQ-DEDUCTION problem. Among them, finite expansion sets describe those for which a forward chaining
algorithm halts. The reader can refer to [3] for a zoology of those decidable subclasses.

1.3 Backward chaining
Another method to determine if @ is entailed by (F,R) is to rewrite the query until we find a query that is entailed

by F. We rewrite () into a query that, when combined with R, entails Q). That is the backward chaining.

Rewriting of a query Given a query @) and a rule R, we can rewrite ) according to R if there is a part of Q
that can be proven by an application of R. We thus produce a query composed of the rule hypothesis and of the
part of () not proven by the rule. To formalize this rewriting, the notion of piece-unifier is needed.



Definition 14 (Piece). Let Q be an ECQ and S C wvar(F') a separator of Q). A piece of Q according to S is a
minimal non-empty subset Q' of Q such that if an atom of Q" (including equality atoms) contains a variable X that
is mot in S, then every atom of Q containing X is also in Q.

Example 6. The pieces of Qo = {p(U,V),q(V,U),p(W,a),r(U, W)} according to {U} are {p(U,V),q(V,U)} and
{r(U,W),p(W,a)}; and the pieces of Qo according to {U,W} are {p(U,V),q(V,U)},{r(U,W)} and {p(W,a)}.

The pieces of Q1 = {p(U,V), ¢(V,U),p(W,a),r(U,W),U = W} according to {U} are {p(U,V),q(V,U)} and
{r(U,W),p(W,a),U = W}, and the pieces of Q1 according to {U, W} are {p(U,V),q(V,U)}, {r(U,W)}, {p(W,a)}
and {U =W}.

Definition 15 (Cutpoints). Let R = (H,C) be a rule. The cutpoints of R are either frontier variables or constants
of C, noted cutp(R) := fr(R) U const(C).

We can now introduce the notion of a piece-unifier, or unifier. Intuitively, a unifier defines the way some part
of a query can be proven by a rule application. Since non equalizable ECQs will never be proven, whatever the
rule applications involved, we will only be interested here in unifying equalizable ECQs.

Definition 16 (Piece-unifier). Let Q) be an equalizable ECQ) and R = (H,C') be a rule. A unifier of Q with R is a
tuple p = (T, Q', or, mQ) where:

e Ty is a (possibly empty) subset of var(Q), thus defining pieces of Q;
e () is the reunion of one or more pieces of Q according to Tg;
o op is a substitution of fr(R) by cutp(R) U const(Q');

o wg is an E-homomorphism from Q' to or(C) such that for all t € Tg N var(Q'), there exists t' € cutp(R)
with mg(t) = or(t');

Analysis of the definition @’ is the part of ) that the rule R will be able to prove, o is the specialization,
i.e. it is the substitution that will transform the rule R into another rule R’, better suited to the shape of @', and
of course satisfying R = R'.

Finally, m¢ is the homomorphism that shows how @' is deductible from the rule application. The first condition
that comes with it is what is interesting though. Basically, to make pieces according to Ty means that you only
allow atoms to be separated at variables of Tg, atoms that are linked another way must be "glued" in the same
piece. The condition on 7 forces that variables of Ty that are separating the pieces of @' from other pieces (all
t € ToNvar(Q')) must be sent on the specialization of a cutpoint of R, or equivalently on a cutpoint of R’. Remark
that the cutpoints of a rule are precisely the terms of its conclusion that are not existantially quantified. The idea
behind that condition is to make sure that all variables of @ that will be sent on existantially quantified variables
must act as "glue" for the atoms of ). It is necessary because for example, to prove IV[p(U, V) A q(V,U)], we
can’t separate these two atoms since there is the condition that the V is the same in both.

Definition 17 (E-rewriting of a query). Now that we have formalized the notion of unifier, we can finally formalize
the notion of rewriting that was introduced at the start of this section.

Let Q be an ECQ, R = (H,C) a rule and p = (T, Q',0r,mq) a unifier of Q with R. An E-rewriting of Q
according to R and u produces an ECQ:

B7(Q. R p) = (mg" ) oor(H)UQ\QUE

where E is a set of equality predicates such that when there are several antecedents by mg, we choose one for 7'['6_21
and map all the others to the chosen one with equality predicates (E is the choice of a representative for each
equivalence class for the relation X € var(Q) ~Y € var(Q) < mg(X) =m((Y)).

The E-rewriting is a step in the process of obtaining the rewriting, that will be necessary when dealing with
more complex queries.

Definition 18 (Rewriting of a query). Let Q be an ECQ, R = (H,C) a rule and p = (T, Q',0r,mq) a unifier of
Q@ with R. A rewriting of @ according to R and p is an equalization of 5=(Q, R, 1).



Example 7. Let R=h(X,Y,Z,S) = p(X,T)ANq(T,Y)Ap(Z,S) and Qo = {p(U,V),q(V,U),p(W,a),r(U,W)}.

Let us find a piece-unifier of Qo with R that will prove p(U, V') in Qo. We can see that we can send p(U, V') to
p(X,T) or p(Z,9).

o We will first try to send it to p(Z,S). We need to have U — Z andV + S. Both Z and S are frontier variables,
so we don’t need to glue any atom to p(U,V'): thus we can just let Tg = {U,V'}. We didn’t need to specialize the
rule, so op = td. The unifier is complete, and it produces the fact {h(Xo, Yo, U,V),q(V,U),p(W,a),r(U, W)}.

o We will then try to send p(U, V') to p(X,T). We need to have U — X and V — T. X is a frontier variable,
but T is not, so we need to take all atoms in Q that contain V, i.e. q(V,U). But now that q¢(V,U) is also in Q’', we
need to send it in the conclusion of R. In this case the only choice is to send it to ¢(T,Y), so we need V +— T and
U—Y. VT was already chosen, so there is no problem. But we already had U — X. So we need to gather
X and Y wusing the specialization, for example with og: Y — X. Since Y is a frontier variable, we can stop here
the expansion of p(U, V') into a piece. To separate these two atoms from the rest of @, we can cut at U, and let
To ={U}. This unifier produces the fact {h(U,U, Zy, So),p(W,a),r(U, W)}.

e However, instead of stopping the expansion of p(U, V') to only {p(U, V), q(V,U)}, we can try to also incorporate
p(W,a) in Q. We need W +— Z, and we need to specialize S to a. Since we can’t prove r(U, W) with R, we need
to separate these two atoms, so by putting W in Ty, and we can since it is sent to Z, a frontier variable (and so
satisfies the fourth condition). This unifier produces the fact {h(U,U,W,a),r(U, W)}.

In these examples, we didn’t need to equalize variables since mg was always injective. Let us show an example
where it is needed, with R = h(X) — p(X, X) and Qo = {p(U,V),q(V,U)}. We want to send p(U,V') to p(X, X),
so weneed U - X and V — X. X is a frontier variable so {p(U,V)} is a piece. We didn’t need to specialize the
rule so or = id. Since mg maps both U and V' to X, we need to choose the value of Wél(X), for example U. The
unifier is complete and the equalizable-rewriting produces the equalizable query ({h(U)}U{q(V,U)},{(V,U)}). The
rewriting produces the equalized of this, so the query {h(U),q(U,U)}.

As announced in the introduction of this section, we have the following proposition:

Proposition 6. Let F' and Q be a fact and an ECQ, and R be a rule. Then QQ E-maps to an application of R to
F if and only if Q E-maps to F or there is an E-rewriting of Q according to R that E-maps to F (if and only if
there is a rewriting of Q according to R that maps to F).

Like with the application of rules, we can define the equivalent of the derivation for the backward chaining:

Definition 19 (Rewriting sequence). Let Q and Q' be two ECQs and R a set of rules. We say that Q' is an
R-E-rewriting of Q if there exists a finite sequence Q = Qo,...,Qr = Q' such that for all 0 < i < k — 1, there
exists a rule R; and a unifier p; of Q; with R; such that Q; 11 = B~ (Q4, R, ;).

With a quick recursion, we obtain the following theorem:

Theorem 3. Let F' and Q be a fact and an ECQ and R be a set of rules. Then Q E-maps to an R-derivation of
F if and only if there is an R-E-rewriting of Q that E-maps to F'. With the theorem 2, we can obtain that:
F,R = Q if and only if there is an R-E-rewriting of Q that E-maps to F.

On an algorithmic standpoint, we want to build rewritings of @) until we find one that E-maps to F', but to
prevent the considered set of rewritings to get to big, we only keep in it the most general rewritings (i.e. we prune
the ones that are entailed by another rewriting).

2 Rewritings of disjunctive queries

2.1 Interest of the problem

As we have seen in the previous section, the algorithmic way to use the rewritings is to start from the original
query and apply rewritings to the queries in the set of already found rewritings. The fact that we do this search
breadth-first means that we need to keep the queries that are rewritten. For example, if a query @) can be separated
in Q1 A Q2 with Q2 being the part rewritten into @3 according to a rule, we keep both the original query (Q1 A Q2)
and the rewritten one (Q1 A @3). This means that at each step of rewriting, the size of the set of queries can up
to double, leading to a very large set of queries to test (we can see this set of queries as an union of conjuncive



queries — an UCQ). Since these queries come from the mechanism described above, we can think about factoring
that UCQ to reduce its size, but it would be too time-expensive.

But since there is an intuitive factoring available in the rewriting process, we want to try to make use of it to
control the size of the set during the rewriting rather than after.

This factoring means that the rewriting process will have to be able to take as input queries that are in
disjunction-conjunction shape, and this will be the object of what follows.

2.2 Conjunctive-Disjunctive Queries

2.2.1 Syntax

Definition 20 (ECDQ). As introduced, we define a Conjunctive-Disjunctive Query with equality (or ECDQ): it
is a (finite) tree where the nodes are conjuncts. ECDQs without equality are the CDQs. To represent trees, we use

the prefix notation: (root, subtreey,...,subtree,), where nodes with no subtrees are leaves. We denote by ECDQ
the set of all the ECDQs and CDQ the set of all the CDQs.

Example 8. Qy = (Q1,Q2, (@3, Q5,Q6), Q1) where Q1 = {p(X,Y)}, Q2 = {¢(Y.2)}, Q3 = {p(Y,T),r(Y, X)},
Qs ={s(X,Y)}, Qs ={q(X,T)} and Qs = {r(X,Z)} is a CDQ. It is represented below:

p(X, Y)

a(Y, z) p(Y, T), r(Y, X) s(X,Y)
X, T) r(X, Z)

2.2.2 Semantic

Definition 21 (Formula of an ECDQ). Let Q be an ECDQ, and T a set of variables. The formula of Q according
to T, noted ¢(Q,T), is defined by induction as follows:

e 0(Q,T)= X Q if Q is a conjunct (a leaf);

Xevar(Q)\T
e 0(Q,T)= Xev%lg((R)\T[R A [IS\Z/Sngb(Si, T Uwar(R))]] if Q = (R, S1,...,5).

The semantic of an ECDQ is its formula according to () (¢(Q, ), also simply noted ¢(Q)).



Example 9. Let us build the formula of Qo according to () step by step:

Qo = (Q1,Q2,(Q3,Q5,Q6),Q4) s0

#(Qo,0) = 3X  [Q1 N [p(Q2,var(Q1)) V ¢((Q3, @5, Qs), var(Q1)) V ¢(Q4, var(Q1))]]

Xevar(Q1)

=3XY[Q1 A [p(Q2,{X. Y} V o((Q3,Q5,Q6), {X, Y}) V ¢(Qu, { X, Y })]]
QQ = {Q(K Z)} S0 ¢(Q27 {X7Y}) = Equ(Y7 Z)
Qi = {s(X,Y)} s0 $(Qus, {X,Y}) = 5(X,Y)

?((Q3,Q5,Q6), { X, Y}) = 3X Q3 A [9(Q5,{X, Y} Uwvar(Qs3)) V ¢(Qs, { X, Y} U var(Q3))]]

Xevar(Q3)\{X,Y}

= JX Qs A [d(Q5,{X, Y, T}) V é(Qs, { X, Y, T})]]

CXe[X,YTIXY}

= 3T[Qs A [$(Q5,{X, Y, T}) V $(Qs, {X, Y, T})]]
Qs = {a(X, T} s0 ¢(Qs, {X, Y, T}) = ¢(X, T)
Qo = {r(X, 2)} s0 ¢(Q6, {X,Y,T}) = 3Zr(X, Z)
We have thus ¢((Q3, Qs,Qs), {X,Y}) = IT[p(Y,T) Ar(Y,X) A[g(X.T) v 3Zr(X, Z)]]

Finally, $(Qo,0) = IXIV[p(X,Y) A [3Zq(Y, Z)
VIT(Y,T) Ar(Y, X) Alg(X,T) v 3Zr(X, Z)|]
Vv s(X,Y)]]

Remark. Two occurences of the same variable that do not have a parental link in the ECDQ (in this case Z in
Q2 and Qg) are independant, we can rename one without changing the semantic of the ECDQ.

2.2.3 ECDQ flattening

To link ECDQs with UCQs (or rather with UECQs), we rearrange a ECDQ (of course while retaining an equivalent
semantic) until we produce an UECQ. Let us examine a rearranging of an ECDQ such that the semantic is
unchanged modulo an equivalence:

Definition 22 (Flattening of an ECDQ). Let Q be an ECDQ. The flattening of Q, noted Flat(Q) is defined by

mduction:

e Flat(Q) = Q if Q is a conjunct (a leaf);

e Flat(Q) = (0,51,...,5)) if Q = (R, S1,...,Sn) with R # 0, where S, is obtained by joining R to the root
of Si. Formally, if S; = (R, Si1,---,Sin,;), Si = (RUR;, Sin,...,Sin;) (with of course n; = 0 if S; is a

conjunct).
o Flat(Q) = (0, Flat(S1),...,Flat(Sy)) if @ = (0,51,...,5n)

When we consecutively apply the flattening process to an ECDQ, we obtain an ECDQ where all internal nodes
are empty, which we can see as an UECQ.

Definition 23 (Complete flattening). Let @ be an ECDQ. The complete flattening of @, noted Flat*(Q), is the
result of consecutive applications of the Flat operator to QQ until all internal nodes are empty. It is a finite process
(bounded by the height of Q, so Flat*(Q) = Flat'®9(Q)(Q)).
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Since the result of a complete flattening is a tree where all internal nodes are empty, when we compute its
semantic, we obtain a simple overlapping of conjunctions of conjuncts, which is equivalent to a conjunction of
conjuncts, i.e. a tree of height 1 with an empty root whose sons are the leaves of the complete flattening. That
tree of height 1 is trivially equivalent to an UECQ.

Example 10. 7o illustrate the complete flattening, we will apply it on Qp:
Flat(Qp) is:
0

p(X, Y), (Y, Z) p(X,Y), p(Y, T), r(Y, X) p(X,Y) s(X,Y)

X, T) r(X, Z)
Flat(Flat(Qp)) is:
0

p(X, Y), q(Y, Z) 0 p(X, Y), s(X, Y)

p(X, Y), p(Y, T), r(Y, X), (X, T) p(X,Y) p(Y, T), r(Y, X), r(X, Z)
Thus Flat*(Qp) = Flat?(Qp).

Proposition 7. Let Q be an ECDQ. Then ¢(Q) = ¢(Flat(Q)).
Proof. The proof is done by induction.
e If Q is a conjunct, Flat(Q) = @ so the result is trivial.

e IfQ=(R#0,51,...,5), Flat(Q) = (0, 51,...,5],) with the S/ as described above. We have thus:

»(Q) = Xe%lrar(R)[R A [1<\/< #(S;, var(R))]] and
BFLat(Q) = V. 3(SI)

First direction Let I be an interpretation in which ¢(Q) is true. Then there exists A an affectation of
var(R) such that I, A = R and there is 1 < ¢ < n such that I, A = ¢(S;, var(R)).

Let us note S; = (R;, Si1,-..,Sin,;). We have thus:
S;,var(R)) = 1X R; A Si j,var(R) Uvar(R;))]].
oSvar(R) = | BX | IRAL Vol var(R) Uvar(R)]
Since I, A\ = ¢(S;,var(R)), we can extend X to an affectation of var(R) U var(R;) X such that I, N = R;
and I, N =/ ¢(Sij,var(R)Uvar(R;)) = \ ¢(S;;,var(RURy)).

1<j<n; 1<j<n;
From the notation of S;, we have S; = (RUR;, Si1,...,Sin,)-



S0 () = 3X  RURIAL V. o(Sijvar(RUR))].

We have I, = Rand I, N = R;so I,N = (RUR;),and I, N =/ ¢(S;;,var(RUR;)). Since X' is an
1<j<n;
affectation of var(R) U var(R;) = var(RU R;), we have proven I = ¢(S), so I = ¢(Flat(Q)).

Second direction Let I be an interpretation in which ¢(Flat(Q)) is true. Then there exists 1 < i < n
such that I = ¢(S]).

Let us note S; = (R;,Si1,...,Sin,). We have thus S, = (RUR;,Si1,...,Sin,)-

So ¢(S)) = =94 RUR;) A S; i,var(RU R;))]].
08D = 3K RURIAL V. 0lSiy vax(RUR)]
So there exists A an affectation of var(RU R;) such that I, A\ = RUR; and I, A = \/ ¢(S;j,var(RUR;)).

1<5<n;
Let us note X the restriction of A to var(R). Then we have I, X' = R. We still need to prove that
I, N = ¢(S;,var(R)).

(S, var(R)) = Xevar(%f)(\var(R) [R; A [1S>/§ni¢(5i7j, var(R) Uvar(R;))]].

By extending A to A, an affectation of var(R) Uvar(R;), we have [, A\ |E R; and I,\ E \/ #(S; 5, var(RU
1<5<n,
R))= '\ ¢(Si;,var(R)Uvar(R;)).

1<j<n;

We have I, A = R; and I,A = \/ ¢(S;;,var(R) Uvar(R;)) so I, X [= ¢(S;,var(R)).

1<j<n;

We have I, N = R and I, N |= ¢(S;,var(R)) and X is an affectation of var(R), so we have proven I = ¢(Q).
Thus ¢(Q) = ¢(Flat(Q)).

o IfQ=(0,51,...,5,), Flat(Q) = (0,Flat(S1),...,Flat(S,)). We have thus:
Q)= V ¢(5) and ¢(Flat(Q)) = V ¢(Flat(S5i)).

1<i<n 1<i<n

With the induction hypothesis, we have that Vi € [1;n]*, ¢(S;) = ¢(Flat(S;)), so ¢(Q) = ¢(Flat(Q)).

Corollary 1. Let Q be an ECDQ. Then ¢(Q) = ¢(Flat*(Q)).

2.3 ECD-homomorphisms

Definition 24 (ECD-homomorphism). Let Q be an ECDQ and F be a fact. Let P be a complete path of @ (we
define by that a path in Q starting at its root and ending at one of its leaves). We identify a complete path of Q to
an ECQ by considering the reunion of the conjuncts at its nodes.

An ECD-homomorphism from @ to F' is a E-homomorphism from a complete path of Q to F.

If there exists an ECD-homomorphism from an ECDQ to a fact F, we say that that ECDQ ECD-maps to F'.

Remark. Let Q be an ECQ and F be a fact. We can see Q as an ECDQ that is simply a leaf. An ECD-
homomorphism from @Q to F is exactly an E-homomorphism from @ to F and vice versa.

Remark. We can notice that for an ECDQ Q, a leaf of Flat*(Q) is equivalent to a complete path of Q. This
proves the following property (but there is an alternative proof in annez).

Proposition 8. Let Q be an ECDQ and F be a fact. Then Q@ ECD-maps to F if and only if Flat*(Q) ECD-maps
to F.

Theorem 4 (ECD-homomorphism). Let F be a fact and Q be an ECDQ. Then there is an ECD-homomorphism
from Q to F if and only if F = ¢(Q).

Proof. We proceed by consecutive equivalences:
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e We begin by noticing that with corollary 1, we have F' = ¢(Q) <= F [ ¢(Flat*(Q)). Indeed, for each
interpretation I such that I = F, I = ¢(Flat*(Q)) < I E ¢(Q).

e Since we can see Flat*(Q) as an UECQ, we can use theorem 1 to interpret F' = ¢(Flat*(Q)) as "there exists
an E-homomorphism from an ECQ of Flat*(Q) to F". But that ECQ is simply a leaf of Flat*(Q), so with

the previous remark, it is also a complete path of ). Thus that homomorphism is an ECD-homomorphism
from @ to F. This means that F' = Flat*(Q) if and only if @ ECD-maps to F.

O

Theorem 5. We can give the equivalent of theorem 2 for ECDQs. Let @ be an ECDQ), F be a fact and R be a set
of rules. Then F,R = ¢(Q) if and only if there is an R-derivation F' of F such that Q@ ECD-maps to F'.

Proof. The proof follows the same structure as the one for theorem 4

e FREGQ) < FR ¢(Flat*(Q))

e Since Flat*(Q) is an UECQ, with theorem 2 we have F\, R | ¢(Flat*(Q)) if and only if there exists F’ an
R-derivation of F' and C' an ECQ of Flat*(Q) such that C E-maps to F’. That C is a leaf of Flat*(Q) so a
complete path of @, so F, R = ¢(Flat*(Q)) if and only if there exists F’ an R-derivation of F' such that @
ECD-maps to F”.

O

2.4 ECD-rewritings

We want to define a mechanism to rewrite ECDQs into ECDQs that will have the same results that E-rewriting
has.

2.4.1 Correct ECD-rewriters

Definition 25 (Correct ECD-rewriter). Let Q be a set of ECDQs and R a set of rules. A correct ECD-rewriter
of Q according to R is a function CD-f~ from Q x R to P(Q) that upholds the two following properties:

(CECDR i) For any fact F', rule R € R applicable to F' and ECDQ Q € Q, if @ ECD-maps to an application of R to F
then @ ECD-maps to F or there is Q' € CD-5=(Q, R) that ECD-maps to F.

(CECDR ii) For any fact F, rule R € R and ECDQ Q € Q, if there is Q' € CD-=(Q, R) that ECD-maps to F, then Q
ECD-maps to F or to an application of R to F.

For Q € Q and R € R, the elements of CD-B(Q, R)= are called ECD-rewritings of @ according to R. For
Q€ Qand R' CR, a R'-ECD-rewriting of Q is an ECDQ obtained by a sequence of ECD-rewritings according to
rules of R’ that starts at Q.

The two (CECDR) properties allow the following theorem on correct ECD-rewriters:

Theorem 6. Let R be a set of rules, Q a set of ECDQs and CD- a correct ECD-rewriter of Q according to R.
Then for any fact F, set of rules R' C R and ECDQ Q € Q, Q@ ECD-maps to an R'-derivation of F if and only if
there is a R'-ECD-rewriting of Q that ECD-maps to F.

Proof. The proof is done with a recursion for both directions.
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First direction Let us prove that P(n): "If Q@ ECD-maps to an R’-derivation of F' of length n, then there is a
R’-ECD-rewriting of @ that ECD-maps to F'" is true for n € N.

e Base case: if n = 0, suppose that @ ECD-maps to F' (any R’-derivation of F' of length 0 is F'). Then since
Q is a R’-ECD-rewriting of @) that maps to F, we have P(0).

e Heredity: let n € N such that P(n). Suppose that Q ECD-maps to an R’-derivation of F of length n + 1.
Then there is F/ an immediate derivation of F' according to a rule R € R’ such that Q ECD-maps to an
R'-derivation of F’ of length n. Since we have P(n), we know that there is Q' a R’-ECD-rewriting of @ that
ECD-maps to F’.

With the property (CECDR i), we have that either @' ECD-maps to F or there is Q" € CD-5=(Q’, R) that
ECD-maps to F. Since R € R’ and Q' is a R’-ECD-rewriting of @, Q" is als() R’-ECD-rewriting of Q.

We have proven P(n + 1), so P(n) is true for all n.

Second direction Let us prove that P’(n): "If there is a R'-ECD-rewriting of @ of length n that ECD-maps
to F, then Q ECD-maps to an R/-derivation of F"" is true for n € N.

e Base case: if n = 0, suppose that Q ECD-maps to F' (any R'-ECD-rewriting of @ of length 0 is Q). Then
since F' is an R'-derivation of F';  ECD-maps to an R’-derivation of F', so P’'(0).

e Heredity: let n € N such that P(n). Suppose that there is a R’-ECD-rewriting of @ of length n + 1 that
ECD-maps to F. Then there is Q' an ECD-rewriting of @ according to a rule R € R’ such that there is a
R'-ECD-rewriting of @ of length n that ECD-maps to F. Since we have P’(n), then @' ECD-maps to F’ an
R’-derivation of F.

With the property (CECDR ii), we have that @ ECD-maps to F’ or to F” an application of R to F’. Since
R € R’ and F’ is a R/-derivation of F, F" is also a R’-derivation of F.

We have proven P’(n + 1), so P'(n) is true for all n.

The goal will be to find correct ECD-rewriters of ECDQ according to V3-R.

Remark. With proposition 6 and the remark that for ECQs, ECD-homomorphisms and E-homomorphisms are the
same, we have that B is a correct ECD-rewriter of ECQ according to V3-R where B is defined as follows:

B: £CQ x V3I-R — P(ECQ)
(Q,R) — {B7(Q, R, p)|p is a unifier of Q with R}

2.4.2 Construction of a CECDR of the ECDQs according to the V3-rules

We want to build CD-8= a correct ECD-rewriter of ECDQ according to V3-R. Let us begin by defining CD-3~ on
ECQ X VI-R.
Let Q,R be in ECQ x V3-R. For each p = (T, Q',0r, mg) unifier of @ with R, we build an ECDQ CD-

B=(Q,R,pn) = (Q\Q,57(Q, R, 1n),Q"), depicted below:
Q\Q

(ﬂc—gl)safe o UR(H) UE Ql

We then define CD-=(Q, R) = {CD-5=(Q, R, it)|p is a unifier of @ with R}. We can prove (CECDR i) and
(CECDR ii) for that ECD-rewriter on this domain restriction:

Proof. Let F be a fact, R a rule applicable to F' and @ an ECQ.
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(CECDR i) Suppose that @ ECD-maps to an application of R to F. Since @ is an ECQ, it E-maps to that
application of R to F'. According to proposition 6, either ) E-maps to F' or there is a E-rewriting of () according
to R and p that E-maps to F', with p an unifier of Q with R. In the first case, we have (Q ECD-maps to F' since
@ is an ECQ. In the second case, for that u = (T, Q’,0r, mQ), there is CD-5=(Q, R, ) € CD-=(Q, R) that
ECD-maps to F. Indeed, one of its complete paths is Q \ Q" U (Wél)safe ocor(H)UE = p=(Q, R, 1), which is the
E-rewriting that E-maps to F' that the proposition 6 produced.

(CECDR ii) Suppose that there is Q" € CD-=(Q, R) that ECD-maps to F. Since Q" € CD-=(Q, R), there
exists p = (T, @', or, Q) an unifier of Q with R such that Q' = CD-8=(Q, R, ) = (Q \ @, (Wél)safe oor(H)U
E,Q"). Q@ ECD-maps to F, so we have two cases:

e Q\Q'U (Wél)safe oor(H)UE E-maps to F. Then we have f=(Q, R, 1) that E-maps to F' so with proposition
6, @ E-maps to an application of R to F.
e Q\Q UQ E-maps to F. Then Q E-maps to F.
In both cases, since ) is an ECQ, (Q ECD-maps to F or to an application of R to F'. O

Let us now define CD-~ on £ECDQ x V3-R. For that we need the notion of CD-unifier:

Definition 26 (CD-unifier). Let Q, R be in ECDQ x V3-R. A CD-unifier of Q with R is a unifier of a complete
path of Q with R.

Definition 27 (ECD-rewriting of an ECDQ), part I). Now that we have the notion of CD-unifier we can define an
ECD-rewriting. Let Q, R be in ECDQ x V3-R and p = (Tp, P',or,mp) a CD-unifier of Q with R (P is a complete
path of Q). We first consider the case where the rewritten part of @, P’ is contained within a single node, Qq. In
this case, the ECD-rewriting of @) according to R and p is an ECDQ constructed as follows:

e We separate Qq by deleting P’ from its root and inserting it a single son whose root is P’ and whose sons are
its previous sons. After that, we have an ECDQ equivalent to Q) that has a single node containing all and
exactly P'.

e We can now include the rewriting by giving to P’ a brother whose root is (7g) L oor(H)UE and whose sons
are a copy of the sons of P’.

Definition 28 (ECD-rewriting of an ECDQ), part II). In the general case, we transform @Q to get to the first case:

e Along the path P, we identify the first and last nodes (noted Qstart and Qeng) whose intersection with P’ is
not empty.

e We build from Q a new, equivalent ECDQ by flattening the parts of P’ from the subtree whose root 1 Qstart
along P down to Qeng. That is to say, we apply a partial Flat operator (a Flat that instead of lowering the
whole root, only lowers the part of the root that is in P') on the nodes of P between Qsiart (included) and
Qend (not included), from top to bottom.

e Once this has been done, we have an ECDQ equivalent to Q where P’ (the part to be rewritten) is gathered
in a single node (Qend)-

3 Algorithms

3.1 Evaluation (ECD-Homomorphisms enumeration)

Algorithm 1: Get, Define, In
def Get(h,U,t) :
| return h[Find(U, t)]
def Define(h,U,t,v) :
| A[Find(U,t)] = v
def In(h,U,t) :
| return Find(U,t) € h
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Algorithm 2: VarNec-ECDQ(Q)

Data: An ECDQ Q = (C,Q1,...,Qn)
Result: @ pointed with the set of joint variables for each conjunct.

Algorithm 3: ECDQ-Answers(Q, U, AV, F,V, H, hq, hj)

Data: A pointed ECDQ @ = ((C,JV), X, Q1,...,Qx), a UnionFind structure U, a set of Answer Variables
AV, a fact F' on a vocabulary V, a SearchTree structure H, a partial homomorphism (hg, ;)
separated between the answer variables and the joint variables.

Result: Add to H the enumeration of the possible expansions of (hq, hj) to an ECD-homomorphism from

Q@ to F. Furthermore, if h, is total (defines all answer variables), returns True if and only if there
we find a proof for (he, hj) in Q.
Cs, Ce = Split(C)
if not UpdateHom(Merge(hq, hj),U, C.) then
| return False

UpdateU(Merge(hq, hj), U, Ce)

if AllMarked(Cs) then

if n ==0 then

AddH(H, hg)

return True

else

if h, not total then

for Q' € Q.sons do

| ECDQ-Answers(Q',U, AV, F,V, H, hq, h;)
else
if InH(H, h,) then
| return True
for Q' € Q.sons do
if ECDQ-Answers(Q',U, AV, F,V,H, hqy, h;) then

| return True
return False

else

a = ChooseAndMark(Cy5)

if h, not total then

for (hg, b)) € Filter(F,V, a, hq, h;, U, AV, JV) do
| ECDQ-Answers(Q, U, AV, F,V, H, hy,, h;)

Unmark(a)

else

if InH(H, h,) then

Unmark(a)

return True
for (hl,, 1)) € Filter(F,V,a, hq, hj, U, AV, JV) do

a’ "y
if ECDQ-Answers(Q,U, AV, F,V, H, hy,, h’;) then
Unmark(a)
return True
Unmark(a)

return Fulse

Algorithm 4: Filter(F,V,a, hq, h;j,U, AV, JV)

Data: A fact F' on a vocabulary V, an standard atom a, a partial homomorphism (hg, h;), a UnionFind
structure U, a set of Answer Variables AV and of Joint Variables JV
Result: An enumeration of the (hg, h’;) that are an extension (that agrees with U) from (hg, h;) to a partial
homomorphism from a to an standard atom of F or V
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Algorithm 5: UpdateHom(h, U, E)

Data: A partial homomorphism h, a UnionFind structure U and a set of equality predicates F
Result: For each equality predicates in E where at least one term is known by h, adds to A the other term
(or breaks if incompatible). If it breaks, it returns False, otherwise returns True.
for a € I do
(t=t)=a
if In(h,U,t) A In(h,U,t") then
if Get(h,U,t)! = Get(h,U,t') then
| return False
else

if In(h,U,t) then
| Define(h, U, ', Get(h, U, t))
else

if In(h,U,t') then

| Define(h, U, t, Get(h, U, t"))
return True

Algorithm 6: UpdateU(h, U, E)

Data: A partial homomorphism h, a UnionFind structure U and a set of equality predicates F.
Result: Updates the UnionFind with every equality predicates where no term is known by h.
for a € F do
(t=t)=a
if not In(h,U,t)A not In(h,U,t') then

| Union(U, t,t')

3.2 Rewriting (CD-Unifiers enumeration)
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Algorithm 7: ECDQ-Unifiers(Q, U, R,V, h,0, X, F,EL)

Data: An ECDQ @ = (C,Q1,-..,Qy), a UnionFind structure U, a rule R = (B, H, fr), a vocabulary V, a
partial homomorphism h, a specialization o, X the set of variables sent by h outside fr, a set of
variables that must be sent to fr F and a set of atoms to be evaluated later £L.

Result: Enumerates the minimal unificators created from (h, o) according to U between @ (plus the atoms

of ££) and R that assign variables of F only to fr.

Cs, C. = Split(C)

if not UpdateHom(h,U, C.) then

| return
UpdateU(h, U, Ce)
if AllMarked(Cs) then
if n == 0 then

| yield (h,0)
else

for Q' € Q.sons do
| yield from ECDQ-Unifiers(Q',U,R,V, h,o,X,F,EL)

else
a = ChooseAndMark(Cy5)
if h = () then
// We skip this atom
U’ = Copy(U)
F' = Copy(F)Uvar(a) // It means we can’t assign variables from this atom to non-frontier variables
yield from ECDQ-Unifiers(Q,U’, R,V,0,0,0,F',0)
// We begin the piece with this atom
for (W,o',X") € Filter’(H,V,a,0,0,U,(,0) do
if X’ =() then
yield (h',0’) // If the first atom of the piece does not send any variable outside the frontier,

the piece is complete
else
U’ = Copy(U)
F' = Copy(F)
yield from ECDQ-Unifiers(Q,U’, R,V, 1, o', X', F' ()

else
if X Nwar(a) =0 then
yield from ECDQ-Unifiers(Q,U, R,V,h,o, X, F,ELU{a}) // If we have no immediate need to
take the atom, it is sent to the "evaluated later" set
Ise
// Here is the tricky part: we need to evaluate this atom because it contains a variable sent
outside the frontier. Since evaluating an atom may send additional variables outside the
frontier, we need to recursively search the "evaluated later" set and evaluate the atoms that
have to. That is what ECDQ-Evaluator should do. Importantly, there is not a unique
separation in £L£ between the atoms to evaluate and the others. Indeed, depending on the
evaluation of an atom, another may or may not need to be evaluated itself.
for (W,o',X') € Filter(H,V,a,h,o,U, X, F) do
EN' EL = Separate(EL, X') // Separates EL into a set of atoms to be "evaluated now"
(because they contain a variable of X”) and the others.
U’ = Copy(U)
F' = Copy(F)
yield from ECDQ-Evaluator(EN',ELH,V,h',¢', X UX" | F',Q,U", R)
Unmark(a)

]
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Algorithm 8: Filter'(H, fr,V,a,h,o,U, X, F)
Data: A conjunct H, a set of variables fr, a vocabulary V, an atom a, a partial homomorphism h, a
specialization o, a UnionFind structure U and two sets of variables X and F
Result: An enumeration of the (h',0’, X’) where (h/,0’) is an extension (that agrees with U) from (h, o) to
a partial homomorphism from a to an standard atom of H or V; this homomorphism must not
send a variable of F to a variable outside fr and X’ will record any new variable (that is, not in
X) sent outside fr.

Algorithm 9: ECDQ-Evaluator(Q,U, R, H,V, h,0, X, F,EN,EL)

Data: An ECDQ @ = (C,Q1,...,Qy), a UnionFind structure U, a rule R = (B, H, fr), a vocabulary V, a
partial homomorphism h, a specialization o, X’ the set of variables sent by h outside fr, a set of
variables that must be sent to fr F, a set of atoms to be evaluated now EN and a set of atoms to be
evaluated later £L.

Result: Has the same function as ECDQ-Unifier, but restricted to evaluating everything necessary from £L.

Remaining work

Implementation of ECDQ-Evaluator

This function will proceed by separating £L in two sets while EN is not empty.

Implementation of ECD-rewriting

We have implemented the search of unifiers, but there is still a need to decorate the algorithm to extract more
information (mostly which nodes of the tree are visited, and what atoms were evaluated); and to make another
algorithm that creates the rewrited ECDQ.

Unification of the two algorithms
The algorithm for Unifiers presents a particuliar tree traversal, provided with a way to evaluate things on a later
time. It would be interesting to use this method for the Answers algorithm.

Answer variables

As it is written here, we only focus on boolean queries, but we have begun to consider allowing users to specify
answer variables (it is visible in the algorithms). However, doing so would make certain rewritings impossible, so
precautions should be taken when implementing ECD-rewriting.
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Annex

Alternative proof of proposition 8

Proof. We will prove this by induction.
e If @ is an ECQ, then Flat(Q) = @ so the result is trivial.

e IfQ=(R#0,51,...,5,), Flat(Q) = (0,57,...,5)).
We have that for 1 < i <n, P, = (R,R;,...end...) is a complete path of @ if and only if P/ = (), RU
R;,...end...) is a complete path of Flat(Q), and if they are, they both have the same union of the conjuncts
at their nodes.

Thus P; ECD-maps to F' if and only if P/ ECD-maps to F', and this is true for all 1 <14 < n. Since a complete
path of @ is of the form P; and a complete path of Flat(Q) is of the form P!, we have that @ ECD-maps to
F if and only if Flat(Q) ECD-maps to F.

o IfQ=(0,51,...,5,) with Si1,...,S, for which the property holds, Flat(Q) = (0, Flat(S}),...,Flat(S,)).

We have that for 1 <i <n, P, = (0, root(Flat(S;)),...end...) is a complete path of Flat(Q) if and only if
P! = (root(Flat(S;)),...end...) is a complete path of Flat(S;), and if they are, they both have the same

(2
union of the conjuncts at their nodes.

Thus P; ECD-maps to F' if and only if P/ ECD-maps to F', and this is true for all 1 <14 < n. Since a complete
path of Flat(Q) is of the form P; and a complete path of Flat(S;) is of the form P/, we have that Flat(Q)
ECD-maps to F' if and only if there is a i such that Flat(S;) ECD-maps to F. By induction hypothesis,
Flat(@) ECD-maps to F' if and only if there is a ¢ such that S; ECD-maps to F.

By using the same relation between complete paths of @ and S; (which is the presence/absence of () at the
start), we obtain that @ ECD-maps to F' if and only if there is a ¢ such that S; ECD-maps to F.

With these two results, we have that: Flat(Q) ECD-maps to F' if and only if @ ECD-maps to F.

We only need a basic recursion to have the goal result. O
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