
part4.md 2025-10-31

1 / 4

Query rewriting
© 2025 Jean-François Baget, Carole Beaugeois, Boreal, INRIA

In the previous chapters, we saw how to saturate a fact base with a set of rules, applying them exhaustively so
that any query evaluation automatically considers all consequences of those rules.

In this document, we explore an alternative strategy: query rewriting.

Instead of enriching the fact base, query rewriting expands the query itself using the rules. The result is a new
query – or more precisely, a union of queries – that captures all ways the original question could be answered
given the rule base.

This approach is widely used in ontology-based data access (OBDA) systems because:

It avoids modifying or copying large fact bases.

It can be combined with existing database engines by rewriting the query into SQL.

In some cases, it guarantees termination where saturation would produce an infinite chase.

We will cover the intuition, the DLGP syntax examples, and how rewriting relates to saturation through
equivalence properties.

All code examples shown here can be found in the accompanying Python file: ex4_query_rewriting.py.

Rewriting a query
Saturation is not the only way to take a rule base into account during evaluation. Query rewriting achieves
the same goal, but instead of expanding the fact base, it transforms the query itself to incorporate the rules.

Let us consider now the rule mortal(X) :- human(X)., the query ?(X) :- mortal(X)., and the factbase
human(socrates). Until now, to answer this query in the factbase while taking the rulebase into account, we
used saturation (see ex3):

query.evaluate(factbase.saturate(rulebase)) 

What is rewriting

Query rewriting takes a different approach. Instead of expanding the fact base, it expands the query itself. To
answer "find all mortals", the rewriting algorithm looks at the rules and deduces that finding a human is
enough to conclude that it’s a mortal.

The rewritten query therefore becomes:

“Find all X such that either X is mortal or X is human.”

This produces a union of conjunctive queries (UCQ). The algorithm enriches the original query in place,
generating all equivalent formulations that take the rules into account.

file:///c%3A/Users/baget/Documents/webpage/static/docs/tutopy4g/ex4_query_rewriting.py


part4.md 2025-10-31

2 / 4

Example:

from py4graal import * 
 
rulebase = graal.create_rulebase("mortal(X) :- human(X).") 
query = graal.create_query("?(X) :- mortal(X).") 
 
query.rewrite(rulebase) 
print(query) 

Output:

?(X) :- mortal(X). 
?(X) :- human(X). 

Evaluation with a rewritten query

The key property of rewriting is that it preserves answers:

query.evaluate(factbase.saturate(rulebase))
query.rewrite(rulebase).evaluate(factbase) …return exactly the same results.

Example:

factbase = graal.create_factbase("human(socrates). human(plato). 
human(aristotle).") 
rulebase = graal.create_rulebase("mortal(X) :- human(X).") 
query = graal.create_query("?(X) :- mortal(X).") 
 
query.rewrite(rulebase) 
print(list(query.evaluate(factbase))) 

Output:

[{'X': 'aristotle'}, {'X': 'socrates'}, {'X': 'plato'}] 

Terminations of rewriting vs saturation
Rewriting and saturation don’t always behave the same way regarding termination. Some rule bases make one
process loop forever while the other halts.

Infinite saturation, finite rewriting



part4.md 2025-10-31

3 / 4

In ex3_rules_saturation, we saw that the rule base parent(Y, X), human(Y) :- human(X). can cause
infinite saturation: as soon as there exists a human in the rulebase, that human generates a new parent, which
generates another human, and so on.

However, query rewriting with the same rules always terminates (whatever the query), because each rewriting
step with this rule proves (and erases) at least one atom, and replace it with the unique atom in the body. As a
consequence, we only add to the rewritten query bodies of bounded size, and there can be only finitely many
of them.

rulebase = graal.create_rulebase("parent(X, Y), human(Y) :- human(X).") 
query = graal.create_query("?(X) :- parent(X, Y).") 
print (query.rewrite(rulebase)) 

Output:

?(X) :- human(X). 
?(X) :- parent(X, Y). 

Infinite rewriting, finite saturation

Now consider the rule base ancestor(X, Z) :- ancestor(X, Y), ancestor(Y, Z). This is a transitivity
rule: if X is an ancestor of Y and Y is an ancestor of Z, then X is an ancestor of Z.

Saturation with this rule terminates on any finite fact base because the rule does not have any
existential variable (it is a Datalog rule), and will never introduce new individuals on the fact base. Since
finitely many atoms can be added on a finite set of individuals, saturation will terminate.
Query rewriting, however, will endlessly generate new queries, each ancestor(X, Y) atom being
rewritten as a pair of atoms, and thus always generating a conjunctive query of size n+1 from a
conjunctive query of size n, as shown below.

?(X, Z) :- ancestor(X, Z). 
?(X, Z) :- ancestor(X, Y), ancestor(Y, Z). 
?(X, Z) :- ancestor(X, Y1), ancestor(Y1, Y2), ancestor(Y2, Z). 
?(X, Z) :- ancestor(X, Y1), ancestor(Y1, Y2), ancestor(Y2, Y3), ancestor(Y3, Z). 

The program below, however, shows that saturation terminates:

factbase = graal.create_factbase("human(socrates), ancestor(daedalus, 
sphoroniscus), ancestor(sophroniscus, socrates).") 
rulebase = graal.create_rulebase("ancestor(X, Z) :- ancestor(X, Y), ancestor(Y, 
Z).") 
print(factbase.saturate(rulebase)) 

file:///c%3A/Users/baget/Documents/webpage/static/docs/ex3_rules_saturation/ex3_rules_saturation.md


part4.md 2025-10-31

4 / 4

Output:

ancestor(daedalus, socrates), ancestor(daedalus, sophroniscus), 
ancestor(sophroniscus, socrates), human(socrates). 


