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Abstract. Simple conceptual graphs can be seen as a very basic de-
scription logic, allowing however for answering conjunctive queries. In
the first part of this paper, we translate some results obtained for con-
ceptual graph rules of form “if A then B” into an equivalent DL-based
formalism. Then we show that, our algorithms can automatically decide
in some cases whether a given DL has the FOL-reducibility property, pro-
vided that the semantics of its constructors can be expressed by rules.

1 Introduction

The families of languages known as Description Logics and Conceptual Graphs
answer criticisms addressed to their common ancestor, semantic networks, by
distinguishing between factual (existential) and ontological (universal) knowl-
edge (the TBox and ABox in DLs, and the support and graphs in CGs), as well
as by providing these languages with model-theoretical semantics.

These shallow similarities must not hide fundamental differences: while DLs
offer expressive TBox constructors, conjunctive queries generally have an impor-
tant computational cost [2]. On the other hand, while the most simple CGs can
answer such queries, their ontological component offers little more than inclusion
of atomic types. Relationships between DLs and CGs have been precisely pointed
out (e.g. [1] identifies their intersection as the weakly expressive ELIRO1).

The recent DL-Lite approach [8, 9] (reducing the TBox expressivity to answer
conjunctive queries) meets our approach, which consists of adding more expres-
sive ontological constructs to simple CGs (e.g. type conjunction [4], disjointness
of types [10], atomic negation [12]). The goal of this paper is to show that the
theoretical tools we have developed for CG rules can be used for lite DLs.

Sect. 2 presents DL-SG, a lite DL inspired by simple CGs (called SG in [6]),
allowing only atomic inclusion assertions, but with variables in the ABox. sect. 3
presents DL-SR, an extension of DL-SG with rules (called SR in [6]), allowing
assertions of form “if hypothesis H then conclusion C”. Decidable subclasses of
DL-SR are detailed in sect. 4. Finally, in sect. 5, we apply these results to
study the FOL-reducibility of the DLR-LiteR language.



2 DL-SG: conjunctive queries, but lite TBox ...

2.1 DL-SG syntax and semantics

A vocabulary V is the union of pairwise disjoint sets N , R1, . . . , Rk where N
contains individual names and Ri contains role names of arity i. Role names of
arity 1 are called concept names (C = R1). The set of concept names contains a
distinguished element, ⊥ (the absurd concept name). We also consider a set X
of variables, disjoint from names of V. The set T = N ∪ X is the set of terms.

Definition 1 (Primitive TBox). A primitive TBox is a set of inclusion as-
sertions of form R v R′ where R and R′ 6= ⊥ are role names with the same
arity.

Definition 2 (Unrestricted ABox). An unrestricted ABox is a set of mem-
bership assertions of form r(t1, . . . , tp) where r is a role name of arity p (i.e. a
concept name if p = 1) and the ti are terms.

Definition 3 (DL-SG knowledge bases and queries). A DL-SG knowledge
base is an ordered pair K = (T,A) where T is a primitive TBox and A is an
unrestricted ABox. A query is an unrestricted ABox.

We note V(K), N (K), Ri(K), X (K), T (K) the sets of names, individual
names, role names, variables and terms contained in a KB K.

An interpretation is an ordered pair I = (∆I , .I) where ∆I is a non-empty
set called the interpretation domain, and the interpretation function .I maps
each individual name n ∈ N to an element nI of ∆I , and each role name r of
arity k of Rk to a subset rI of (∆I)k (a concept name is mapped to a subset of
∆I , and ⊥I = ∅).

Definition 4 (Model of a primitive TBox). Let T be a primitive TBox. An
interpretation I is a model of T iff for every R v R′ of T , RI ⊆ R′I .

Definition 5 (Model of an unrestricted ABox). Let A be an unrestricted
ABox. An interpretation I is a model of A iff there is a mapping µ : T (A) →
∆I (called a proof of A in I) such that (i) ∀n ∈ N (A), µ(n) = nI ; and (ii)
∀r(t1, . . . , tk) ∈ A, (µ(t1), . . . , µ(tk)) ∈ rI .

An unrestricted ABox is indeed the linear encoding, with the same seman-
tics, of a positive, conjunctive, existential FOL formula without function sym-
bols, while the TBox encodes implications of form ∀x1 . . . ∀xk(r(x1, . . . , xk) →
r′(x1, . . . , xk)). A primitive TBox has the same semantics as a CG support, while
an unrestricted ABox has the same semantics as a simple CG. This is why the
soundness and completeness results presented in this paper can be stated as a
direct translation of the CG versions in which they have been proven. Note that
(T,A) can also be seen as a relational database by freezing its variables. An
interpretation is a model of a KB (T,A) iff it is a model of T and A.



Definition 6 (Satisfiability, validity, semantic consequence). Let K and
K ′ be two KBs (of any language presented here). K is said satisfiable iff there is
an interpretation that is a model of K (otherwise, it is said unsatisfiable); K is
said valid iff every interpretation is a model of K; and K ′ is called a semantic
consequence of K (we note K |= K ′) iff every model of K is also a model of K ′.

Property 1 (Satisfiability and validity). A DL-SG KB K is unsatisfiable iff its
ABox contains a membership assertion of form ⊥(t) and it is valid iff K = (∅, ∅).

2.2 DL-SG inferences

Definition 7 (T -Homomorphism). Let K = (T,A) be a DL-SG KB and Q
be a query. A T -homomorphism from Q to K is a mapping π from T (Q) to
T (A) such that (i) ∀n ∈ N (Q), π(n) = n; and (ii) ∀r(t1, . . . , tk) ∈ Q, ∃r′ ∈ Rk

such that r′ ≤T r and r′(π(t1), . . . , π(tk)) ∈ A.

A T -homomorphism is classically called projection (a graph homomorphism)
in CGs. Note that the set of all T -homomorphisms of Q to A corresponds to the
answer set of Q in the relational database associated to (T,A).

Deciding if there is a T -homomorphism from Q to A is an NP-complete
problem (actually polynomial in data complexity), that becomes polynomial
when the graph Q has a tree-like structure [13, 11, 4].

Theorem 1. Let K = (T,A) be a DL-SG KB and Q be a query. Then K |= Q
iff either K is unsatisfiable or there is a T -homomorphism from Q to A.

3 DL-SR: adding expressive rules

The extension of DL-SG with rules yields a formalism equivalent to the CG
fragment SR. Results of this section not associated with a reference are from
[6].

3.1 DL-SR syntax and semantics

Definition 8 (Rules). A rule is an ordered pair (H,C) of unrestricted A-boxes,
where H is called the hypothesis of the rule, and C its conclusion.

An RBox is a set of rules. A DL-SR knowledge base is a triple K = (T,A,R)
where T is a primitive TBox, A an unrestricted ABox and R is an RBox.

Definition 9 (Models of a rule). Let (H,C) be a rule and I be an interpre-
tation. Then I is a model of (H,C) iff for every proof µ of H in I, there is a
proof µ′ of H ∪C in I such that ∀t ∈ T (H), µ′(t) = µ(t). An interpretation is a
model of an RBox iff it is a model of each of its rules.

The FOL formula associated with (H,C) is ∀x1 . . . ∀xq(∧H → (∃y1 . . . ∃yp∧C))
where {x1, . . . , xq} = X (H) and {y1, . . . , yp} = X (C) \ X (H), and ∧H , ∧C are
the conjunctions of atoms in H and C.

A model of a DL-SR KB (T,A,R) is a model of T , A and R. The DL-SR-
deduction problem is as follows: “given K and Q, does K |= Q hold?”



3.2 DL-SR inferences: Forward Chaining of rules

Definition 10 (Application of a rule). Let K = (T,A) be a DL-SG KB. A
rule (H,C) is said applicable to K if there is a T -homomorphism π from H to
A. In this case, the application of (H,C) on K according to π produces an ABox
A ∪ ρ(C, π) where ρ(C, π) is obtained as follows from a copy of C: associate to
each variable x ∈ X (C) the term π(x) if defined, a new variable otherwise, and
replace each occurrence of a variable x in C by its associated term.

Definition 11 (Deriving a KB). Let K = (T,A,R) be a DL-SR KB. Then
K ′ = (T,A′, R) is an immediate derivation of K iff there is a rule (H,C) ∈ R
and a T -homomorphism π from H to A such that A′ = A ∪ ρ(C, π). K ′ is a
derivation of K iff there is a finite sequence of KBs K = K0,K1, . . . ,Kn = K ′

such that, ∀1 ≤ i ≤ n, Ki is an immediate derivation of Ki−1.

Theorem 2. Let K be a DL-SR KB and Q be a query. Then K |= Q iff there
is a derivation K ′ = (T,A′, R) of K such that either A′ contains an assertion
of form ⊥(t) (K is unsatisfiable) or there is a T -homomorphism from Q to A′.

According to this latter theorem, and since the derivation mechanism is
confluent (i.e. the Church-Rosser property holds), if K |= Q, any sequence of
breadth-first applications of rules will lead to a KB that is either unsatisfiable
or contains an answer to Q. More precisely, let us consider a DL-SR KB K =
(T,A,R). An immediate saturation of K is a KB noted Σ1(K) = (T,A ∪1≤i≤q

ρ(Cji
, πi), R) obtained by computing the set of all pairs {(πi, (Hji

, Cji
))}1≤i≤q

where πi is a T -homomorphism from Hji
to A. We call a saturation of K at rank

k the KB Σk(K) = Σ1(Σk−1(K)). Forward Chaining builds successive satura-
tions, checking if they contain an answer to Q or are unsatisfiable, until some
halting condition is achieved. However, since DL-SR-deduction is undecidable,
no universal halting condition can be found. A sufficient condition is when there
is a T -homomorphism from the ABox of Σk(K) to the ABox of Σk−1(K). In this
case, Σk(K) contains no new knowledge w.r.t. Σk−1(K). This leads to the fol-
lowing abstract characterization of decidable subclasses of DL-SR-deduction.

Definition 12 (Finite expansion sets). An RBox R is a finite expansion set
(f.e.s.) iff for any KB K, there is a rank k such that there is a T -homomorphism
from the ABox of Σk(K) to the ABox of Σk−1(K).

Let us give two concrete examples of f.e.s.: range restricted rules, which have
no new variable in their conclusion, i.e. X (C) ⊆ X (H), and disconnected rules,
where X (H) ∩ X (C) = ∅. In both cases, DL-SR-deduction is decidable, and
even NP-complete (and polynomial in data complexity). Note that some decid-
able subclasses of the deduction problem do not correspond to f.e.s., and that
the union of two f.e.s. is not necessarily a f.e.s.



4 Efficient reasonings in DL-SR using unifiers

The optimizations of Forward Chaining as well as the Backward Chaining pre-
sented in this section require a complex operation in order to find unifiers. Prov-
ing that there is no unifier of a query Q with a rule R means that applying R
does not generate new answers to Q. Unifiers are thus used in forward chaining to
reduce the number of rule applicability checks, as well as in backward chaining.
A backward chaining mechanism is generally based upon a unification operation,
that matches part of a current goal with a rule conclusion. This mechanism is
typically used in logic programming, where rules have a conclusion restricted to
one literal. Since our rules have a more complex conclusion, the associated uni-
fication operation is also more complex. For the sake of completeness, a precise
translation of its conceptual graph definition [14] into DL-SR is provided here.

Definition 13 (T -Unifier). Let Q be a query, T be a primitive TBox, and
(H,C) be a rule. A T -unifier of Q with (H,C) is a tuple (Q′, (TQ, TQ1 , . . . , TQk

),
(TC1 , . . . , TCk

), µ) where Q′ is a non-empty subset of Q, TQ and the TQi form a
partition of T (Q′), the TCj are pairwise disjoint non-empty subsets of (T (H) ∩
T (C)) ∪ N (C) and µ : TQ → T (C) \ (∪1≤j≤kTCj

) is a mapping such that:
(i) ∀n ∈ TQ ∩ N , µ(n) = n; (ii) ∀1 ≤ i ≤ k, TQi

∪ TCi
contains at most

one individual name; (iii) ∀r(t1, . . . , tk) ∈ Q′, ∃r′(t′1, . . . , t′k) ∈ C such that
r′ ≤T r and ∀1 ≤ i ≤ k, either µ(ti) = t′i or ti ∈ TQj and t′i ∈ TCj ; and (iv)
∀r(t1, . . . , tk) ∈ Q \Q′, ti 6∈ TQ, 1 ≤ i ≤ k.

Note that it is not mandatory for a unifier to contain any of the sets TQi
and

TCi
. In this case, the unifier corresponds to a T -homomorphism of connected

components (according to its graph encoding) of Q to C.

4.1 Unifiers for Forward Chaining

Property 2 ([5]). Let Q be a query, T be a primitive TBox, and (H,C) be a rule.
Then there is no unifier of Q with (H,C) iff for every ABox A, for every imme-
diate derivation (T,A′, {(H,C)}) of (T,A, {(H,C)}), every T -homomorphism
from Q to A′ is also from Q to A.

Let (H1, C1) and (H2, C2) be two rules. Assume that we have computed all
applications of (H2, C2) to an ABox A, obtaining A′. Lets us now apply (H1, C1)
to A′, yielding A′′. Then, if there is no T -unifier of H2 with (H1, C1), we know
that there is no new T -homomorphism from H2 to A′′.

Let us consider a DL-SR KB K = (T,A,R). We build (this can be done
offline with |R|2 calls to an NP-hard problem) the graph of rule dependencies
GRD(T,R). The nodes of this graph are the rules of R, and there is an arc from
the rule (H,C) to the rule (H ′, C ′) if and only if there is a T -unifier of H ′ with
(H,C). In this case, this arc is labelled with all such unifiers. Forward Chaining
is then modified to benefit from this graph. At first step, all rules have to be
checked for applicability, then at rank k > 1, only successors (in the GRD) of
rules applied at rank k − 1 have to be checked. Moreover, the unifiers labelling



arcs can be used to reduce the search space of applicability checks [5]. Though
this modified Forward Chaining effectively improves the runtime efficiency, the
graph of rule dependencies can also be used as a theoretical tool to prove that
Forward Chaining will be able to halt on a given RBox:

Property 3 ([5]). Let K = (T,A,R) be a DL-SR KB such that the graph
GRD(T,R) has no circuit. Define k as the size of the longest path in this graph.
Then Σk(K) and Σk+1(K) are equivalent.

Note that a loop (a self-unifiable rule) in the GRD is considered as a circuit,
and is sufficient to yield the undecidability of the deduction problem. Indeed, [3]
shows that a KB containing a single rule can encode a universal Turing machine.

Finite expansion sets rely on the structural properties of rules to ensure
decidability. prop. 3 relies upon the structure of possible interactions between
them. The next theorem presents a generalization of both approaches:

Theorem 3 ([5]). Let K = (T,A,R) be a DL-SR KB such that all strongly
connected components of the graph GRD(T,R) are finite expansion sets. Then
there is a finite integer k such that Σk(K) and Σk+1(K) are equivalent.

Cutting circuits in the GRD (by removing arcs or rules) may be achieved
through the following methods, that preserve completeness:

Method 1 [5]: Consider a DL-SR KB K = (T,A,R). Then A can be considered
as a rule AR = (∅, A). Build the graph G = GRD(T,R ∪ {AR}). Then any rule
of R that is not on a path whose origin is a rule with empty hypothesis (i.e.
equivalent to an ABox) can be safely removed. This operation can be done
offline. In the same way, let us add the rule (Q, ∅) to the GRD and compute the
T -unifiers of (Q, ∅) with rules of G. Then rules that are not on a path whose
destination is (Q, ∅) can also be removed. This operation can be done at runtime.

Method 2: Rules can also be simplified to find less unifiers: if some information
added by the application of (H,C) is necessarily present in the ABox A, then
this information can be safely removed from C. This is the case when C can
be partitioned into two sets C1 and C2 such that there is a T -homomorphism π
from C2 to H ∪ C1, with ∀t ∈ T (C1) ∩ T (C2), π(t) = t (it is called a folding in
graph theory). Then (H,C) can be safely replaced by (H,C1).

Method 3: Consider two rules (H,C) and (H ′, C ′). Suppose there is a com-
plete T -unifier U of H ′ with (H,C), i.e. such that U corresponds to a T -
homomorphism π of the whole H ′ to C. It means that, whenever (H,C) is
applied to an ABox A, it is also be possible to add the conclusion of (H ′, C ′).
The rule (H,C) can thus be replaced by the rule (H,C ∪ ρ(C ′, π)), and since U
has been taken into account in this new rule, it can be safely removed from the
labels of the arc ((H,C), (H ′, C ′)) in the GRD. If all T -unifiers labelling an arc
are complete, it is thus possible to remove this arc entirely, up to a rewriting of
its origin. Moreover, one has to compute, for every rule (H ′′, C ′′) such that H ′′

is unifiable with (H,C) or (H ′, C ′), the new T -unifiers with (H,C ∪ ρ(C ′, π)).



4.2 Unifiers for Backward Chaining

Definition 14 (Rewriting a query according to a unifier). Let U =
(Q′, (TQ, TQ1 , . . . , TQk

), (TC1 , . . . , TCk
), µ) be a T -unifier of a query Q with a

rule (H,C). The rewriting of Q according to (U, (H,C)) is the query σQ(Q \
Q′) ∪ σC(H), where the effect of σX is to specialize an ABox A by replacing its
variables as follows: if x is a variable of TXi , replace each occurrence of x in
A by the individual name a if a ∈ TCi ∪ TQi , otherwise by the new variable xi

associated with TQi
∪ TCi

; if x does not belong to any TCi
, replace each of its

occurrences by the same new variable.

Definition 15 (Rewriting sequence). Let Q be a query, R be an RBox, and
T be a TBox. A query QR is an immediate (T,R)-rewriting of Q iff there
is (H,C) ∈ R and a T -unifier U of Q with (H,C) such that QR = σQ(Q \
Q′) ∪ σC(H). QR is a (T,R)-rewriting of Q iff there is a finite sequence Q =
Q0, . . . , Qk = QR s.t. ∀1 ≤ i ≤ k, Qi is an immediate (T,R)-rewriting of Qi−1.

Theorem 4. Let Q be a query and K = (T,A,R) be a DL-SR KB. Then
K |= Q if and only if ∅ is a (T,R∪{(∅, A)})-rewriting of Q or a (T,R∪{(∅, A)})-
rewriting of {⊥(x)} (this latter condition meaning that K is unsatisfiable).

This latter theorem is the basis for the sound and complete Backward Chain-
ing procedure of [14], that develops in a breadth-first manner all possible rewrit-
ings of the query Q. Another halting condition can be added: never rewrite a
query semantically equivalent to a query that has already been explored. The
GRD can also be used to optimize reasonings, as shown by the next property.

Property 4. ([7]) Let G be the GRD of a DL-SR KB K = (T,A,R). Let U be
the set of T -unifiers of a query Q with the rules in R. Let QR be an immediate
(T,R)-rewriting of Q using (H,C) ∈ R. Then the T -unifiers of QR with the rules
in R is the union of a subset of U and of the T -unifiers of H with the rules in R.

As an immediate consequence of this property, Backward Chaining is ensured
to halt (as does Forward Chaining) when the GRD has no circuit:

Property 5. Let Q be a query, T be a TBox and R be an RBox such that
GRD(T,R) has no circuit. Then the set of (T,R)-rewritings of Q is finite (up to
an isomorphism).

Let us now introduce the new notion of finite unification sets, that plays the
same role in Backward Chaining than f.e.s. in Forward Chaining.

Definition 16 (Finite Unification Sets). An RBox R is a finite unification
set (f.u.s.) of rules iff for every TBox T , for every query Q, the set of (T,R)-
rewritings of Q is finite (up to an isomorphism).

If we prove that, for any query Q, all immediate (T,R)-rewritings of Q pro-
duce a query QR such that |QR| ≤ |Q|, then the RBox R is a f.u.s. If, moreover,
the size of the query strictly decreases (|QR| < |Q|), then DL-SR-deduction



becomes an NP-complete problem. Note, however, that though we have exhibited
kinds of f.e.s. (e.g. range restricted, disconnected, . . . ) that can be automatically
checked by a computer program, no concrete case of f.u.s. is proposed here. As in
Forward Chaining, structural restrictions on rules as well as on their interactions
can be combined for more interesting decidable subclasses:

Theorem 5. Let T be a TBox and R be an RBox such that all strongly connected
components of the graph GRD(T,R) are f.u.s. Then for every query Q, the set
of (T,R)-rewritings of Q is finite (up to an isomorphism).

4.3 Combining Forward and Backward Chaining

Finally, both results in th. 3 and th. 5 can be generalized to obtain a larger
decidable subclass, for which we exhibit a mixed Forward/Backward Chaining.

Definition 17 (Finite expansion/unification). Let T be a TBox and R be
an RBox. The graph G = GRD(T,R) has the finite expansion/unification (f.e/u.)
property if all strongly connected components of G are either f.e.s. or f.u.s., and
there is no path from a rule in a f.u.s. to a rule in a f.e.s. If a strongly connected
component contains only one rule without self-loop, then it can be considered
either as a f.e.s. or a f.u.s.

Property 6. Let K = (T,A,R1∪R2) be a DL-SR KB such that there is no path
from a rule of R2 to a rule of R1 in GRD(K). Then K |= Q iff there is an ABox
A′ such that (T,A,R1) |= A′ and (T,A′, R2) |= Q.

Theorem 6. DL-SR-deduction is decidable for KBs whose GRD has the
f.e/u. property.

Proof. We use a sound and complete algorithm that mixes Forward and Back-
ward Chainings. Let G = GRD(T,R). If G has the f.e/u. property, let R =
Re ∪ Ru, where Re and Ru are composed of rules belonging respectively to a
f.e.s. and to a f.u.s. Since there is no path from a rule in Ru to a rule in Re, by
prop. 6, we have (T,A,R) |= Q iff there is an ABox A′ such that (T,A,Re) |= A′

and (T,A′, Ru) |= Q. Let Ge (resp. Gu) be the subgraph of G induced by rules
in Re (resp. Ru). Then all strongly connected components of Ge are f.e.s., and
there exists a finite rank k for which all knowledge that can be added with
rules in Re is present in AS = Σk((T,A,Re)) (th. 3). Then (T,A,R) |= Q iff
(T,AS , Ru) |= Q. Since all strongly connected components of Gu are f.u.s., Q
can be rewritten as a finite set of queries for which the union of answers in AS

form the answers of Q in AS (th. 5). ut

5 Relationships with FOL-reducibility of DL-Lites

5.1 FOL-reducibility and the f.e/u. property

We are interested in DLs whose semantics can be encoded in a DL-SR KB (and
more generally in extensions of SR such as [6]). Given a specific description logic



DLX , our goal is to propose a transformation τX from assertions of DLX into
assertions or rules of DL-SR, preserving essential semantic properties. Ideally,
this transformation should preserve models (I is a model of the DLX KB (T,A)
iff it is a model of the DL-SR KB τX(T,A) = (T ′, A′, R)). This case also has the
added benefit that we can immediately and safely extend DLX with expressive
rules of the form presented in this paper. Since such a strong property cannot
always be ensured, we can rely on weaker semantic properties such that “(T,A)
and τX(T,A) = (T ′, A′, R) provide the same answers to conjunctive queries”,
used in the following example. Note that such a transformation is not always
possible in DL-SR, since general negation and disjunction of concepts or roles,
for instance, are out of the scope of our framework. Assume now that such a
transformation holds for a description logic (and generally for a KR formal-
ism) DLX . We believe that the theoretical tools presented here provide a solid
framework to investigate combinatorial properties of DLX-deduction. Accord-
ing to the transformation τX used, the rules obtained from the translation of a
DLX TBox will have a particular structure, and specific interactions that can
be analyzed using the GRD. We hope this analysis will allow to develop new
complexity results, new and efficient algorithms for the source language, as well
as provide us with an original, structural insight on the reasonings involved. On
the other hand, the specific algorithms developed for the source language can
lead to new structural results for DL-SR: finite unification sets introduced in
this paper stemmed from our understanding of DL-Lite algorithms.

As an example of combinatorial properties of a language that can be ana-
lyzed through the theoretical tools developed for DL-SR, consider now the FOL-
reducibility property in the DL-Lite family [9]. Let us consider a DL-Lite KB
K = (T,A) and a conjunctive query Q. Basically, the FOL-reducibility property
states that there are a relational database D obtained from a linear translation
of A, and a finite set of conjunctive queries {Q1, . . . , Qp} obtained from T and
Q, such that the answers to Q in K is the union of the (database) answers of the
Qi in D. Now, let us consider a linear transformation τ associating to any DL
KB K = (T,A) a DL-SR KB τ(K) = (T ′, A′, R′) that preserves answers. Let
us now consider an arbitrary KB of this DL, and its translation into DL-SR.
If (T ′, R′) has the f.e/u. property, then for any query Q, there is a finite set of
conjunctive queries {Q1, . . . , Qk} such that the answers to Q are the union of
the answers to the Qi in a finite saturation of A′. If, moreover, the saturation of
A′ can be built in linear time (using very specific f.e.s containing rules such as
the rule A1[R, i] presented below), then the FOL-reducibility property holds.

5.2 Example: DLR-LiteR

As an example of the above-mentioned approach, consider now the description
logic DLR-LiteR (i.e. the DL-LiteR of [9] extended with n-ary relations). We
translate TBox assertions of this DL into rules or primitive TBox inclusion as-
sertions of DL-SR as shown in the table. The first column presents all possible
forms of TBox assertions in DLR-LiteR, the second the name of its associated
rule in DL-SR, and the third the form of this rule. In the fourth column, we



DLR-LiteR Rule name Form of the rule Notes

A1[R, i] R(x1, . . . , xi, . . . , xk) → ∃iR(xi) r.r. (f.e.s.)
A2[R, i] ∃iR(xi) → R(x1, . . . , xi, . . . , xk) n.i. (f.u.s.)

A v A′ A v A′ p.i.a.
A v ∃iR A v ∃iR p.i.a.
∃iR v A ∃iR v A p.i.a.
∃iR v ∃jR

′ ∃iR v ∃jR
′ p.i.a.

A v ¬A′ C1[A, A′] A(x), A′(x) → ⊥(x) r.r. (f.e.s.)
A v ¬∃iR C2[A, R, i] A(x),∃iR(x) → ⊥(x) r.r. (f.e.s.)
∃iR v ¬A C3[A, R, i] A(x),∃iR(x) → ⊥(x) r.r. (f.e.s.)
∃iR v ¬∃jR

′ C4[R, i, R′, j] ∃iR(x),∃jR
′(x) → ⊥(x) r.r. (f.e.s.)

R v R′ R v R′ p.i.a.

R v ¬R′ C5(R, R′) R(x1, . . . , xk), R′(x1, . . . , xk) → ⊥(x1) r.r. (f.e.s.)
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Fig. 1. The initial GRD and its simplification

indicate when the rule is range restricted (r.r.), non increasing (n.i., meaning
that no rewrite of a query using that rule can increase its size), or that the
rule is a primitive inclusion assertion (p.i.a.), and thus remains in the DL-SR
TBox. The two first lines of this table show rules that translate the existential
role constructor of DLR-LiteR, where: (i) “∃iR” has to be considered as a unary
predicate symbol, and (ii) for each role name in the KB with arity k, there are
k different pairs of such rules. This translation preserves answers to conjunctive
queries, as shown by the reasonings involved in [9].

Let us now consider the example of a specific DLR-LiteR KB, which comes
from [9]. The ABox A contains the atom ht(J,M), while the TBox contains the
assertions a1 = (pr v ∃tt), a2 = (st v ∃ht), a3 = (∃tt− v st), a4 = (∃ht− v pr),
a5 = (pr v ¬st). This KB is translated into a DL-SR KB K = (T,A,R)
where T = {a1, a2, a3, a4} and the RBox R contains the rules r1 = A1[ht, 1],
r2 = A2[ht, 1], r3 = A1[ht, 2], r4 = A2[ht, 2], r5 = A1[tt, 1], r6 = A2[tt, 1], r7 =
A1[tt, 2], r8 = A2[tt, 2], and r9 = C1[pr, st]. The graph GRD(T,R) can be seen on
the left side of fig. 1, it contains two strongly connected components, the first one
containing r9, and the second all other rules. Since this component contains both
f.e.s. and f.u.s. (in black), it does not even satisfy our most general decidability
characterization. However, its simplification according to the methods 2 and 3
of sect. 4.1 generates the graph on the right side of fig. 1, which has the f.e/u
property. Note that, for any DLR-LiteR KB, the associated GRD will contain
the same circuits as the graph presented here. Then we have proven the f.e/u
property for any instance of the language: DLR-LiteR is FOL-reducible.



6 Conclusion

We have presented in this paper DL-SR, an extension of a lite DL with expressive
rules, inspired by the CG fragment SR. We have investigated some combinato-
rial properties of this language, and have extended the results of [6, 5, 7] with the
new notion of finite unification sets of rules. This notion is combined with pre-
vious ones to yield a new decidable subclass using a mixed Forward/Backward
Chaining procedure. On any instance of a DLR-LiteR KB, our algorithms will
automatically devise a strategy allowing to answer conjunctive queries in a way
consistent with the FOL-reducibility property of the language. We intend now
to use this framework to define new lite DLs, and propose efficient algorithms
computing deduction in these languages.

References

1. F. Baader, R. Molitor, and S. Tobies. Tractable and Decidable Fragments of
Conceptual Graphs. In Proc. of ICCS’99, volume 1640 of LNAI, pages 480–493.
Springer, 1999.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

3. J.-F. Baget. Représenter des connaissances et raisonner avec des hypergraphes: de
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