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Abstract. Conceptual graphs (CGs) share with FOL a fundamental ex-
pressiveness limitation: only higher-order logics allow assertions of prop-
erties on predicates. This paper intends to push back this limit by reify-
ing underlying relations of CGs (is-a, a-kind-of, referent) into first-class
objects (i.e. nodes) of an equivalent, labelled graphs (LG) model.
Benefits of this reification, applied on a subset of CGs, namely simple
graphs and rules of form “if G then H”, are discussed in terms of expres-
siveness, succintness and robustness. We show that using the LG model
as an interpreter allows us to improve and extend the results in [2].

1 Introduction

Labelled Graphs have long been used as a natural and readable way to represent
symbolic knowledge. The Conceptual Graphs model [11] can be seen as a higher
level abstraction of Representation Networks [9,6], benefiting from further devel-
opments in Knowledge Representation: a clear distinction between entities and
relations, and between factual knowledge and background knowledge (Fig. 1).

Though the CG model adds structuration and clarity to the represented
knowledge, this improvement has a subtle trade-off: the relations s (for subset
of, a kind of ) and e (for element of, is a), explicit in representation networks,
become implicit in CGs. Indeed, a kind of is encoded in the type hierarchies
defining background knowledge, and is a is encoded in concept node labels.

The drawback is that CGs cannot handle these relations as “first-class ob-
jects”, they are used in the deduction mechanism, but cannot be the object of
reasonings. From a FOL point of view, it is possible to assert properties on ob-
jects, but not on relations (predicates) between objects. Some consequences are
pointed out in [2], in a CG model restricted to simple graphs (SGs) and “if . . .
then” rules (SG rules). Namely:

1. It is not possible to express that “If two concept nodes have the same indi-
vidual marker, they represent the same entity”. Instead, [2] uses one rule for
each individual marker in the support (i.e. for each individual marker m, “if
two concept nodes are marked by m, then they represent the same entity”).

2. It is not possible to define the relation type equivalence as a subtype of re-
flexive, symmetrical and transitive, such that these properties (them-
selves encoded in rules) are inherited by equivalence and all its subtypes.
Instead, [2] defines a family of rules expressing the equivalence property, that
must be implemented for every equivalence relation.
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These solutions are not satisfying in terms of succintness (families of rules
defined for each marker and/or type) neither in terms of robustness (when a new
type or marker is added, it is necessary to add new rules). Instead, we propose
to reify implicit relations of the SG model (is-a, a-kind-of, referent) into
first-class objects of a model that simulates SGs.

In Sect. 2 we present a general framework for simulating a reasoning model
into another one. This framework will then be applied for simulating the {SG,
rules} model (recalled in Sect.3) into a {labelled graphs, rules} model. Sect. 4
and 5 study this latter model, its semantics, and its expressiveness with respect
to {SG, rules}. In Sect. 6, we build step by step a simulation of the {SG, rules}
model into the {labelled graphs, rules} model, where implicit notions of the
simulated model are reified. Finally, in Sect. 7, we discuss our gains in terms of
expressiveness and present an extension of the {SG, rules} model, obtained from
this simulation.

2 A Simulation Framework for Reasoning Models

In this paper, we study how a reasoning model can gain expressiveness by a
simulation into another one. As [7], we define a reasoning model by: a language
or syntax that specifies the objects we manipulate; a deduction system that
computes the relation � between objects; and valuation rules or semantics that
are given here through a translation into FOL formulas. To compare different
knowledge representation formalisms, [5] gives several evaluation criteria:

1. Does the formalism support efficient reasonings?
2. How expressive is it?
3. How succinctly can the formalism express the sets of models that it can?
4. How does the knowledge representation form fare in the face of change?

Comparison of reasoning models in terms of complexity or decidability of the
deduction problem (1.) is only slightly discussed in this paper. To compare the
expressiveness of two reasoning models (2.), we define the notion of simulation of
a reasoning model into another one, which is basically a reduction of a decision
problem to another. We propose here some criteria to evaluate the very subjective
notion of a good simulation, and discuss in the final part of this paper how
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a simulation that reifies implicit notions of a model can add expressiveness,
succintness (3.) and robustness (4.) to this model.

Definition (Simulation). A simulation of a reasoning model M into a model
N is a mapping Γ from the objects of M into the objects of N such that A can
be deduced from B in M if and only if Γ (A) can be deduced from Γ (B) in N .

2.1 Complexity of Γ : Importance of a Linear Simulation

We want a simulation to prove that all reasonings in the model M can be per-
formed in N , and wish to forbid part of the deduction mechanism in M to be
encoded in the mapping Γ . The usual way to assert that M is “simpler” than
N is to find a polynomial time simulation of M into N . But a polynomial time
mapping could be complex enough to encode in itself mechanisms of M that
cannot be represented in N (Sect. 6.1). We want a simulation to compute a syn-
tactic translation only. That is why we are interested in simulations that fulfill
a much stronger constraint: linear time mappings. If there exists a polynomial
time (resp. linear time) simulation of M into N , we say that N is a generaliza-
tion (resp. strong generalization) of M. Reasoning models that generalize each
other are said equivalent (resp. strongly equivalent).

2.2 Backward Translation of Objects and Proofs

It is important, for every object A in N , to compute efficiently if A ∈ Γ (M) (i.e.
if A is the representation of an object of M) and, in that case, to translate back A
into the unique object A′ of M such that Γ (A′) = A; thus Γ should be injective.
This feature allows to develop a reasoning model on top of an existing one by
implementing only the simulation Γ and its backward translation in such a way
that this translation is invisible to the end user: he only needs to manipulate
objects of the model M. The interest of backward translation of objects extends
to backward translation of proofs. Intuitively, if A and B are objects of M, a
proof of A � B in the model M can be seen as a sequence of operations allowed
by the deduction system of M. Consider a proof Γ (A) � Γ (B) of the model N .
A proof A � B of M can be built if there exists a surjective mapping of the
proofs in Γ (M) into the proofs in M. This property would allow an end user to
visualize all proofs in the model M, even if reasonings are interpreted into the
model N . Even more, should we want an application that compute deduction in
M with some user interaction features (step by step visualization of proof, user
assisted deduction), this property should extend to subsequences of a proof.

2.3 Preservation of Complexity Classes

Let CM and CN be the complexity classes of the deduction problems in M,
and N ; let AM and AN be algorithms solving these problems (“respecting” the
complexity classes CM and CN ); and let Γ be a simulation of M into N . We
want to keep reasonings in the model M as efficient as possible, even when they
are interpreted through the translation in the model N . That is why AN , applied
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to objects of Γ (M), should satisfy CM. Note that, if it is not the case, AM can
still be used, assuming that we have an efficient reconnaissance algorithm for
Γ (M), or can even give new insights for a general improvement of AN . This
discussion could also be extended to the preservation of complexity classes for
particular subsets of M.

In this paper, we propose a linear simulation Θ from the {SG, rules} model
into a “low-level” model. Since there also exists a linear simulation from the
latter model into {SG, rules}, both models are strongly equivalent. This sim-
ulation ensures backward translations of objects as well as proofs, and, since
the two models are strongly equivalent, complexity classes of deduction prob-
lems are preserved. The simulation Θ reifies implicit notions of the CG model
(types, markers) into first-class objects of the “low-level” model. Benefits of this
reification will be further discussed in the last section (Sect. 7) of this paper.

3 The Simple Graphs and {SG, Rules} Models
Here we recall fundamental definitions and results on a subset of CGs: simple
graphs (SGs) [4], and simple graphs rules [8,2].

3.1 Simple Graphs

Syntax. Basic ontological knowledge is encoded in a structure called a support.
A support S = (TC , TR, I) is given by two finite partially ordered sets TC and
TR, respectively the set of concept types and the set of binary1 relation types, and
a set of individual markers I. TC (resp. TR) admits a greatest element, denoted
by 	C (resp. 	R). A partial order is defined on I ∪ {∗}: the generic marker ∗
is the greatest element and elements of I are pairwise non comparable.

We denote by G = (VC , VR, E, label, co-ref) a simple graph defined on a
support, where VC and VR are respectively the sets of concept nodes and relation
nodes; E is the set of edges (the two edges incident to a relation node are labelled
by 1 and 2); co-ref, the co-reference relation, is an equivalence relation on the set
of generic concept nodes. Two concept nodes are said co-identical if they have
the same individual marker or if they belong to the same co-reference class.
Intuitively, it means that these two concept nodes represent the same entity. In
what follows, we impose that co-identical concept nodes have the same type.

Deduction System. Let S be a support, and G and H be two SGs defined
on S. A projection Π from H into G is a mapping from VC(H) into VC(G) and
from VR(H) into VR(G) that preserves edges and their labelling, may restrict
labels of concept and relation nodes, and preserves co-identity:

1. ∀e = (x1, x2) ∈ E(H), e′ = (Π(x1), Π(x2)) ∈ E(G) and label(e) = label(e′)
2. ∀x ∈ VC(H) ∪ VR(H), Π(x) = x′ ⇒ label(x′) ≤ label(x)
3. ∀x, y ∈ VC(H), co-ref(x, y) ⇒ co-ident(Π(x), Π(y))
1 For the sake of simplicity, we restrict these definitions to binary relation types but
all results could easily be extended to n-ary relation types.
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A SG is said in normal form if all co-identity classes are restricted to the
trivial ones (co-ident(x, y) ⇒ x = y). The normal form NF (G) of a graph G is
obtained by fusionning all nodes that belong to the same co-identity class.

We consider two deduction systems in the SG model (effectively defining two
reasoning models): we note S, G � H if there exists a projection from H into G,
and S, G �NF H if there exists a projection of H into NF (G) (remark that if
S, G � H, then S, G �NF H, but the reverse does not hold).

Semantics. The deduction system �NF is sound and complete w. r. t. the FOL
semantics Φ [4], i. e. S, G �NF H iff Φ(S), Φ(G) � Φ(H), while the deduction
system � is sound and complete w. r. t. the FOL semantics Ψ (an alternative to
Φ proposed in [10]). A formal presentation of these semantics can be found in
[10], while [2] presents their consequences on the different reasonings allowed.

3.2 Simple Graph Rules

Simple graph rules (SG rules) can be seen as graphs that embody knowledge of
the form “if hypothesis can be deduced from a graph, so can conclusion”.

Syntax. Let S be a support. A simple graph rule is given by a simple graph R
defined on S and a mapping color: V (R) → {0, 1}. The subgraph of R generated
by 0-colored (resp. 1-colored) nodes is called the hypothesis (resp. conclusion)
of the rule. Furthermore, the following constraints ensure that the application
of a rule on a SG always generates a SG: 1) the subgraph of R generated by 0-
colored nodes is a SG (but without restrictions on co-ref ); 2) co-identity classes
whose members are of different colors are forbidden; 3) co-identity classes whose
members are 0-colored nodes are without restriction; 4) co-identity classes whose
members are 1-colored nodes suffer the same restrictions as for SGs.

Deduction System. Let S be a support, G be a SG defined on S, and R
be a SG rule defined on S. We say that R is applicable to G iff there exists a
projection from the hypothesis of R into G. Let Π be such a projection. An
immediate derivation of G by the application of R following Π is a graph G′

obtained by 1) making the disjoint union of G and a copy of the conclusion of R;
2) for each edge (r, c) labelled n in R, where c is a concept node of color 0 and r
is a relation node of color 1, linking the copy of r to Π(c) by an edge labelled n.

Let R be a set of SG rules defined on S. We say that G,R derives a SG G′ if
there exists a sequence of immediate derivations leading to G′ by application of
rules in R. We say that G,R normally derives G′ if each immediate derivation
is followed by a normalization of the obtained graph.

Then again, we obtain two deduction systems in the {SG, rules} model. We
note S,R, G � H if there exists a graph G′ such that G,R derives G′ and H can
be projected into G′. We note S,R, G �NF H if there exists a graph G′ such
that NF (G),R normally derives G′ and H can be projected into G′.

Semantics. The FOL semantics Φ and Ψ are extended to SG rules: �NF is
sound and complete w. r. t. Φ [8], and � is sound and complete w. r. t. Ψ [2].
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4 The Labelled Graphs Model

The labelled graphs (LG) model is very similar to the SG model, but does not
take into account the notions of support or type: we consider it as a “syntactically
neutral” version of SGs. We first define formally the objects we manipulate, then
propose two deduction mechanisms based on projection whose semantics mimic
the ones defined in the SG model. It is not surprising, this model being simpler,
that there exists a linear simulation of labelled graphs into SGs.

4.1 Syntax and Deduction Mechanisms

Let A be a set of symbols, and ∗ /∈ A a special symbol named the generic label. A
labelled graph (LG) G = (V,E, label) is given by a set of nodes V , a symmetrical
relation E on V × V , and a mapping label from V into A ∪ {∗}.

Let H and G be two LGs, a LG-projection (projection in the LG model) is a
mapping Π from V (H) into V (G) that preserves edges and non-generic labels:

1. ∀(x1, x2) ∈ E(H), (Π(x1), Π(x2)) ∈ E(G)
2. ∀x ∈ V (H), label(x) �= ∗ ⇒ label(Π(x)) = label(x)

A LG is said in normal form if all non-generic labels are different. The normal
form NF (G) of a LG G is obtained by fusionning nodes having the same, non-
generic label. We note H � G if there exists a LG-projection from H into G.

We note G � H if there exists a LG-projection from H into G, and note
G �NF H if there exists a LG-projection from H into NF (G). Unless otherwise
noted, we will consider � when referring to the LG model.

4.2 Linear Simulations of Labelled Graphs into SGs

Lemma 1. The (SGs,�) model is a strong generalization of the (LGs,�) model
and the (SGs,�NF ) model is a strong generalization of the (LGs,�NF ) model.

Proof. This result is not surprising, but the simulations Γ of (LGs,�) into
(SGs,�) and ΓNF of (LGs,�NF ) into (SGs,�NF ) will be used in Theor.1.

The simulation Γ is illustrated in Fig. 2 by the transformation of the LG
G1 into the SG G2. We define a support Γ (A) as follows: ∗ is associated to
the greatest element of TC , each label of A is associated to a distinct type of
TC (denoted by the same symbol). All types corresponding to A are pairwise
non-comparable. TR is restricted to one relation type, named link. I is empty.
Each node of an LG is transformed into a concept node whose type is the one
associated with its label and whose marker is generic. Each edge ab is transformed
into two symmetrical relation nodes typed link, linking Γ (a) and Γ (b).
ΓNF is illustrated in Fig. 2 by the transformation G1 into G3. The only

concept type in ΓNF (A) is node, TR is restricted to the relation type link, and
I is equal to A. The difference with Γ consists in concept node labeling: a node
labelled m is transformed into a concept node whose type is node, and whose
marker is generic if m is generic, or the element of I associated to m otherwise.

We now check that Γ and ΓNF are linear transformations, that G � H iff
Γ (A), Γ (G) � Γ (H), and that G �NF H iff ΓNF (A), ΓNF (G) �NF ΓNF (H). ��
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Fig. 2. Simulations of LG models in SGs

4.3 Semantics

Semantics φ and ψ for the two labelled graph models are defined as:

– ψ(A) = Φ(Γ (A)) and ψ(G) = Φ(Γ (G))
– φ(A) = Φ(ΓNF (A)) and φ(G) = Φ(ΓNF (G))

Theorem 1 (Soundness and completeness). The deduction system � (resp.
�NF ) in the LG model is sound and complete w. r. t. the semantics ψ (resp. φ).

Proof. This is a corollary of Lem. 1, since Γ only creates SGs in normal form. ��

5 The {Labelled Graphs, Rules} Model
Labelled graph rules (LG rules) are designed as a “light syntax” version of SG
rules. Extending the results in Sect. 4, we simulate the {LG, rules} model into
the {SG, rules} model, and give sound and complete semantics.

5.1 Syntax and Deduction Mechanisms

A LG rule R = (V,E, label, color), is given by a LG (V,E, label) and a mapping
color from V into {0, 1}. The subgraph hyp(R) (resp. conc(R)) generated by 0-
colored (resp. 1-colored) nodes, circled in white (resp. gray) in the representation
of the graph, is called the hypothesis (resp. conclusion) of the rule (Fig. 3).

A LG rule R is applicable to a LG G if there exists a LG-projection (say Π)
from the hypothesis of R into G. In that case, a LG G′ is an immediate derivation
of G following R and Π if G′ is obtained by making the disjoint union of G and
a copy of conc(R), then, for each edge hc ∈ E(R) such that h ∈ hyp(R) and
c ∈ conc(R), adding an edge between Π(h) and copy(c).

The mechanism of rule application is illustrated in Fig. 3, where G1, . . . G5
are the immediate derivations of G following R. The notions of derivation and
normal derivation are defined as in Sect. 3.2, as a sequence of immediate deriva-
tions (each one followed by a normalization in the latter case). We note R, G � H
if there exists a graph G′ such that G,R derives G′ and there exists a LG pro-
jection of H into G′. We note R, G �NF H if there exists a graph G′ such that
NF (G),R normally derives G′ and there exists a LG projection of H into G′.
Unless otherwise noted, we will use � when considering the {LG, rules} model.
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5.2 Linear Simulations of Labelled Graphs Rules into SG Rules

Lemma 2. The ({SGs, rules},�) (resp. ({SGs, rules},�NF )) model is a strong
generalization of the ({LGs, rules},�) (resp. ({LGs, rules},�NF )) model.

Proof. As in the proof of lemma 1, we exhibit two simulations ∆ and ∆NF . Let
R = (G, color) be a LG rule. ∆(R) (resp. ∆NF (R)) is obtained by adding to
Γ (G) (resp. ΓNF (G)) the following coloration: the color 0 is assigned to nodes
issued from the hypothesis of R, the color 1 to all others. We can verify that
these simulations are linear, that, thanks to lemma 1, a LG rule R is applicable
to a labelled graph G iff ∆(R) (resp. ∆NF (R)) is applicable to Γ (G) (resp.
ΓNF (G)), and that, to every immediate derivation of a LG G into G′ following
R corresponds an immediate derivation of Γ (G) into Γ (G′) following ∆(R). ��

5.3 Semantics

We extend the semantics φ and ψ as in Sect. 4. Let R be a LG rule:

– ψ(R) = Φ(∆(R))
– φ(R) = Φ(∆NF (R))

Theorem 2 (Soundness and completeness). The deduction system � (resp.
�NF ) in the {LG, rules} model is sound and complete w. r. t. ψ (resp. φ).

Proof. Lemma 2, soundness and completeness for the {SG, rules} models. ��

6 Simulations of {SG, Rules} into {LG, Rules}
Having defined the LG and {LG, rules} models as particular cases of SG and
{SG, rules} (Lem. 1 and 2), we now simulate various SG models (beginning
with a basic one) into {LG, rules} models by reifying implicit relations of SGs.
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6.1 Basic Simple Graphs

We call basic simple graph (BSG) a SG defined on a support S without co-
reference links (all co-reference classes are trivial), nor individual markers (I =
∅). BSGs being in normal form, the Φ and Ψ semantics are equivalent.

Proposition 1. The BSG model is equivalent to the LG model.

Proof. We have proven (lemma 1) that the BSG model is a strong generalization
of the LG model, since Γ produces only BSGs. We now exhibit a polynomial
simulation of the BSG model into the LG model. Fig.4 represents the simulation,
by the mapping Θ1, of the graph in Fig. 1 (without its individual markers).

T R T C

1 RELATION 2 1 RELATION 2CONCEPT CONCEPT CONCEPT

IS−A IS−A IS−A IS−A IS−A

IS−A IS−A IS−A

Human

IS−A

Man agent

IS−ASituation

IS−AOwning object

IS−A

Physobj

Automobile IS−A

Fig. 4. Simulation of the BSG model into the LG model via Θ1

We first define skel(G), a LG called the skeleton of G (boldface in Fig. 4),
obtained by creating a node skel(c) labelled by concept (resp. relation) for
each concept node (resp. relation node) x in G, and, for each edge rc ∈ G, a
node labelled by the label of this edge, whose neighbors are skel(r) and skel(c).

The LG Θ1(G,S) is then obtained from skel(G), by adding a node labelled
by t for each type t ∈ TC ∪ TR (there must be no identical symbol in these two
sets), then for each node x typed t in G, for each type t′ in TC ∪ TR such that
t ≤ t′ , adding a node labelled is-a linking skel(x) to the node labelled by t′. We
denote by Θ−

1 (G) a subgraph of Θ1 where nodes are only linked by is-a to their
most specific type (the subgraph in the white rectangle of Fig. 4).

We check that Θ1 is a polynomial simulation. For computational efficiency, we
point out that, G and H being two BSGs defined on S: S, G � H iff Θ1(G,S) �
Θ−
1 (H) (leading to a smaller graph to project). ��

We doubt it is possible to find a linear simulation of the BSG model into
the LG model. Intuitively, reasonings by LG-projection and reasonings on the
hierarchy of types have a fundamentally different nature: one is concerned with
existence of objects, the other embodies knowledge on all types that verify some
property. Reasonings on a hierarchy are basically rules. The following simulations
will be given by a linear mapping translating only syntactic information of a SG,
and by a constant set of rules (considered as a library for the LG interpreter)
that encode reasonings that cannot be achieved by mere LG-projection.

Proposition 2. The {LG, rules} model is a strong generalization of the BSG
model.
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Proof. Let G be a BSG defined on S. We first encode the support in a LG
enc(S). This graph contains two particular nodes, labelled top-concept and
top-relation, that represent the types 	C and 	R. Then, for each type t being
a direct subtype of types t1, . . . , tk, we add a new node labelled t that is linked
by a chain – 1 – a-kind-of – 2 – to the representation of each of the ti. The
LG Θ2(G,S) is obtained by the disjoint union of skel(G) (see proof of Prop. 1)
and enc(S), then, for each node labelled concept or relation in this skeleton,
linking it by a chain2 – is-a – to the node labelled by its most specific type.

The graph in Fig. 5 illustrates this transformation: note that, this time,
transformation of the support has been purely syntactic. No information on the
properties of is-a or a-kind-of has been needed to generate this graph. These
properties are given by the rules Rs in Fig. 6. These rules express the transitivity
and reflexivity of the partial order on types, and that an entity or relation inherits
all the super-types of its given type. Though only this last rule is necessary to
prove the proposition, they will all be used when simulating co-reference.

We must now check that Θ2 is linear and verify the following equivalences
(the last one being presented in an optimization perspective): S, G � H iff
Θ2(G,S),Rs � Θ2(H,S) iff Θ2(G,S),Rs � Θ−

1 (H) ��

2 As for a-kind-of, we could have used a chain – 1 – is-a – 2 –. This is not necessary
here, since the “orientation” is implicitly given, from the object to its type.
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Remark 1. All rules presented here require there is a unique node representing
each type (same for individual markers). All LG rules to be applied on SGs must
be designed in such a way that the graphs they generate keep this invariant true.

6.2 Introducing Co-reference and Individual Markers

Proposition 3. The {LG, rules} model is a strong generalization of the (SG,
�) and the (SG, �NF ) models.

Proof. Let G be a SG on a support S. As in [2], reification of co-identity is done
by simulation into the SG model itself. θ(S) is the support obtained by adding to
S four new relation types, namely reflexive, symmetrical, transitive and
equivalence, the first being subtypes of 	R, the latter a subtype of the three
others, then adding co-ident as a subtype of equivalence, and co-ref as a
subtype of co-ident. θ(G) is obtained by adding a relation node typed co-ref
between nodes in the same co-reference class (this simulation is linear, we only
need to generate n − 1 nodes for a co-reference class of size n). It remains now
to handle individual markers. The mapping Θ3 is an extension of Θ2. The graph
obtained with Θ3 contains one node labelled m for each individual marker m in
I (required in Sect. 6.3), all linked to a unique node labelled markers. Each
node labelled concept obtained from an individual node marked m is linked
by a node labelled referent to the node representing m. In Θ−

3 , only the most
specific types and the individual markers present in the graph are represented.
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Fig. 7. Library Rc of LG-rules defining the co-identity relation

Fig. 7 defines the set of rules Rc: the three first rules ensure that, for every
relation type declared as a subtype of equivalence (and in particular co-ref
and co-ident), this relation behaves as an equivalence relation. The last one
indicates that concept nodes having the same marker are co-ident. These rules are
sufficient to simulate the (SG, �) model, i.e.: S, G � H iff Θ3(θ(G), θ(S)),Rs ∪
Rc � Θ−

3 (θ(H)) (proof of this assertion is given by Prop. 2, pointing out that
these rules are a “higher-order version” of the ones presented in [2]).
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Fig. 8. Library Rn of LG-rules handling the normalization process

To simulate the normalization step for deduction in the (SG, �NF ) model,
we add another set of rules, Rn (Fig. 8). Again, thanks to Prop. 2, by verifying
that these rules are a “higher-order version” of the ones presented in [2], we
prove that S, G �NF H iff Θ3(θ(G), θ(S)),Rs ∪ Rc ∪ Rn � Θ−

3 (θ(H)). ��

6.3 Introducing Rules

Theorem 3. The {LG, rules}, ({SG, rules}, �) and ({SG, rules}, �NF ) models
are strongly equivalent.

Proof. Sect. 5 proves one part of the equivalence, we must now prove that the
{LG, rules} model is a strong generalization of both the ({SG, rules}, �) and the
({SG, rules}, �NF ) models. Let Υ (R) be a linear time mapping from SG rules
into LG rules. Let R = (G, color) be a SG rule defined on S. Υ (R) is obtained
from Θ−

3 (θ(G)) (the simulation of a SG into a LG) by assigning the color 0 to all
nodes defining the support and to nodes representing the hypothesis of R, and
the color 1 to all others (Fig. 9). This translation is designed in such a way that
the “unique type and marker” invariant (see Rem. 1) is preserved by derivation.
Let S be a support, G and H be two SGs defined on S, we prove that:

1. S,R, G � H iff Θ3(θ(G), θ(S)), Υ (R) ∪ Rs ∪ Rc � Θ−
3 (θ(H))

2. S,R, G �NF H iff Θ3(θ(G), θ(S)), Υ (R) ∪ Rs ∪ Rc ∪ Rn � Θ−
3 (θ(H))
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Fig. 9. A SG rule and the obtained transformation by Υ

Check that the application of a SG rule R on a SG G gives a SG G′ iff the
simulation of G derives the simulation of G′ by some applications of the LG
rules Rs ∪ Rc, then an application of Υ (R). ��

Corollary 1. The {Nested Graphs, rules} model is strongly equivalent to the
{LG, rules} model.

Proof. [2] simulates of nested graphs into SGs, using a set N of SG rules. We
compose this linear simulation with Θ3, and translate N by Υ . ��
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7 Conclusion

In this paper, we have explored a basic projection-based reasoning model, the
LG model, a priori less expressive than the SG model. However, we have proven
that the {LG, rules} model is strongly equivalent to the {SG, rules} and even
the {Nested graphs, rules} models. The simulation Θ exhibited to translate an
instance of {SG, rules} deduction problem into an instance of the {LG, rules}
deduction problem possess all “good properties” discussed in Sect. 2:

1. Θ is linear;
2. We prove, though only hints are included in this paper, there exists a linear

(resp. polynomial) backward translation of objects (resp. proofs) of the {LG,
rules} model into objects (resp. proofs) of the {SG, rules} model [3];

3. Since the two models are strongly equivalent, they are both in the same
complexity class (i.e. deduction problems are semi-decidable in both models).

Let M be a reasoning model: the {LG, rules} model can be seen as an
interpreter for M if it is provided with a simulation of M, backward translations
mechanisms, and a library of LG-rules that mimics specific reasonings of M.
But, having built an interpreter for the {SG, rules} and {NG, rules} models
by designing a single, easier to implement model, what are the benefits of this
simulation? We first discuss its added expressiveness, in terms of succintness and
robustness, then show how the simulation can be used to extend the model.

7.1 The Succintness and Robustness Criteria
Let us first point out the “rules factorization” gained by the simulation. Though
[2] gives SG rules for the same result, it requires: 3 × k rules to indicate that
r1, . . . , rk are equivalence relations; |I| rules to indicate that nodes sharing an
individual marker are co-identical; 2 × |	R| rules to simulate normalization.

Using our LG rules library, that use types and markers as “first-class objects”
of the model, we need only a constant number of rules (11), before declaring
r1, . . . , rk as subtypes of equivalence.

But there is another benefit: using the rules defined in [2], one must add new
rules each time a new type or a new marker is added to the support, otherwise
reasonings are not complete. And keeping trace of all the rules that must be
added when updating the support in a complex modelization soon becomes dif-
ficult. Now, reification allows to express properties on types and markers. These
properties can be encoded in libraries of LG rules, which implement various SGs
semantics, in such a way that it can be invisible to the end-user. The interest
is that these properties can be inherited, and do not need to be encoded again
by the end-user. Reification of types and markers indeed adds expressiveness,
as well in terms of succintness (factorization of rules) as in terms of robustness
(resistance to changes of data).

Finally, we point out that our simulation is complete only for LGs verifying
the “unique type and marker” assumption (see Rem. 1). The problem is we have
represented knowledge “two entities have the same type” by “the types of these
two entities are represented by the same node”. Should we want to overcome
this limitation, we could define a “meta-relation” expressing that knowledge.
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7.2 An Extended Simple Graphs Model

The SG model imposes strong syntactic conditions on co-reference links: for ex-
ample, fusionning two concept nodes having different types or different individual
markers is impossible in the model, hence the draconian constraints on SG rules,
designed in such a way that never will co-referent nodes have different types or
markers. But the deduction mechanism of the {LG, rules} model, applied to the
simulation of a SG, ignores such constraints. Then a natural question is: “what
happens if we remove all constraints on co-reference, and make reasonings on the
simulation of these objects? How does the result of these reasonings translate
back to the SG model?”

The first problem is to handle the case of co-identical nodes having different
types or markers. The set of rules Rd presented in Fig. 10 are an answer to that
problem. They indicate that if two nodes having type t and t′ represent the same
entity, then the type of this entity is some subtype of t and t′; and the marker
of a node can be considered as a marker for all its co-ident nodes. We consider
R the library of LG rules consisting of Rs ∪ Rc ∪ Rn ∪ Rd. We can extend the
{SG, rules} model by dropping off all constraints on co-reference, and simulate
it (using the transformation Θ) into the {LG, rules} model with the library R.

Let us now outline an extended simple graph (ESG) model, that allows one to
translate back those reasonings. An ESG G = (VC , VR, E, label, co-ref), defined
on a support S, can be seen as a simple graph where:

– the type of a concept node is a non-empty subset of TC ;
– the marker of a concept node is a subset of I or the generic marker ∗;
– there is no constraint on concept nodes that can be declared co-referent;
– two individual concept nodes x, y are co-ident if marker(x) ∩ marker(y) �= ∅.

Intuitively, a set of types {t1, . . . , tk} (as used, by example, in [1]) can be seen
as the conjunction of types t1�· · ·� tk, and a set of individual markers as aliases
for the same entity. The partial ordering ≤e on labels is used for projection:
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Fig. 10. Library Rd of LG-rules handling co-identity without restrictions

– Let t and t′ be two types. Then t ≤e t
′ iff ∀t′i ∈ t′, ∃tj ∈ t such that tj ≤ t′i.

– Let m and m′ be two individual markers. Then m ≤e m
′ (and m′ ≤e m) iff

m ∩m′ �= ∅. Moreover, for every marker m, m ≤e ∗.

An ESG is in normal form if all its co-identity classes are trivial. An ESG
is put into normal form by fusionning co-identical nodes. The label resulting
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from the fusion of [t: m] and [t’: m’] is [t ∪ t’: M], where M = m∪m′ if
both markers are individual, ∗ if both are generic, otherwise M is the individual
marker m or m′. The deduction system in the {ESG, rules} model is based upon
normal derivation. Sound and complete FOL semantics can be given, using the
semantics of the equivalent {LG, rules} model, or directly extending Φ (see [3]).

This example shows that, not only simulation adds robustness with respect
to changes in data (e.g. changes in the support, as discussed above) but also with
respect to changes in the model. We believe that a {LG, rules}-based interpreter,
provided with macros that describe syntactic translations of graphs, can be the
basis of a good prototyping and development tool for different graph-based rea-
soning models.
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