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Abstract. Simple Conceptual Graphs (SGs) form the cornerstone for
the “Conceptual Graphs” family of languages. In this model, the sub-
sumption operation is called projection; it is a labelled graphs homomor-
phism (a NP-hard problem). Designing efficient algorithms to compute
projections between two SGs is thus of uttermost importance for the
community building languages on top of this basic model.
This paper presents some such algorithms, inspired by those developped
for Constraint Satisfaction Problems. In order to benefit from the op-
timization work done in this community, we have chosen to present an
alternate version of SGs, differences being the definition of these graphs
as hypergraphs and the use of conjunctive types.

1 Introduction

Introduced in [22], Simple Conceptual Graphs (or SGs) have evolved into a family
of languages known as Conceptual Graphs (CGs). In the basic SG model, the
main inference operator,projection, is basically a labelled graph homomorphism
[10]. Intuitively, a projection from a SG H into a SG G means that all information
encoded in H is already present in G. This operation is logically founded, since
projection is sound and complete w.r.t. the first-order logics semantics Φ.

As a labelled graph homorphism, deciding whether a SG projects into another
one is a NP-complete problem [10]; moreover, considering this global operation
(instead of a sequence of local operations, as in [22]) allows to write more effi-
cient algorithms. Indeed, this formulation is very similar to the homomorphism
theorem, considered vital for database query optimization [1]. Designing more
efficient projection algorithms is of uttermost importance to the GG community,
not only for SGs reasonings, but for usual extensions of this basic model: rea-
sonings in nested CGs can be expressed as projection of SGs [3], CG rules rely
on enumerating SGs projections [20], a tableaux-like method for reasonings on
full CGs uses SGs projection to cut branches of the exploration tree [16]...

The BackTrack algorithm (or BT) [13] has naturally been used in numerous
CG applications to compute projections (e.g. in the platform CoGITaNT [12]).
However, the CG community has not collectively tried to improve it. On the
other hand, the Constraint Satisfaction Problem (CSP) community has been
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working for the last 20 years on various BT improvements. Although [18] have
pointed out the strong connections between SG-Projection and CSP, this
work has mainly led to exhibit new polynomial subclasses for SG-Projection.
Our goal in this paper is to propose a translation of some generic algorithms
developped in the CSP community to the SG-Projection problem.

Though numerous algorithms have been proposed to solve CSPs, we consid-
ered the following criteria to decide which one(s) to adopt: 1) the algorithm must
be sound and complete (it must find only, and all projections); 2) the algorithm
must be generic, i.e. not developped for a particular subclass of the problem; 3)
the algorithm must add as little overhead cost as possible. Let us now precise
the third point. Many CSP algorithms rely on powerful filtering techniques to
cope with exceptionally difficult instances of the problem (i.e. when the graphs
involved are dense random graphs, corresponding to the phase transition [21]).
However, when the graphs involved are sparse and well-structured graphs (and
it seems to be the case for SGs written by human beings), these algorithms,
inducing a high overhead cost, are not as efficient as those presented here.

The algorithms presented here are BackMark [11] and Forward Checking
[14]. We present them in an unified way, using an original data structure that
allow to write them with small code modification, and to execute them at little
overhead cost. It was a surprise to see, in [8], how much more efficient was the
Forward Checking algorithm when we considered SGs as hypergraphs, instead
as their associated bipartite graph (as is usually done for SGs). We have then
decided to present SGs as hypergraphs (following the proposal of [7], whose
reasons were essentially to simplify definitions). Integrating a type conjunction
mechanism (as done in [2, 4, 9]) also allows us to reduce the number of projections
from a graph into another one, while keeping the meaningful ones.

This paper is organized in two distinct parts. In Section 2 (Syntax and Se-
mantics), we recall main definitions and results about SGs, in our hypergraph
formalism. Section 3 (Algorithms) is devoted to projection algorithms.

2 Syntax and Semantics

This section is devoted to a definition of SGs as hypergraphs. Syntax is given
for the support (encoding ontological knowledge), and for SGs themselves (rep-
resenting assertions). The notion of consequence is defined by model-theoretic
semantics, and we show that projection is sound and complete with respect to
these semantics. For space requirements, definitions are given without much ex-
amples. However, we discuss at the end of this section how our definitions relate
to usual ones (as in [17], for example).

2.1 Syntax

The support encodes the vocabulary available for SGs labels: individual markers
will be used to name the entities represented by nodes, and relation types, used
to label hyperarcs, are ordered into a type hierarchy. SGs encode entities (the
nodes) and relations between these entities.
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Definition 1 (Support). A support is a tuple S = 〈M, T1, ..., Tk〉 of pairwise
disjoint partially ordered sets such that:

– M, the set of markers, contains a distinguished element, the generic marker
∗, greater than the other pairwise non comparable individual markers;

– T1, ..., Tk are the sets of types, and a type t ∈ Ti is said to be of arity i.

We note ≤ the order relation on elements of the support, be it types or markers.

Definition 2 (Simple Conceptual Graphs). A simple conceptual graph, de-
fined over a support S, is a tuple G = (V, U,mark, type) where V and U are two
finite disjoint sets, and mark and type are two mappings.

– V is the set of nodes, and mark : V → M labels each node by a marker of
M. Nodes labelled by ∗ are called generic, other are called individual.

– U ⊆ V + is a set of hyperarcs called relations, defined as non empty tuples
of nodes, and type : U → (2T1 ∪ . . . ∪ 2Tk) \ {∅} labels each relation of size i
by a non empty set of types of arity i.

Though similar definitions of SGs as hypergraphs have already been proposed
(e.g. in [7]), the lack of any type for nodes and the typing of relations by sets
of types must be explained. Indeed, the type of an unary relation incident to
a node can be seen as the type for this node (sect 2.5), and the set of types
labelling a node can be understood as the conjunction of these types (sect. 2.2).

2.2 Model Theoretic Semantics

Motivations for expressing semantics in model theory are stated in [15]:
“A model-theoretic semantics for a language assumes that the language refers to a
world, and describes the minimal conditions that a world must satisfy in order to assign
an appropriate meaning for every expression in the language. A particular world is
called an interpretation [...] The idea is to provide an abstract, mathematical account
of the properties that any such interpretation must have, making as few assumptions as
possible about its actual nature or intrinsic structure. [...] It is typically couched in the
language of set theory simply because that is the normal language of mathematics.”

Definition 3 (Interpretations, models). An interpretation of a support S is
a pair (D, I), where D is a set called the domain, and the interpretation function
I associates to each individual marker in M a distinct element of D, and to each
type t ∈ Ti a subset of Di such that t ≤ t′ ⇒ I(t) ⊆ I(t′).

Let G be a SG defined over S. An interpretation (D, I) of S is a model of
G if there exists a mapping σ : V → D (called a proof that (D, I) is a model of
G) such that:

– for each individual node x, σ(x) = I(mark(x));
– ∀ r = (x1, . . . , xi) ∈ U(G), ∀ t ∈ type(r), (σ(x1), . . . , σ(xi)) ∈ I(t).

Note that a set of types is interpreted as the conjunction of these types. As
usual in logics, the notion of consequence follows the notion of models:

Definition 4 (Consequence). Let G and H be two SGs defined a support S.
We say that H is a consequence of G if all models of G are also models of H.
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2.3 Projection

The inference mechanism (answering the question “is all information encoded in
graph H already present in graph G?”) was initially presented as a sequence of
elementary, local operations trying to transform a SG H into a SG G [22]. These
operations have been completed [17] to handle the case of disconnected graphs.

The reformulation of this mechanism as a labelled graph homomorphism
called projection [10] allowed to write backtrack-based, more efficient algorithms.

Definition 5 (Projection). Let G and H be two SGs defined over a support
S. A projection from H into G is a mapping π : V (H) → V (G) such that:

– for each node x ∈ V (H),mark(π(x)) ≤ mark(x);
– for each relation r = (x1, . . . , xi) ∈ U(H), ∀t ∈ type(r), there exists a relation

r′ = (π(x1), . . . , π(xi)) ∈ (G) such that ∃t′ ∈ type(r′), t′ ≤ t.

2.4 Main Equivalence Result

It remains now to prove that projection is sound and complete with respect
to the model-theoretic semantics defined above. The following theorems have
been proven respectively in [23] and [18], where the semantics were given by
translating the graphs in first-order logic formulas.

Theorem 1 (Soundness). Let G and H be two SGs defined over a support S.
If there exists a projection from H into G, then H is a consequence of G.

Both [24] and [18] exhibited independently a counterexample to projection
completeness w.r.t. the logical semantics. They proposed different solutions to
this problem: [24] proposed to modify the SG H, putting it in anti-normal form,
and [18] proposed to modify G, putting it in normal form. We present here
the second solution, since a consequence of the first one is to lose structural
information on the graph H, leading to less efficient projection algorithms.

Definition 6 (Normal Form). A SG is said in normal form if no two distinct
nodes share the same individual marker.

To put a SG H into its normal form nf(H), we fusion into a single node
all nodes sharing the same individual marker. Hyperarcs incident to the original
nodes are made incident to the node resulting from this fusion. Should we obtain
multiple relations (i.e. defined by the same tuple of nodes), we keep only one
of those (our hypergraphs are not multigraphs, as usually defined for SGs),
and label it by a type obtained by the union of the original types (i.e. their
conjunction). Note that since H and nf(H) have the same semantics, Th. 1
remains true if we consider nf(H) instead of H.

Theorem 2 (Completeness). Let G and H be two SGs defined over a support
S. If H is a consequence of G, then there exists a projection from H into nf(G).



Hypergraphs and Conjunctive Types for Efficient Projection Algorithms 233

Proof. Soundness (⇒) and completeness (⇐) rely on seeing an interpretation (D, I) of
a support S as a SG G(D, I) over S, and a proof that (D, I) is a model as a projection.

– consider each element d of D as a node, whose marker is the individual marker m
such that I(m) = d if defined, the generic marker ∗ otherwise;

– for every tuple (d1, . . . , di), consider the set of types {t1, . . . , tp) such that, for
1 ≤ j ≤ p, (d1, . . . , di) ∈ I(tj). If this set {t1, . . . , tp) is non empty, then the graph
contains a relation (d1, . . . , di) whose type is {t1, . . . , tp).

Lemma 1. Let G be a SG defined over S, and (D, I) be an interpretation of S. Then
σ proves that (D, I) is a model of G iff σ is a projection from G into G(D, I).

(⇒) Let us suppose there exists a projection from H into G. We have to prove that
every model of G is a model of H. Let us take an arbitrary model (D, I) of G (this
is proven by a mapping σ). Then (Lemma 1, ⇒ part), σ is a projection from G into
G(D, I). As the composition of two projections is a projection, then π◦σ is a projection
from H into G(D, I), thus (Lemma 1, ⇐ part) (D, I) is a model of H.

(⇐) Let us now suppose that every model of G is a model of H. In particular,
we consider the model (D, I) of G and H that is isomorphic to G, i.e. I establishes
a bijection from V (G) to D, and (d1, . . . , di) ∈ I(t), t ∈ Ti if and only if there is a
type t′ ∈ type(I−1(d1), . . . , I−1(di)) such that t′ ≤ t. Note that such a bijection I
is possible only since G is a SG in normal form. Then I is a proof that (D, I) is a
model of G. Let us call σ the proof that (D, I) is a model of H. Check that σ ◦ I−1

is a projection from H into G, verifying that I−1 is a projection, and conclude with
Lemma 1. �

2.5 Relationships with “Usual SGs”

Above definitions differ obviously from usual ones. Before pointing out the dif-
ferences, we first rely on graphical representation to highlight their similarities.

Nodes of a SG are represented by rectangles. If n ≥ 2 and (x1, . . . , xn) is a
relation, we draw it by an oval, write its type inside the oval, then for 1 ≤ i ≤ n,
we draw a line between this oval and the rectangle representing xi and write
the number i next to it. Inside the rectangle representing a node, we write the
string “T : M ′′ where T is the union of the types of unary relations incident to
the node, and M is the individual marker labelling the node (we write nothing
if the graph is generic). Moreover, to highlight that a set of types is interpreted
as a conjunction of these types, we write t1 � . . . � tp for the set {t1, . . . , tp}.

Up to our introduction of conjunctive types, this is exactly the drawing of
a SG in a traditional sense, and these objects have exactly the same semantics.
Indeed, SGs are usually defined as bipartite labelled multigraphs, where the two
classes of nodes (concept nodes and relation nodes) correspond to the objects
obtained when considering the incidence bipartite graphs of our hypergraphs.

Though conjunctive types may seem to add expressiveness to SGs, [2, 4, 9]
have pointed out it is not the case. Indeed, SGs usually allow multiple relations
(in our sense) being defined by the same tuple of nodes, and such a set of relations
has the same interpretation as a single relation whose type is the conjunction
of their types. And since a concept node type has the same interpretation as a
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unary relation type, is it possible to encode, at a semantic level, type conjunction
in “usual SGs”. However, since type conjunction is not integrated at a syntactic
level, it is a problem when trying to fusion concept nodes having different types.

3 Algorithms

Before presenting the algorithms themselves, we recall that SG-Projection is
an NP-complete problem ([10], using a reduction to Clique).

Theorem 3 (Complexity). The problem SG-Projection (given a support
S, deciding whether or not a SG H projects into a SG G) is NP-complete.

3.1 Number of Projections

Enumeration of projections from a SG H into a SG G benefits from our defini-
tions. With usual SGs definitions, relations are nodes, that have to be projected.

Consider the following example: the support S contains only binary relation
types {r, r1, . . . , rk} where r1, . . . , rk are pairwise non comparable and r is greater
than all the other ones, and a unique unary relation type (or concept type), t.
We build the graph G as a chain composed of n generic (concept) nodes, each
one linked to the next by k relation nodes, respectively typed r1, . . . , rk. Then
consider the graph H, composed of a chain of nodes linked by relations typed
r. Following the usual SGs definitions (where both concept nodes and relation
nodes have to be projected), we have exacly (n−1)k projections from H into G.
With our definitions, the graph G is a chain of n nodes, each one linked to the
next by one relation node typed r1 � . . . � rk, and there is exacly one projection
from H into G, essentially capturing the meaning of the (n − 1)k previous ones.

This potentially exponential gain in the number of projections can be impor-
tant in CG models that rely on enumerating projections, such as rules [20].

3.2 BackTrack

The näıve algorithm searching one or all projections from a SG H into a SG G
builds all mappings from V (H) into V (G), and tests whether one of them is a
projection. This process can be seen as the building of a seach tree. Its nodes
represent partial mappings of V (H) into V (G). The root represents the empty
mapping. If a node N of the tree represents the partial mapping π, and x is
the next unmapped node of V (H), then the sons of N represent the mappings
π ∪ {(x, y1)}, . . . , π ∪ {(x, yp)} where y1, . . . , yp are the nodes of G. Leaves of
this search tree represent all mappings from V (H) into V (G). BackTrack [13]
(or BT) explores this search tree with a depth-first traversal, but it does not
wait to reach leaves to check whether a mapping is a projection. If a mapping
from a subset of nodes of H is not a projection, then it cannot be extended to
a projection (the node of the search tree corresponding to this partial mapping
is called a failure node). Checking if we have a partial projection at each node
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The version of BT we present is an iterative one. As suggested in [19], it
allows a better control of the stack of recursive calls, and is thus more convenient
for enhancements presented later on. It will be used as the body of all BT
improvements presented here: only the functions it calls should be rewritten.
Let us briefly explain this algorithm. Following the writing of Solution-Found,
it can compute one projection (when called, this function stops the execution,
and returns the current mapping), or all projections (when called, it saves the
current mapping, and all mappings will be read at the end of the program).

The variable level corresponds to the current level in the search tree, and
thus identifies the node we have to examine (current-Node). The variable up
will be set to true when the current mapping does not correspond to a pro-
jection, and a backtrack is required. Every node has a field image used to
store its image by the curent partial projection. Let us now examine the dif-
ferent functions called by this algorithm. Order totally orders (consider an ar-
bitrary order) nodes of the graph. We denote by xi = V (H)[i] the ith node,
and by preV (xi) = {x1, . . . , xi−1} the nodes placed before him in this ta-
ble. In the same way, preU (xi) = {(y1, . . . , yk) ∈ U(H)|∃1 ≤ j ≤ kyj =
xi and ∀1 ≤ j ≤ k, yj ∈ preV (xi) ∪ {xi}}. Next-Level(xi) (where xi is at
position i in the table) returns i + 1, and Previous-Level(xi) returns i − 1.
Find-Candidates(xi) stores in the field image of xi the first node y ∈ V (G)
that is a candidate for xi: it means that mark(y) ≤ mark(xi), and that ∀r =
(y1, . . . , yk) ∈ preU (xi), r′ = (y1.image, . . . , yk.image) ∈ U(G). We say that r is
supported by r′. Other-Candidates(xi) stores in the field image of xi the next
candidate unexplored since the last call to Find-Candidates(xi). Both return
true if they found a result, and false otherwise.

In the worst case, BackTrack explores the whole search tree, and has thus
the same complexity as the näıve algorithm. However, in practical cases, it often
cuts branches of this tree without needing to explore them to the end.

3.3 Types Comparisons

An immediate problem is the cost of type comparisons. Each time we look for
a possible candidate for a node x, we compute type comparisons for all rela-
tions of preU (x) incident to x. The number of operations performed can thus
be expressed (in a simplified way) by N × k × S, where N is the number of
candidates considered in the whole backtracking process, k the maximum size of
preU sets, and S is the maximum cost of a type comparison. Since both N and
S can be exponential (imagine types expressed in a description logics language),
it is unwise to multiply these factors.

The solution is easy. We have at most mH × mG different types comparisons
(where mH and mG respectively denote the number of relations in H and G).
So each time one is computed, we can store its result in a table. BT will now
run in (N × k) + (mH × mG × S), and the two exponential factors are no more
multipliers for each other. In usual SG formalisms, S is polynomial (types hier-
archies are given by their cover rellation): we can then consider N ×k as the only
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Data: A support S, two SGs H and G defined on S (H �= ∅).
Result: All projections from H into nf(G).

H ← Order(H);
level ← 1;
up ← false;
while (level �= 0) do

if (level = |V (H)|+ 1) then
Solution-Found(H);
up ← true;

else current-Node ← VH [level] ;
if (up) then

if (Other-Candidates(current-Node, G)) then
up ← false;
level ← Next-Level(current-Node);

else level ← Previous-Level(current-Node) ;
else

if (Find-Candidates(current-Node, G)) then
level ← Next-Level(current-Node);

else
up ← true;
level ← Previous-Level(current-Node);

significant factor, and forget the cost of type comparisons. Another advantage
is that conjunctive types are compiled as a whole, and so it avoids to backtrack
along multiple relations: conjunctive types are an algorithmic optimization.

3.4 BackMarking

We first extend to hypergraphs a datastructure proposed for BT in [6], not to
reduce the size of the search tree, but to check candidates more efficiently.

If preU (x) = r0, . . . , rk, and we suppose that r0, if it exists, is a unary rela-
tion, then we provide (when calling Order(H)) the node x with k fields noted
∆1(x), . . . , ∆k(x). This data structure (the ∆s) will be used to incrementally
compute sets of candidates. When calling Find-Candidates(x), ∆1(x) is built
by taking all nodes y of G such that, if image(x) = y, r1 is supported in G, then
by removing from this set all nodes such that r0 is not supported (if it exists).
Then the following ∆s are computed in the following way:

∆i+1(x) = {y ∈ ∆i(x) | y = image(x) ⇒ ri+1is supported in G}

Now Find-Candidates(x) computes this set, and ∆k contains exactly all
candidates for x. So the only work for Other-Candidates will be to iterate
through this set. Let us consider the example in Fig. 1. It represents a step
of the BT algorithm where images have been found for x1 and x2, and we are
computing possible candidates for x. Assuming that all types are pairwise non
comparable, check that ∆1(x) = {y1, y3} (r1 removed nothing, but r0 removed
y2), and that ∆2 = {y3}. The only possible candidate for x is y3.

The complexity of the “natural” candidates research algorithm (Sect. 3.2)
is in O(n2

G × k), where nG is the number of nodes of G and k the maximum
arity of relations. But the worst-case complexity of the ∆ based algorithm is
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O(n3
G × k). There are two reasons to claim that this algorithm is still better: 1)

we can implement BackMark, Forward-Checking, and BackJump on top of this
algorithm at no additional overhead cost, and 2) an average case analysis shows
that the natural algorithm still runs in O(n2

G × k), while the ∆ algorithm runs
in O(nG × k ×R), where R is a factor decreasing with the density of G (see [6]).

Should we order the relations of preU (x) in a particular way, our algorithm
naturally evolves into BackMark [11]. Let x be a node of H. We order relations of
preU (x) in the following way (it can be done in linear time in the initialization
phase, by the Order function): for each rj ∈ preU (x), we note last(x, rj) the
greater node (as defined by Order) incident to rj . We order relations of preU (x)
in such a way that if last(x, ri) is before last(x, rj), then ri is before rj .

Suppose now that, sometimes during the backtrack, we have built the dif-
ferent ∆i(x), and that a failure forced to go up the search tree. What’s hap-
pening when x becomes again the current node ? Let (r1, . . . , rk) be the non
unary relations of preU (x), ordered as indicated above. Then if the other argu-
ments of r1, . . . , rp in preV (x) did not change their images since the last candi-
dates search, then ∆1(x), . . . , ∆p(x) do not need to be updated. When calling
Find-Candidate, we look for the first xq ∈ preV (x) that changed since its last
call, and build the ∆i by beginning at ∆q.

Note that this algorithm has been written at no overhead cost. To evaluate
its interest, let us point out that the more “little backtracks” we encounter, the
more we gain. And this is precisely the case on difficult instances of the problem.

3.5 Forward Checking(s)

The idea of Forward Checking (FC) [14] is to draw earlier the consequences
when chosing a candidate. We present a first version,when all relations are binary,
that benefits greatly from our ∆ data structure. Then, following [8], we point
out that naive adaptations to hypergraphs are not efficient enough.

H G
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t1 t1

t2t2 t3t3t3t3

t′
1

r1 r0 r2

x

preV (x)
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imageimage
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x1 x2

y1 y2 y3
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222222
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Fig. 1. Searching for possible candidates.
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The Binary Case. Consider the example in Fig. 2, where all relations are binary.
We have projected the subgraph H containing preV (x), and have extended this
partial projection to x (into y). Now it can take an exponentially long time to
project the nodes x1, . . . , xk. When at least we succeed, we remark that xk+1 had
no possible candidate, and so this whole work was useless. To avoid this problem,
we want the following property to be verified when considering candidates:
(FC): “If a candidate for x is y, then for each neighbour z of preV (x) ∪ {x}, the
current partial projection can be extended to a projection of z.

Rewriting the functions Find-Candidates and Other-Candidates, we ob-
tain the algorithm FC, in its binary case, that respects the above property
and is sound and complete for projection (note that our implementation, us-
ing ∆s, naturally includes the BackMark algorithm, still at no overhead cost).
Find-Candidates only puts an iterator at the beginning of the last ∆ of x
(that already contains all found candidates of x), then calls Other-Candidates.
Other-Candidates advances the iterator, answer false if the whole ∆ has
been explored, then calls FC-Propagates: if the result is true (the property
FC is verified), Other-Candidates also returns true. Otherwise, it calls itself
again to examine following candidates. So all checks are done in the function
FC-Popagates, that looks ahead of the current node. This function considers all
relations in postU (x), relations incident to x that are not in preU (x). For each
of these relations r, linking x to a node z, x contains a pointer to the associated
∆i(z) (noted ∆′(x, r)). This structure can be initialized in linear time during
the call to Order. Then, when called, for each r ∈ postU (x), FC-Propagates
builds the list ∆′(x, r), as indicated for the BackMark algorithm. If one of these
∆′ becomes empty, then FC-Propagates stops and returns false, otherwise it
returns true (after having correctly built all ∆s for the neighbours of x).

We obtain this algorithm just by changing the order in which BackMark
performs some operations. It has been experimentally proven very efficient.

FC for Hypergraphs However, we are interested in n-ary relations, and the above
algorithm only works in the binary case. A natural way is to consider the inci-
dence bipartite of the hypergraph: nodes remain nodes, relations become nodes,
and x is the ith node incident to r is translated into an edge labelled i between
x and r. This is exactly the drawing of the hypergraph, viewed as a bipartite
multigraph (it corresponds to the usual definition of SGs). Then it is sufficient to
run the algorithm presented above on this associated binary graph. However, it
cannot be considered as a true generalization of FC to hypergraphs: it propagates
from (concept) node to (relation) node, then from (relation) node to (concept)
node; it looks only half a step ahead. We will call FC this first “generalization”
of the binary FC. In Fig. 3, when trying to project node A of H into node a
of G, this binary propagation sees that there will be no problem to project the
relation node R. However, looking a bit further should have been better...

To cope with this problem, it has been proposed to propagate at distance 2 in
the incidence bipartite. This algorithm has been called FC+, but experiments
showed it not as efficient as expected. The CSP community began then to be
interested in hypergraphs themselves, and not in their incidence bipartite.
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Fig. 2. Looking ahead of the current node.

The first question to answer is when to propagate ? As illustrated in Fig. 3,
we can either delay the propagation (i.e. check if a relation is supported as soon
as all its arguments save one have been projected), or rely on an immediate
propagation (i.e. check if a relation is supported as soon as one of its aruments
has been projected). With delayed propagation, we only check if R is supported
when A and B have already been projected. Suppose that A has been projected
in a, B in c, and we are checking whether C can be projected in e. We deduce
that R will not be supported, whatever the image of D. But we should have
remarked it sooner. With immediate propagation, as soon as we try to project A
into a, we see that R will not be supported.

Immediate propagation always leads to smaller research trees. However, cost
of propagation must be taken into account, and only experiments (done for
CSPs) can show that cuts done in the research tree are worth that cost.

The next questions are “where to propagate ?”, and “how many times ?”. In
the binary case, it is sufficient to propagate once along relations incident to the
current node, but it is not the case in hypergraphs, as shown by Fig. 4. Suppose
that A has been projected in a and B in g. When we immediately propagated
from A, we deduced that (D, E) should only be projected in (b, d), (c, e) or (b, f).
Candidates for D are {b, c}, and those for E are {d, e, f}. When we immediately
propagated from B, we did not restrict these sets. The current node is now C,
and we try to project it into h: propagating this choice, we remove f from the
candidates of E. Let us check again the supports for the relation incident to A
and the one incident to B (note they are not incident to C). The one incident
to A does not remove any candidates, but the one incident to B proves that the
only images for (D, E) are now (b, e) and (b, d): candidates for D and E are now
respectively {b} and {d, e}. Let us check again supports for the relation incident
to A: candidates for D and E are now respectively {b} and {d}.

So by propagating along relations non incident to the current node, we have
removed more candidates, and more so by checking many times the supports for
the same relation. It gives us many choices to implement an hypergraph gener-
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alization of FC (though all obtained algorithms are sound and complete, these
choices define how much the research tree will be cut). 1) Do we only propa-
gate along relations of postU (x), relations incident to x that have an argument
in postV (x) (we call it local propagation), or do we propagate also along rela-
tions that have an argument in preV (x) and another in postV (x) (we call it a
global propagation). 2) Do we only propagate once (we call it in one step), or
repeat propagations as long as one removes some candidates (we call it in many
step). The following algorithms, implemented and experimented [8] in the CSP
community, can be defined with the above criteria:

– FC uses the binary FC on the incidence bipartite graph
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– FC+ uses a binary FC, modified to propagate at distance 2, on the incidence
bipartite graph (it is equivalent to nFC1)

– nFC0 uses delayed local propagation
– nFC2 uses immediate local propagation, in one step
– nFC3 uses immediate local propagation, in many step
– nFC4 uses immediate global propagation, in one step
– nFC5 uses immediate lobal propagation, in many step

We say that some propagation algorithm X is stronger than a propagation
algorithm Y if, considering nodes of H and G in the same order, the research
tree generated by X is a subtree of the one generated by Y . Note that, though
it means that X generates fewer backtracks than Y , it does not mean that X is
more efficient: the cost of propagation can be prohibitive. Fig. ?? compares the
theoretical strengths of these different algorithms. Experiments in [8] show that,
though there is no clear “best algorithm”, there is really worst ones: FC and
FC+. This is a justification for our hypergraphs point of view. Though nFC5
is the best one when relations strongly constraint our choices (a sparse order on
a big set of types, or sparse SGs), nFC0 is the best when SGs are dense and
few relation types are available. A good trade off is nFC2, whose efficiency is
always satisfying, and can be implemented easily using our ∆ data structure [5].

4 Conclusion

We have presented in this paper algorithms developped in the CSP community,
that really improve algorithms used today for comparing SGs (by example, [12]
uses an algorithm equivalent to FC+). This work is not a mere translation: the
data structure we propose (the ∆s) improves candidate search (in average case)
and can be used to implement at the same time BackMark and nFC2 without
overhead cost. Moreover, our criteria describing the different FC generalizations
to hypergraphs unify the different, unintuitive definitions given in [8].

This work has shown that considering SGs as hypergraphs greatly improved
efficiency of projection. Experimental results rely on those done for CSPs [8].
Adding conjunctive types was needed for two reasons: to get rid of the prob-
lems encountered when fusioning nodes having different types, and to optimize
backtracking process. Finally, though algorithms optimization is not a primary
goal of our community, it should be interesting to follow the evolution of CSP
algorithms.
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