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Abstract. We propose in this paper an extension of Conceptual Graphs
that allows to use datatypes (strings, numbers, ...) for typing concept
nodes. Though the model-theoretic semantics of these datatypes is in-
spired by the work done for RDF/RDFS, keeping sound and complete
projection-based algorithms for deduction has led to strong syntactic re-
strictions (datatyped concept nodes of a target graph cannot be generic).
This restriction, however, allows us to smoothly upgrade our extension
to rules, and to introduce functional relations (that compute the value of
datatyped concept nodes) while keeping sound and complete reasonings.

1 Introduction

Many extensions of simple conceptual graphs [Sow84] have answered the ne-
cessity to use datatypes (strings, integers) to type concept nodes. Among these
extensions, actors [LM98] also use procedural relations between nodes. We study
such an extension in this paper, the originality of our approach resides in our
definition of model theoretic semantics for this datatype extension of simple
conceptual graphs. As in [Hay04], values of a datatype will be interpreted by
themselves and, as in SPARQL [PS06], a procedural relation between values will
be evaluated to true when the result of the application of that procedure returns
a result consistant with these values. We present two different semantics for these
graphs: though the full semantics (where all interpretations contain all possible
values) are more interesting from a knowledge representation point of view, par-
tial semantics will lead to decidable (NP-complete) reasonings akin to the ones
used in the simple conceptual graphs formalism. This projection-like mechanism
allows to extend the proposed formalism with rules of form "if . . . then . . . ".

2 D-Graphs: Syntax

Datatype simple conceptual graphs extend simple conceptual graphs by allowing
access to types and procedures from a programming language library. Instead of
defining exactly this library (an important work for normalization), we decided
to characterize the properties it must satisfy for our results to remain valid.

2.1 Programming Language Library

We consider a library L, written in some programming language (we have adopted
a "Scheme-like" terminology, borrowed from [KCE98]), allowing access to:
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Strings and identifiers. Two infinite, countable, disjoint sets I and S, re-
spectively of identifiers and strings. The precise rules for forming identifiers and
strings depend upon the programming language used. We consider here that an
identifier is a sequence of letters, digits and extended alphabetic characters (such
as !, ?, but not the double quote "); and that a string is a sequence of characters
enclosed in double quotes. By example, Number, Integer, Boolean, String, +,
not, Person, John are identifiers, and "7", "true" and "Bob" are strings.

Types, values and procedures. Three infinite, countable, pairwise disjoint
sets T , V and P , respectively of types (or classes), of values (or objects), and
of procedures (or methods). Though classes are objects in most object-oriented
programming languages, we impose disjointness to avoid self-containing sets in
models of the library L (see Sect. 3.1). This restriction can be easily enforced in
any library by considering only a subset of the classes and objects available.

Binding identifiers to types and procedures. We consider a bijection
bind : I ′ ⊆ I → T ∪ P . Identifiers bound to types are called type identifiers
(we note bind−1(T ) = IT ) and identifiers bound to procedures are called pro-
cedure identifiers (we note bind−1(P) = IP ). In the previous example, Number,
Integer, Boolean and String are type identifiers, and + and not are procedure
identifiers.

Functions is-a? and eqv?. We consider an equivalence relation over values
(encoding that they should normally be regarded as the same) and a relation
over V × T (encoding that a value belongs to, is an instance of, a type). They
are respectively computed by the functions is-a? : V × T → {#t, #f} and
eqv? : V × V → {#t, #f}. Note that these functions are not procedures of P .

Specification 1 (Booleans). The library L must satisfy these properties:

– Boolean is a type identifier of I, and we note B = bind(Boolean);
– #t and #f are two values of V (they correspond to "true" and "false");
– is-a?(#t, B) = #t and is-a?(#f, B) = #t;
– ∀x ∈ V , is-a?(x, B) = #t ⇒ (eqv?(x, #t) = #t or eqv?(x, #f)) = #t.

Specification 2 (About eqv?). Let x and y be two equivalent values of V ( i.e.
such that eqv?(x, y) = #t). Then ∀t ∈ T , is-a?(x, t) = #t ⇔ is-a?(y, t) = #t.

Signature and application of a procedure. Two mappings isig : P → T +

and osig : P → T respectively define the input and output signatures of a
procedure p. The arity of p is the size of isig(p). A procedure can be applied to
values in order to obtain another value, Thanks to the partial function apply :
P × V+ → V . The functions isig, osig and apply are not procedures of P .

Specification 3 (Signature). Let p ∈ P be a procedure, isig(p) = (t1, . . . , tk)
and osig(p) = t. Then ∀(v1, . . . , vk) ∈ Vk, with is-a?(vi, ti) = #t for 1 ≤ i ≤ k,
apply(p, v1, . . . , vk) is defined and returns a value v such that is-a?(v, t) = #t.
If ∃ 1 ≤ i ≤ k such that is-a?(vi, ti) = #f , apply(p, v1, . . . , vk) is not defined.
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Note that apply is a (partial) function in a mathematical sense: the value it may
return is entirely determined by the parameters p and vi.

Specification 4 (Equivalent parameters). Let p ∈ P be a procedure, isig(p)
= (t1, . . . , tk) and osig(p) = t. Then ∀(v1, . . . , vk) ∈ Vk, ∀(v′1, . . . , v

′
k) ∈ Vk, with

is-a?(vi, ti) = #t and eqv?(vi, v
′
i) = #t for 1 ≤ i ≤ k, apply(p, v1, . . . , vk) =

v and apply(p, v′1, . . . , v′k) = v′ ⇒ eqv?(v, v′) = #t (applying a procedure on
equivalent parameters must yield an equivalent result).

External representation, read and write. A partial function read : IT ×
S → V builds, when possible, a value v belonging to a type t from the type
identifier bound to t and a string s (s is then called an external representation
of v for the type t). The partial function write : IT × V → S is used to obtain
one of these external representations (called the canonical representation) from
a value. As before, none of these functions are procedures of P .

Specification 5 (External representations). The following properties must
be satisfied by the functions read and write:
– Let n be a type identifier of IT and s be a string of S. Then read(n, s) is

defined and returns a value v ⇒ is-a?(v, bind(n)) = #t.
– Let t be a type of T and v be a value of V. Then write(t, v) is defined and

returns a value s if and only if is-a?(v, t) = #t. In that case, we have
equiv?(v, read(bind−1(t), s)) = #t.

– if v and v′ are two values of V such that eqv?(v, v′) = #t and is-a?(v, t) =
#t, then write(t, v) = write(t, v′).

2.2 Vocabulary

The vocabulary (or canon, support) is the structure traditionally used to encode
the ontological knowledge in the conceptual graphs formalism.

Definition 1 (Vocabulary). A vocabulary is a tuple ((TC ,≤C), (T 1
R,≤1), . . . ,

(T k
R,≤k)) where TC , T 1

R, . . . , T k
R are pairwise disjoint sets of identifiers (respec-

tively of concept types, relation types of arity 1 to k, and ≤C ,≤1, . . . ,≤k are
partial orders on these sets.

Unlike concept types, type identifiers of L are not explicitely ordered by a sub-
type relation. As shown in Sect. 3.1, type identifiers are interpreted by sets that
are uniquely determined by L. Inclusion of these sets thus determines the sub-
type relation. However, expliciting this relation could cause a difference (in case
of a bad programming of L) between the interpretations of type identifiers and
the interpretation of the (redundant) subtype relation.

Finally, we want to be able to decide if an identifier is a type of the vocabulary
or a type or procedure identifier in the library:

Definition 2 (Compatibility). A vocabulary V and a library L are compati-
ble if their sets of identifiers are disjoint ( i.e. (TC ∪T 1

R∪. . . T k
R)∩(IT ∪IP ) = ∅).

Note that it is always possible to obtain compatibility between the vocabulary
and the library, up to a renaming of identifiers.



86 J.-F. Baget

2.3 D-Graphs

Definition 3 (D-graph). A datatyped simple conceptual graph (D-graph), de-
fined on a vocabulary V and a compatible library L, is a tuple G = (E, R, γ, τ, μ)
where E and R are two disjoint sets (respectively of entities and relations), γ :
R → E+ maps each relation to a tuple of entities (its arguments), if γ(r) =
(e1, . . . , ek) we say that degree(r) = k, and τ and μ are mappings s.t.:

– ∀e ∈ E, τ(e) (the type of e)is either a concept type of TC (as usually done
for simple CGs, e is then called a concept node) or a type identifier of IT

(e is then called a datatype node);
– ∀r ∈ R, τ(r) (the type of r) is either a relation type of arity degree(r)

(as usually done for simple CGs, r is then called a standard relation) or
a procedure identifier n of IP such that |isig(n)| = degree(r) − 1 (in that
case, r is called a computed relation). If r is a computed relation, then all
its arguments must be datatype nodes.

– ∀e ∈ E, μ(e) (the marker of e) can be the generic symbol ∗, which is not an
identifier (e is characterized as generic) or, if e is a datatype node, a string
of S, or, if e is a concept node, an identifier of I that is not bound in L and
is not a type of V (in both cases, the node e is characterized as individual).

A D-graph G = (E, R, γ, τ, μ) is graphically represented as follows: as for simple
CGs, concept nodes are represented by rectangles and standard relations by
ovals; we represent datatype nodes by parallelograms and computed relations by
diamonds (as a reminder of actors). If e is an individual entity, then we write
τ(e) : μ(e) inside the shape representing e, otherwise we only write τ(e). If r is a
relation, we write τ(r) inside the shape representing r. If γ(r) = (e1, . . . , ek), we
draw a line between the shape representing r and each of the shapes representing
the ej. If r is a standard relation, these lines are numbered from 1 to k, according
to the place of the entity in γ(r), if r is a computed relation, then the lines are
oriented from "input entities" to relation and relation to "output entity", and
only the first k − 1 arrows are numbered. Fig. 1 represents such a D-graph. It
asserts that it exists a person whose age is greater than 27, the age of Bob. It can
be simplified by omitting the output entity with marker "true" of a computed
relation whose type is a procedure identifier bound to a procedure with output
signature bound by Boolean.

Person age Integer

Integer : "27"agePerson : Bob

>Boolean : "true"

1

1

1

2

2
2

Person age Integer

Integer : "27"agePerson : Bob

>

1

1

1

2

2
2

Fig. 1. Two graphical representations of a D-graph G
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3 D-Graphs: Semantics

3.1 Interpretations and Models

We extend the usual model-theoretic semantics of simple conceptual graphs (see
[ABC06]) to take into account the programming language library. We first define
interpretations, then the conditions under which an interpretation is a model of
a vocabulary, a library, or a D-graph.

Definition 4 (Interpretation). Let S ⊆ S be a set of strings and I be the
set of identifiers. An interpretation of (I, S) is a triple I = (Δ, ι, σ) where
Δ is a non empty set called the interpretation domain, and ι and σ are the
interpretation functions; ι : I → Δ ∪ 2Δ ∪ 2Δ×Δ ∪ . . . ∪ 2Δk

maps each string
to an element of the domain or a set of tuples of elements of the domain; and
σ : I × S → Δ is a partial mapping. I is said full if S = S.

Definition 5 (Model of a vocabulary). Let S ⊆ S be a set of strings, and
I be the set of identifiers. An interpretation I = (Δ, ι, σ) of (I, S) is a model of
the vocabulary V = ((TC ,≤C), (T 1

R,≤1), . . . , (T k
R,≤k)) (we note (I, S) |= V ) iff:

– if c is a concept type of TC, then ι(c) ∈ 2Δ;
– if r is a relation type of T i

R, then ι(r) ∈ 2Δi

;
– if t and t′ are two concept or relation types such that t ≤ t′ (where ≤ can be

≤C or one of the ≤i), then ι(t) ⊆ ι(t′);

Note that this definition is a generalization of the usual model-theoretic seman-
tics of the vocabulary of CGs: I = (Δ, ι, σ) is a model of V if and only if (Δ, ι)
is a model of V (in the usual sense of [ABC06]).

Definition 6 (Model of a library). Let S ⊆ S be a set of strings, and I be
the set of identifiers. An interpretation I = (Δ, ι, σ) of (I, S) is a model of the
library L (and we note (I, S) |= L) if and only if:
– ∀s ∈ S, ∀i ∈ I, σ(i, s) is defined if and only if i is a type identifier of IT and

read(i, s) = v is defined. In that case, σ(i, s) = read(i, write(bind(i), v))
(the value associated with the canonical representation of all equivalent ones).

– ∀t ∈ IT , ι(t) = {δ ∈ Δ | is-a?(δ, bind(t)) = #t}.
– ∀p ∈ IP , with isig(bind(p)) = (t1, . . . , tk), ι(p) = {(δ1, . . . , δk, δ) ∈ Δk+1

s.t. apply(p, δ1, . . . , δk) = δ}.
Definition 7 (Models of a D-graph). Let S ⊆ S be a set of strings, and I
be the set of identifiers. An interpretation I = (Δ, ι, σ) of (I, S) is a model of
the D-graph G = (E, R, γ, τ, μ) (and we note (I, S) |= G) if and only if there
exists a mapping α : E → Δ (alpha is called a proof of G in I) such that:
– for each individual concept node e ∈ E, α(e) = ι(μ(e)) ∈ ι(τ(e));
– for each individual datatype node e ∈ E, α(e) = σ(τ(e), μ(e));
– for each generic node e ∈ E, α(e) ∈ ι(τ(e));
– for each relation r ∈ R, γ(r) = (e1, . . . , ek) ⇒ (α(e1), . . . , α(ek)) ∈ ι(τ(r)).

Note that if a D-graph is a simple conceptual graph (it has only concept nodes
and standard relations), these constraints correspond to the usual constraints on
models of a simple conceptual graph.
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3.2 Full vs. Partial Semantics

Definition 8 (Satisfiability, validity, consequence). Let G and G′ be two
D-graphs defined over a vocabulary V and a compatible library L. An interpreta-
tion I of (I, S) covers G if every string labelling nodes of G belong to S. Then:

– G is partially (resp. fully) satisfiable if there exists an interpretation (resp.
a full interpretation) I covering G such that I |= V , I |= L and I |= G.
Otherwise it is said partially (resp. fully) unsatisfiable.

– G is partially (resp. fully) valid if for any interpretation (resp. full inter-
pretation) I covering G, I |= V and I |= L ⇒ I |= G. Otherwise it is said
partially (resp. fully) invalid.

– G is a partial (resp. full) consequence of G′ if for any interpretation (resp.
full interpretation) I covering G and G′, I |= V , I |= L and I |= G′ ⇒ I |=
G. We note G′ � G (resp G′ � G).

With simple conceptual graphs, there is no distinction between full and partial
semantics (since there is no string). Every graph is satisfiable, and the only valid
graph is the empty graph. Things are more complicated with D-graphs.

Property 1. Let G and G′ be two D-graphs defined over a vocabulary V and a
compatible library L. Then (since full interpretations are interpretations):

1. G is fully satisfiable ⇒ G is partially satisfiable;
2. G is partially valid ⇒ G is fully valid;
3. G′ � G ⇒ G′ � G.

There are more consequences with full semantics, and they are relevant (accord-
ing to the library). To explain the differences between these semantics, let us
point out that full interpretations interpret all strings of S, and since all values
of V have an external representation, full interpretations impose V (more pre-
cisely equivalence classes for eqv?) to be a subset of the domain of interpretation
Δ. With partial semantics, some values may not belong to Δ.

Let us consider the D-graphs of Fig. 2. The empty D-graph G3 is both partially
valid and fully valid. The D-graph G2 (there exists an integer) is fully valid
because Δ contains, by example, the value whose external representation is "7"
and α can map the node of G2 to that value. However, G2 is not partially valid,
since Δ may not contain any value v such that is-a?(v, bind(Integer)) = #t.
The D-graph G1 ("7 is an integer") is both partially valid and fully valid: even if

Integer: "7"

Integer

Integer: "7"

Integer: "9"

Integer+

1

2

G1

G2

G3
G4

Fig. 2. Examples of D-graphs
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an interpretation is not full, it must cover G1, and thus the value whose external
representation is "7" (a string of G1) belongs to Δ. Finally, the D-graph G4

("there exists an integer that is the sum of 7 and 9") is fully valid, but is not
partially valid (the value represented by "16" may not belong to Δ).

Property 2. Let G and G′ be two D-graphs defined over a vocabulary V and a
compatible library L. Then G is fully satisfiable ⇔ G is satisfiable.

Proof. Thanks to Prop. 1, we only have to prove that G satisfiable ⇒ G fully
satisfiable. Since G = (E, R, γ, τ, μ) is satisfiable, there exists a partial interpre-
tation I = (Δ, ι, σ) and a mapping α : E → Δ that satisfies the constraints of
Def. 7. The partial interpretation I can be "completed" to a full interpretation
I ′ = (Δ′, ι′, σ′) (by adding all values of V to Δ, while respecting the constraints
of Def. 6), and α : E → Δ ⊆ Δ′ still satisfies all constraints of Def. 7. ��

As seen in these examples, full semantics are more interesting than partial se-
mantics. However, they are a tremendous source of computational complexity.

4 Inference Mechanisms for D-Graphs

4.1 Full Validity of D-Graphs

Though we are mainly interested in computating consequence, we discuss the
problems linked to computing full validity (a particular case of full consequence,
since G is fully valid iff G is the full consequence of the empty D-graph).

Some examples of full validity computation. Let us first consider an "easy
example", the D-graph G4 of Fig. 2. To prove that G4 is partially valid, we have
to prove that there is an integer that is the sum of 7 and 9: we only have to use the
library to compute apply(bind(+), read(Integer, ”7”), read(Integer, ”9”)). If
bind(+) is decidable, then this method is decidable.

Let us now consider the D-graph G1 of Fig. 3 (there exists an integer that,
added to 7, has result 9). To prove its full validity, we cannot use apply as in
the previous example. And since the library is a "black box", we cannot guess
that this integer can be obtained by substracting 7 to 9. So we have to try
to find a value v in V ⊆ Δ such that apply(bind(+), read(Integer, ”7”), v) =
read(Integer, ”9”). Though we do not have a direct access to values of V ("black
box", again), we can enumerate this countable, infinite set by enumerating all
strings s of S and computing the value, if it exists read(Integer, s). As soon as
we enumerate the string "2", we can assert that G1 is fully valid.

Finally, let us now try to prove that the D-graph G2 (there exists an integer
that is the result of itself added to 7) of Fig. 3 is fully valid. As in the previous
example, we enumerate strings until a satisfying value is found, but, this time,
no such value exists: the algorithm will run forever...

Characterization of full validity

Definition 9 (Pure D-graph). A pure D-graph is a D-graph whose only en-
tities are datatype nodes and whose only relations are computed relations.
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Integer: "7"

Integer

Integer : "9"+

1

2

G1

Integer: "7"

Integer

+

1

2

G2

Fig. 3. Examples of D-graphs

Property 3. Only pure D-graphs can be valid or fully valid.

Proof. If a D-graph G is not pure, we can build a full interpretation that is a
model of V and L, but not a model of G: build a full interpretation that is a
model of L, then for each concept or relation type t of V , define ι(t) = ∅. ��

Theorem 1 (Characterization of full validity). Let G be a pure D-graph
defined over a vocabulary V and a compatible library L. Then G is fully valid
if and only if there exists a (pure) D-graph G′ obtained from G by replacing all
generic markers in G by strings of S such that:

– for each entity e of G′, f(e) = read(τ(e), μ(e)) is defined;
– for each relation r of G′, with arguments γ(r) = (e1, . . . , ek, e), we have

eq?(apply(bind(τ(r)), f(e1), . . . , f(ek)), f(e)) = #t.

This is a generalization to any pure D-graph of the algorithm explained for the
D-graphs of Fig. 3. However, this algorithm requires the enumeration of all tuples
of strings in Sk, where k is the number of generic entities in G. As suggested by
the first example (D-graph G4 of Fig. 2), there is a way to reduce the number
of strings to be tested.

Definition 10 (Resolving a D-graph). Let G be a D-graph, and r be a deter-
mined relation of G, i.e. a computed relation of G whose input arguments e1, . . . , ek

are individual datatype nodes and whose output argument is a generic datatype
node e. Then resolve(G, r) is the graph obtained from G by replacing the generic
marker of e by the string write(bind(τ(r)), apply(bind(τ(r)), read(τ(e1),
μ(e1)), . . . , read(τ(ek), μ(ek)))).

Property 4. G and G′ = resolve(G, r) are fully equivalent (G � G′ and G′ � G),
G is a consequence of G′, but G′ is not necessarily a consequence of G.

As an immediate consequence, we can compute full validity of a D-graph G by
applying, as long as there exists a determined relation, a succession of resolve,
then compute full validity of the obtained D-graph G′ (where G′ is called a
resolve of G). Finally, if G can be resolved into a D-graph where all datatype
nodes are individual, and if all computed relations are decidable, full validity is
decidable.

4.2 Satisfiability of D-Graphs

Fig. 4 shows two D-graphs that are not satisfiable. The D-graph G1 expresses
that "the sum of 2 and 7 is 11" and the graph G2 that "there is an integer that is
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Integer: "2"

Integer: "2"

Integer : "11"+

1

2

G1

Integer: "2"

Integer: "7"

+

1

2

G2

Integer

+ Integer: "3"
12

Fig. 4. Examples of D-graphs

both the sum of 2 and 7 and the sum of 3 and 7". This latter example highlights
the main difference between our approach and the one used in conceptual graphs
actors: though actors consider it as a "convergence problem", our semantics-
based approach defines this D-graph as unsatisfiable.

Property 5. A D-graph G is satisfiable iff its pure D-graph restriction G′ (ob-
tained by removing all concept nodes and all standard relations) is satisfiable.

Proof. (⇒) is immediate, the restriction of a proof of G in I is a proof of G′ in
I. For (⇐), let us now consider a proof α of G′ in an interpretation (Δ, ι, σ).
Then α is a proof of G′ in (V , ι, σ). We build a proof α′ of G in I ′ = (Δ′, ι′, σ′)
where Δ′ is the union of V and of concept nodes of G, and define, for all concept
types t, ι(t) = Δ′, and, for all relation types r of arity k, ι(r) = Δ′k. ��

Property 6. A pure D-graph G is either fully valid or unsatisfiable.

Proof. The truth value of a pure D-graph is only determined by the library. ��

We conclude that, as for full validity, satisfiability is decidable when the D-graph
G can be resolved into a D-graph G′ where all datatype nodes are individual,
and computed relations are decidable.

4.3 Partial and Full Consequences of D-Graphs

D-graphs consequence is the problem we are most interested in: is a D-graph Q
(a query) consequence of a D-graph, or a set of D-graphs (the knowledge base),
or is there an answer to Q in a given knowledge base ?

Problems with full consequence. A D-graph G is fully valid iff it is the full
consequence of the empty D-graph ∅. So a sound and complete algorithm for
full consequence must tackle with full validity of a query. However, we have seen
(in Sect. 4.1) that a condition to be able to compute full validity was that G
could be resolved into a D-graph without any generic datatype node. To compute
full consequence, this condition should be translated to a restriction on queries,
which we believe to strong: the only generic datatype nodes would be determined
by the query itself, a useless feature in the query language.

An extension of projection. As discussed above, full semantics would lead
either to undecidable calculus of consequence, or unacceptable syntactic restric-
tions for queries. This is why we focus on partial semantics of D-graphs. Though
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these semantics are less interesting, our motivation is to be able to compute con-
sequence using a mechanism akin to simple conceptual graphs projection; this
mechanism will be called D-projection.

Definition 11 (D-projection). Let us consider two D-graphs defined over a
vocabulary V and a compatible library L, G = (EG, RG, γG, τG, μG) and H =
(EH , RH , γH , τH , μH). A D-projection from H into G is a mapping π from
the entities of H onto the entities of G such that (where we note ρ(H, c) =
read(τH(c), μH(c))):

– for each concept node c of H, τG(c) ≤C τH(c);
– for each individual concept node c of H, μH(c) = μG(π(c));
– for each individual datatype node c of H, eq?(ρ(H, c), ρ(G, π(c))) = #t;
– for each generic datatype node c of H, eq?(read(τH(c), μG(π(c))), ρ(G, π(c)))

= #t;
– for each standard relation r of H, s.t. γH(r) = (e1, . . . , ek), there is a stan-

dard relation r′ of G, with τG(r′) ≤k τH(r) and γG(r′) = (π(e1), . . . , π(ek));
– for each computed relation r of H, s.t. γH(r) = (e1, . . . , ek, e), eq?(ρ(G, π(e)),

apply(bind(τH(r)), ρ(G, π(e1)), . . . , ρ(G, π(ek)))) = #t.

Q
Person

firstname String : "Jean-François"String similar-string?

age Integer < Integer: "45"

G
Researcher

firstname String : "Jean-François"String: "jean francois"

age Integer: "37" Integer: "45"

Fig. 5. An example of D-projection

Fig. 5 features an example of D-projection. Dashed arrows represent the mapping
π from the query Q (is there a person whose first name is a string similar
to "Jean-François" and whose age is lesser than 45), where similar-string?
is bound to a predicate returning #t when the distance between two strings
is small, to a knowledge base G. The two individual datatype nodes marked
"Jean-François" and "45" have to be present in G for a D-projection to exist.

Property 7 (Soundness). If there is a D-projection from Q into G, then Q is a
partial consequence (and thus full consequence) of G.

However, completeness of D-projection is not achieved in the general case. Let
us consider some causes of incompleteness:

1. Normality: as for simple conceptual graphs, the knowledge base G must be
put into its equivalent normal form;
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Q

G

Boolean: "true" some_rel Boolean: "false"

Boolean: "true" some_rel Boolean some_rel Boolean: "false"

1

1 12 2

2

Fig. 6. There is no D-projection from Q into G

2. Assertion of individual datatype nodes: as seen in the previous example
(Fig. 5), all necessary values must be represented by individual datatype
nodes in the knowledge base G;

3. Satisfiability: If the knowledge base G is not satisfiable, then anything is
consequence of G, and in particular queries that have no projection into G;

4. Branching: [LM07] show that adding atomic negation to simple conceptual
graphs leads to incompleteness of projection. We adapt their counterexample
to D-graphs: there is no D-projection from Q to G in Fig. 6, but there is one
whether we consider that the generic node of G represents #t or #f .

The first cause of incompleteness is handled by updating the normalization
operation, the second by adding individual datatype nodes of the query to the
knowledge base. However, to answer to the third and fourth causes of incom-
pleteness, we need to adopt a severe restriction.

Definition 12 (Normalization). A D-graph G is put into its normal form
nf(G) by fusioning all concept nodes having the same individual marker, and all
datatype nodes e e′ such that eq?(read(τ(e), μ(e)), read(τ(e′), μ(e′))) = #t.

Theorem 2 (Soundness and completeness). Let G and Q be two D-graphs
over a vocabulary V and a compatible library L. Let us consider that G can be
resolved into a D-graph Gr without generic datatype node. Then Q is a partial
consequence of G if and only if G is unsatisfiable or there is a D-projection into
the D-graph G′ that is the normal form of the disjoint union of Gr and of all
individual datatype nodes of Q.

Because of lack of space, we do not include the proof of this theorem in this
paper. The proof framework used is the one in [Bag05].

We have characterized partial consequence of D-graphs as a kind of graph
homomorphism, akin to projection. To do so, we gave up the more interesting full
semantics and restricted allowed target D-graphs (representing the knowledge
base) to the ones that can be resolved into D-graphs without generic datatype
nodes (a slight improvement with respect to databases that forbid generic nodes).
As an added benefit, this characterization as a graph homomorphism allows us
to extend the proposed formalism to datatyped conceptual graphs rules.

5 Datatyped Conceptual Graphs Rules (D-Rules)

We present in this section an extension of D-graphs to rules, as done for simple
conceptual graphs [Sal98]. We present their syntax, their partial semantics, and
briefly show how the derivation mechanism of rules can be updated for D-rules.
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5.1 Syntax

Definition 13 (D-rule). Let V be a vocabulary, and L be compatible library.
A datatyped conceptual graph rule over V and L is a D-graph R where one
partial subgraph of R is identified as the hypothesis. The other part of R (its not
necessarily a D-graph) is called its conclusion.

In the rest of this paper we will represent D-rules in the same way as D-graphs,
but the shapes representing entities and relations of the hypothesis will be shaded
in gray. The graph R of Fig. 7 represents such a D-rule, asserting that "for every
even integer x, there exists an integer obtained by dividing x by two".

5.2 Semantics

To update the partial semantics of D-graphs to D-rules, we have to define under
which conditions an interpretation is a model of a D-rule, as well as the (partial)
consequence problem with D-rules:

Definition 14 (Models of a D-rule). Let S ⊆ S be a set of strings, and I
be the set of identifiers. An interpretation I = (Δ, ι, σ) of (I, S) is a model of a
D-rule R if every proof α that I is a model of the hypothesis of R can be extended
to a proof α′ that I is a model of R.

Definition 15 (D-rules (partial) consequence). Let G and G′ be two D-
graphs defined over a vocabulary V and a compatible library L, and R be a set of
D-rules defined over V and L. We say that G′ is a partial consequence of G and
R if all (partial) interpretations that are models of V,L, G and of all D-rules in
R is also a model of G′. We note G,R � G′.

5.3 D-Derivation

With simple conceptual graphs rules, consequence can be computed with forward
chaining: finding a sequence of transformations (rule applications) of the target
graph G such that G′ can be projected into G. With D-graphs, we must first
point out that, to be able to find a D-projection corresponding to the semantics
into any of these derived graphs, these D-graphs must be resolved into D-graphs
without generic datatype nodes. We will then restrict ourselves to D-rules that
ensure that property to be true at each step of the derivation.
Definition 16 (Resolvable D-rule). A D-rule is resolvable iff all generic
datatype nodes in its conclusion are the last argument of a computed relation.

Definition 17 (Rule application). Let G be a D-graph and R be a D-rule.
R is said applicable to G if there exists a D-projection π from the hypothesis
of R into G. In that case, the application of R on G following π is the D-graph
obtained by making the disjoint union of G and of the conclusion of R then, for
each relation r of the conclusion such that γi(r) = e is an entity of the hypothesis,
replace γi(r) by π(e). Finally, we resolve the obtained graph (see Fig. 7).
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even?
Integer: "2"

/ Integer

R

Integer: "2"

G

1

2

/ Integer

Integer: "2"

1

2

/ Integer

Integer: "2"

1

2

/ Integer: "1"

(1) Copy the conclusion (2) Attach pending edges

(3) Resolve the D-graph

Fig. 7. Applying a D-rule on a D-graph

Property 8. The application of a resolvable D-rule on a D-graph that can be
resolved into a D-graph without generic datatype nodes is also a D-graph that
can be resolved into a D-graph without generic datatype nodes.

A second problem, that must be handled during derivation, is that the derivation
process may generate D-graphs that are not satisfiable.

Theorem 3 (Soundness and completeness). Let V be a vocabulary, L be a
library, G and Q be two D-graphs and R be a set of rules over V and L. Then
G,R � Q if and only if there exists a D-graph G′ obtained from the disjoint
union of G and of all individual datatype nodes in R and Q by a sequence of
rule applications or normalizations such that either G′ is unsatisfiable or there
exists a D-projection from Q into G′.

The proof in [BS06] is easily adapted to D-rules. As deduction with simple
conceptual graphs rules, partial consequence with D-rules is semi-decidable.

5.4 Computing Factorial with D-Rules

The rule R1 in Fig. 8 expresses that "if y = x + 1 and the fact of x is z, then
the fact of y is y ∗ z" (fact is a standard relation). With full semantics, this rule
is sufficient to compute factorials: if the knowledge base contains the D-graph
"the fact of 1 is 1", then all queries of form "what is the fact of an individual
integer n?" can be correctly answered.

However, with partial semantics, nothing ensures that the values required
for the recursive computation are in the interpretation domain. One way to
overcome this limitation is to force these values to be interpreted, by generating

1

Integer

Integer

+

Integer: "1"

Integerfact

Integer
*

fact

1

1

1

2

2

2

2
Integer

Integer

+

Integer: "1"

1 2

R1

R2

Fig. 8. D-rules that compute the factorial procedure
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all integers. This is the role of the rule R2 of Fig. 8. These two rules can be
compared to the ones in [Min98] to compute factorial.

6 Conclusion

We have proposed in this paper an extension of simple conceptual graphs [Sow84]
and of rules [Sal98] using datatypes (as in [Hay04]) and procedural relations (sim-
ilar to the actors of [LM98])). We have proposed two model-theoretic semantics,
based upon a library written in some programming language.

While full semantics are more interesting from a KR point of view, we can com-
pute partial consequence with D-graphs and D-rules (provided that the knowl-
edge base does not contain generic datatype nodes). The last example provides
a hint on ways to overcome the limitations of partial semantics.

Further work will consist in an implementation of D-graphs and D-rules (on
top of CoGiTaNT), and optimizations of reasonings (inspired by [BS06]).
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