
Default Conceptual Graph Rules: Preliminary

Results for an Agronomy Application

Jean-François Baget1,2, Madalina Croitoru2, Jérôme Fortin2,
and Rallou Thomopoulos3,2

1 INRIA Sophia Antipolis, 2004 Route des Lucioles 06902 Sophia Antipolis, France
baget@lirmm.fr

2 LIRMM (CNRS & Université Montpellier II), F–34392 Montpellier Cedex 5, France
{croitoru,fortin}@lirmm.fr

3 INRA, UMR1208, F–34060 Montpellier Cedex 1, France
rallou.thomopoulos@supagro.inra.fr

Abstract. In this paper, we extend Simple Conceptual Graphs with Re-
iter’s default rules. The motivation for this extension came from the type
of reasonings involved in an agronomy application, namely the simulation
of food processing. Our contribution is many fold: first, the expressivity
of this new language corresponds to our modeling purposes. Second, we
provide an effective characterization of sound and complete reasonings
in this language. Third, we identify a decidable subclass of Reiter’s de-
fault logics. Last we identify our language as a superset of SREC−, and
provide the lacking semantics for the latter language.

1 Introduction and Motivation

The modeling need that motivated this paper came from an agronomy appli-
cation: the simulation of food processing (more specifically the pasta drying
process). In this application, successive unit operations involved in the drying
process have different impacts on product qualities. These impacts can be pos-
itive or negative, non monotonically depending on the considered quality and
the concerned unit operation. 46 kinds of qualities have been identified for pasta
products, moreover these qualities can themselves be subdivided into taxonomies
of components (e.g. sub-families of vitamins) that behave differently, hence the
need to account for particular cases concerning specific subfamilies [1]. The choice
of Conceptual Graphs (CGs) as a modeling language stems from the intuitiveness
of their graphical representation as well as the possibility to use their structure
for optimization purposes.

Generally, languages of the CG family have a semantics that can be expressed
in first-order logic (FOL). The non-monotonic features of the knowledge we want
to represent for this application calls for an extension of these languages. The
extension we consider here is based upon Reiter’s default logics. This formalism
has been designed to extend FOL with knowledge like “something is true unless
we believe something else”. On top of the traditional constructs of FOL-based
CG languages (support, facts, rules, constraints), a knowledge base of our new

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 86–99, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Default Conceptual Graph Rules: Preliminary Results 87

language also consists of default CG rules inspired by Reiter’s defaults. These
default CG rules fully generalize CG rules and not only the type hierarchy as
done in [2]. In this paper we formally present this language and illustrate it with
motivating examples from our application.

We define the classical notions of conceptual graphs, rules and constraints
in sect. 2. sect. 3 is devoted to introducing default reasoning. We recall in
sect. 3.2 Reiter’s default formalism, and we introduce the syntax and semantics
of default CG rules in sect. 3.3. Finally, theoretical results are presented in
sect. 4: in sect. 4.1 we introduce the derivation tree for default conceptual
graphs and present a subclass of default CG rules for which this tree is finite. In
sect. 4.2 we use this tree for sound and complete reasonings. Finally, in sect. 4.3
we relate our new language with the SREC− of [3]. The paper concludes with
future directions of work.

2 Conceptual Graphs, Rules and Constraints

In this section, we recall essential results about conceptual graphs (CGs). The
different languages presented here are described in more detail in [3]. They all
form a subset of first-order logics (FOL) since all objects introduced (support,
graphs, rules or constraints) have a FOL semantics obtained via the transfor-
mation Φ (Φ(X) is thus the logical interpretation of the object X). In all these
languages, we will consider a knowledge base (KB) containing different objects
(i.e. support, graphs, rules and/or constraints).

Definition 1 (Semantics of a knowledge base). The logical interpretation
Φ(K) of a KB K is the conjunction of the logical interpretations Φ(X) of the
objects X it contains. A KB K is said satisfiable if the FOL formula Φ(K) is
satisfiable. If Q is a simple CG, we say that Q can be deduced from K, and note
K |= Q, if Φ(Q) is a semantic consequence of Φ(K).

We are interested here in the X -satisfiability and X -deduction problems,
where X is a language of the CG family defined by the kinds of objects allowed in
a KB. A SG KB contains only a support and a (set of) simple CG(s). A SR KB
is the union of a SG KB with a set of rules, and a SGC− KB the union of a SG KB
with a set of negative constraint. A SRC− KB is the union of a SR KB and of a
SGC− KB. The three following subsections successively present the syntax of the
different objects that can compose a KB, their logical interpretations, and recall
essential results allowing to compute X -satisfiability and X -deduction in
these different languages.

2.1 Simple Conceptual Graphs: The SG Language

Syntax: Support and Simple CGs (SGs) A KB of the SG language is
composed solely of a support (encoding a type hierarchy) and of a set of simple
CGs (that represent entities and relationships between them).

88 J.-F. Baget et al.

Definition 2 (Support). A support is a tuple S = (TC , T 1
R, · · · , T k

R, M) whose
elements are partially ordered, pairwise disjoint sets, respectively of concepts
types, relation types of arity 1, · · · , k, and of markers. All partial orders are
noted ≤. Markers are partitioned into an infinite set MG of (named) generic
markers (if m is generic, then ∀m′ ∈ M, m′ ≤ m) and a set MI of individual
markers (that are pairwise non-comparable).

Definition 3 (Simple conceptual graph). A simple conceptual graph (or
SG) defined on a support S = (TC , T 1

R, · · · , T k
R, M) is a tuple G = (C, R, γ, ε)

where C and R are disjoint finite sets, respectively of concepts and relations.
The mapping γ : R → C+ associates to each relation a tuple of concepts γ(r) =
(c1, · · · , cp) called the arguments of the relation. We note γi(r) = ci its ith

argument. The mapping ε : C ∪ R → (2TC × M) ∪1≤i≤k T i
R labels each concept

and relation. If c is a concept of C, then ε(c) = (t, m) ∈ 2Tc ×M (t is called the
type of c, m is called its marker). If m ∈ MG then c is called generic, otherwise
it is called individual. If r is a relation of R, then its type ε(r) ∈ ∪iT

i
R must

have the correct arity, i.e. |γ(r)| = j ⇔ ε(r) ∈ T j
R.

A simple CG representation of information about “a pasta product that contains
peroxidase and is undergoing a late end-of-cycle temperature drying” is presented
in fig. 1.

1
2

1

2

1

2

1

output

inactive

input

Late end−of−cycle high temperature drying: D1

Pasta product: P1

Pasta product: P2

Peroxidase: *

Fig. 1. The SG representing “a pasta product that contains peroxidase and is under-
going a late end-of-cycle temperature drying”

Note that (as required by our modeling, and as defined, for example, in [4]),
the type of a concept can be a set of concept types of TC (called a conjunctive
type). A concept c can thus be an instance of many distinct types (e.g., ε(c) =
{Protein,Enzyme}).
FOL Semantics. Supports and SGs can be translated into first order logic
(FOL) to obtain a precise semantics for our syntactic objects. We consider con-
cept types (resp. relation types of arity i) as predicate names of arity 1 (resp. of
arity i), generic markers as variables and individual markers as constants. If t
and t′ are two predicate names of arity i, and t ≤ t′, then their logical interpre-
tation is the FOL formula φ(t, t′) = ∀x1 · · · ∀xi(t(x1, · · · , xi) → t′(x1, · · · , xi)).
The logical interpretation of a support S is the formula Φ(S) obtained from the
conjunction of the formulas φ(t, t′), for all t, t′ such that t′ covers 1 t in S.
1 We say that t′ covers t if t ≤ t′ and there is no other t′′ (apart from t and t′) such

that t ≤ t′′ ≤ t′.

Default Conceptual Graph Rules: Preliminary Results 89

Let G = (C, R, γ, ε) be a SG. If c is a concept, we note φ(c) the conjunction
of atoms t(m), where t ∈ type(c) and m is the marker of c. If r is a relation, we
note φ(r) = t(m1, · · · , mi) where t = ε(r) and, ∀1 ≤ j ≤ i, mj is the marker of
γj(r). We note φ(G) =

∧
c∈C φ(c) ∧ ∧

r∈R φ(r). Then the logical interpretation
Φ(G) of G is the existential closure of φ(G).

Theorem 1. Every SG KB K = (S, G) is satisfiable.

Reasonings. Though SG-satisfiability is a trivial problem, SG-deduction
is an important problem that has been studied both inside and outside the
CG community. Classically, SG-deduction can be computed using a kind of
graph homomorphism known as projection. It maps concepts having the same
marker of the query Q to concepts of the SG G in the KB, while preserving
the existence of relations and possibly decreasing labels, as allowed by the order
relation defined in the support S. We note G 	S Q when there exists such a
mapping. For more details on projection/homomorphism, as defined for simple
CGs with conjunctive types, the reader can refer to [5]. Projection is a sound
operation w.r.t. our FOL semantics, but to be complete, the SG G must be put
into its normal form nf(G) (a semantically equivalent SG whose concepts have
all different markers). Then:

Theorem 2 (Soundness and completeness). Let K = (S, G) be a SG KB,
and Q be a SG. Then K |= Q ⇔ nf(G) 	S Q.

As homomorphism, SG-deduction is thus a NP-complete problem. By im-
posing some restrictions to the SG Q (e.g., when Q admits a bound hypertree
decomposition, see [5,6]), the problem becomes polynomial.

2.2 Adding Rules: The SG Language

Syntax. A SR KB is obtained by adding CG rules of form (hypothesis, con-
clusion) to a SG KB.

Definition 4 (CG rule). A CG rule over a support S is a tuple R = (H, C)
where H and C are two SGs. H = hyp(R) is called the hypothesis of the rule
and C = conc(R) its conclusion.

FOL Semantics. The transformation Φ defined in sect. 2.1 and can be ex-
tended to take CG rules into account. If R = (H, C) is a CG rule, we note
φH(C) = ∃x1 · · · ∃xpφ(C) where x1, · · · , xp are all variables of φ(C) that do not
also appear in φ(H). Then we note φ(R) = φ(H) → φH(C) and the logical inter-
pretation Φ(R) of the rule R is the universal closure of φ(R). The interpretation
Φ(R) of a set of CG rules R is the conjunction of the interpretations Φ(R), for
all rules R ∈ R.

Theorem 3. Every SR KB K = (S, G,R) is satisfiable.

90 J.-F. Baget et al.

Reasonings. Rules increase the complexity of our reasonings: SR-deduction
is semi-decidable (if K |= Q, then a sound and complete algorithm will stop, but
no sound and complete algorithm is ensured to stop otherwise). [7] provides a
sound and complete forward chaining algorithm. It relies upon the application
of a CG rule R = (H, C) to a SG G. R is said applicable if there is a projection,
say π from H to G. In that case, the application of R to G following π produces
a SG α(G, R, π) obtained by juxtaposing G and C, then for each concept of c
whose marker also appears in a concept c′ of H , by fusioning c with π(c′). Note
that other generic markers of C have to be renamed (a safe substitution), and
that α(G, R, π) must be put into its normal form.

If R is a set of rules, we note αS(G,R) the SG obtained by applying all
rules in R to G following all the projections of their hypothesis. Then we define
inductively αi

S by α0
S(G,R) = nf(G) and ∀1 ≤ i, αi

S(G,R) = αS(αi−1
S (G,R),R).

Theorem 4 (Soundness and completeness). Let K = (S, G,R) be a SR
KB, and Q be a SG. Then K |= Q ⇔ ∃i, αi

S(G,R) 	S Q.

If K = (S, G,R), we note K∗ = limi→∞αi
S(G,R). Note that, in general, K∗ is

an infinite SG. To ensure that forward chaining stops, even when K �|= Q, [3]
relies upon the notion of finite expansion sets of rules, ensuring that K∗ is finite.

Definition 5 (Finite expansion set (f.e.s.)). Let S be a support, and R be
a set of rules. We say that (S,R) is a finite expansion set (or f.e.s.) iff for every
SR KB K = (S, G,R), K∗ is finite.

If (S,R) is a f.e.s., forward chaining is ensured to stop (when αi
S(G,R) ≡

αi+1
S (G,R) ≡ K∗). Finding large subsets of rules that have the finite expan-

sion property is thus an important task. [3] provides two examples of f.e.s.:
disconnected rules (d.r.), that share no generic marker in the hypothesis and
the conclusion, and range restricted rules (r.r.), where all generic markers of
the conclusion are already in the hypothesis. In both cases, SR-deduction is
NP-complete. [8] introduced the notion of rules dependencies (R2 depends upon
R1 when an application of R1 can trigger an new application of R2). When the
graph encoding these dependencies has no circuit, then the set of rules is a f.e.s.
More importantly, when all strongly connected components of this graph are
f.e.s., then we also obtain a f.e.s.

2.3 Adding Negative Constraints: The Languages SGC− and SRC−

Theorems 1 and 3 point out that all SGs and SG rules are satisfiable. However
considering that every KB is satisfiable is not always realistic in practice. For
example, in our application, we do not want an enzyme to be active and inhibited
at the same time. Though various mechanisms have been proposed to introduce
the notion of insatisfiability to conceptual graphs, we focus here on negative
constraints.

Default Conceptual Graph Rules: Preliminary Results 91

Syntax. By enriching a KB of the SG (respectively SR) language with negative
constraints, we obtain a KB of the SGC− (resp. SRC−) language. A negative
constraint encodes that some knowledge must not be found in a graph.

Definition 6 (Negative constraint). A negative constraint, defined over a
support S, is noted N = ¬G, where G is a SG over S.

FOL Semantics. The notation ¬H stems from the semantic of negative con-
straints since the interpretation of N = ¬G is defined by Φ(N) = ¬Φ(G). If N
is a set of negative constraints, then Φ(N) is the conjunction of all Φ(N), for
N ∈ N .

It is then possible with negative constraints to express cases of insatisfiabil-
ity. For example, a KB containing the SG G of fig. 1 as well as the negative
constraint represented by the same fig. is unsatisfiable.

Theorem 5 (Insatisfiability). Let K = (S, G,R,N) be a SRC− KB (it is a
SGC− when R = ∅). Then K is unsatisfiable iff there exists N = ¬C such that
(S, G,R) |= C.

SGC−-satisfiability is thus co-NP complete, and SRC−-satisfiability is
truly undecidable (though SRC−-unsatisfiability is semi-decidable). The
polynomial subclasses of sect. 2.1 apply for SGC−-satisfiability while the
decidable subclasses of sect. 2.2 apply for SRC−-satisfiability.

Reasonings. Since negative constraints encode negative information and the
query encodes positive formulae, negative constraints play no more role in rea-
sonings when the KB is satisfiable.

Theorem 6 (Deduction). Let K = (S, G,R,N) be a SRC− KB, and Q be a
SG. Then K |= Q iff K is unsatisfiable or (S, G,R) |= Q.

SGC−-deduction is thus a NP-complete problem and SRC−-deduction is
semi-decidable. As previously discussed, particular subclasses of sect. 2.1 and
sect. 2.2 still apply.

3 Adding Defaults to Conceptual Graphs

3.1 The Need for Default Reasonings

In fig 2 an agronomy application example is depicted: “if a pasta product un-
dergoes a quick drying, then it is subject to cracking unless the drying is accom-
panied by vapor-injection”. To deal with such non monotonic knowledge in the
following we propose to introduce default reasoning in the CG model, in order
to express rules that will be applied in the default case, i.e. unless they are a
source of insatisfiability.

92 J.-F. Baget et al.

N CH

Vapor-injection high temperature drying : y
2

1

Cracking : z

char

Pasta product: x

2
1

Quick drying : y

in

Pasta product: x

Fig. 2. An example of a default CG rule

3.2 Reiter’s Default Logics

In this section we recall some basic definitions of Reiter’s default logics [9,10]

Definition 7 (Reiter’s default logic). A Reiter’s default theory is a pair
(Δ, W) where W is a set of FOL formulae and Δ is a set of defaults of form

δ = α(−→x):β1(
−→x),···,βn(−→x)

γ(−→x)
, n ≥ 0, where −→x = (x1, · · · , xk) is a set of variables,

α(−→x), βi(−→x) and γ(−→x) are FOL formulae for which each free variable is in −→x .

The intuitive meaning of a default δ is “For all individuals (x1, · · · , xk) , if α(−→x)
is believed and each of β1(−→x), · · · , βn(−→x) can be consistently believed, then one
is allowed to believe γ(−→x)”. α(−→x) is called the prerequisite, βi(−→x) are called the
justifications and γ(−→x) is called the consequent. A default is said to be closed if
α(−→x), βi(−→x) and γ(−→x) are all closed FOL formulae. A default theory (Δ, W)
is said to be closed if all its defaults are closed. In this case we can omit the −→x
notation.

Intuitively, an extension of a default theory (Δ, W) is a set of formulae that
can be obtained from (Δ, W) while being consistently believed. More formally, an
extension E of (Δ, W) is a minimal deductively closed set of formulae containing
W such that for any α:β

γ ∈ Δ, if a ∈ E and ¬β /∈ E, then γ ∈ E.
The following theorem provides an equivalent characterization of extensions

that we use here as a formal definition.

Theorem 7 (Extension). Let (Δ, W) be a closed default theory and E be a
set of closed FOL formulae. We inductively define E0 = W and for all i ≥ 0,
Ei+1 = Th(Ei) ∪ {γ | α:β1···,βn

γ ∈ Δ, α ∈ Ei and ¬β1, · · · ,¬βn /∈ E}2.
Then E is an extension of (Δ, W) iff E = ∪∞

i=0Ei.

Note that extensions are only defined here for closed theories. In practice open
defaults are transformed into the sets of their ground instances over the Herbrand
universe.

Note also that this characterization is not effective for computational purposes
since both Ei and E = ∪∞

i=0Ei are required for computing Ei+1.
Some closed default theories can have no extension. It is for example the case

of the default theory (Δ, W) = ({	:β
¬β }, ∅). However, normal default theories are

ensured to have extensions.
2 We note Th(Ei) the deductive closure of Ei.

Default Conceptual Graph Rules: Preliminary Results 93

Definition 8 (Normal defaults). A default is said normal if its consequent is
semantically equivalent to the conjunction of its justifications. Defaults of form
δ = α(−→x):β(−→x)

β(−→x)
are normal.

The meaning of a normal default is if α is true and it is consistent to deduce β,
then deduce β.

Theorem 8. Every closed normal default theory has an extension.

Let us see a classical example of a default theory. Suppose that we want to
model the knowledge that, in general, birds fly, penguins are birds, and penguins
do not fly. Finally we add a penguin called Tweety in our knowledge base. This
knowledge can be model by the following default theory :

(Δ, W) =
({p(x) : ¬f(x)

¬f(x)
,
p(x) : b(x)

b(x)
,
b(x) : f(x)

f(x)

}
, {p(Tweety)}

)

where b(x) means that the individual x is a bird, f(x) means that x flies, and
p(x) means x is a penguin. Note that the knowledge penguins are birds have
no known exception, and so a rule ∀x, p(x) → b(x) can be added to W instead
of the default rule p(x):b(x)

b(x) in D. This default theory can lead to 2 different
extensions, which are E1 = Th({p(Tweety), b(Tweety),¬f(Tweety)}) and E2 =
Th({p(Tweety), b(Tweety), f(Tweety)}).

Some problems that must be addressed in Reiter’s default logics are the fol-
lowing:

– extension: Given a default theory (Δ, W), does it have an extension?
– skeptical deduction: Given a default theory (Δ, W) and a formula Q,

does Q belong to all extensions of (Δ, W)? In this case we note (Δ, W) |=S Q.
– credulous deduction: Given a default theory (Δ, W) and a formula Q,

does Q belong to an extension of (Δ, W)? In this case we note (Δ, W) |=C Q?

In the previous example (Δ, W) admits two extensions. Both f(Tweety) and
¬f(Tweety) can be credulously deduced, but neither can be skeptically deduced.

Note that even when restricting these problems to closed normal default the-
ories, the expressive power of FOL makes them undecidable.

3.3 Introducing Default CG Rules: The SRDC− Language

Syntax. A KB of the SRDC− language is obtained from a SRC− KB enriched
with default CG rules inspired by Reiter’s defaults.

Definition 9 (Default CG rule). A default CG rule over a support S is a
tuple D = (H, N1, · · · , Nn, C), with n ≥ 0, H and C are SG’s, and the Ni are
negative constraints over S. As in Reiter’s defaults, we call H the prerequisite,
Ni the justifications, and C the consequent.

Intuitively, such default means that “if H is believed, the negative constraints
(justifications) are each satisfied, and it is consistent to believe C, then it is
allowed to believe C”.

94 J.-F. Baget et al.

Default Semantics. The interpretation of SRDC− KB K = (S, G,R,N ,D)
is a default theory Υ (K) = (Υ (D), Φ((S, G,R,N))) where Φ is the FOL inter-
pretation of the KB as defined in sect. 2, and Υ (D) = {Υ (D), D ∈ D}. The
mapping Υ translates each default CG rule D into a default in Reiter’s sense
Υ (D) called the default interpretation of D.

Let D = (H, N1, · · · , Nn, C) be a default CG rule, where Ni = ¬Gi. Its default
interpretation Υ (D) is built as follows:

– Let −→h be the variables occurring in φ(H), −→f the variables occurring both in
φ(C) and in φ(H), and −→c the variables occurring in φ(C) and not in φ(H).

– For ζ ∈ {φ(C), φ(G1), · · · , φ(Gn)}, the formula sk(ζ) is obtained by replacing
for ci ∈ −→c , each occurrence of ci by the functional term fD

i (−→f) in ζ.
– For ξ ∈ {sk(G1), · · · , sk(Gn)}, sk∗(ξ) is obtained by existentially quantifying

all variables of ξ that are not in −→
h . Finally:

Υ (D) =
φ(H) : sk(C),¬sk∗(G1), · · · ,¬sk∗(Gn)

sk(C)

Let us illustrate this by the transformation of the default CG rule D =
(H, N, C) of fig. 2. In the next equation, QD(x) means that product x un-
dergoes a quick drying, P (x) signifies that x is a pasta product, C(x) signifies
the Cracking property of pasta and V IHTD(y) specifies a vapor-injection high
temperature drying y. While at the representation level the formula below has
the same meaning as fig. 2, the authors consider that fig. 2 conveys its meaning
in a more intuitive manner.

Υ (D)=
QD(y) ∧ in(y, x) ∧ P (x) : P (x) ∧ char(fD

1 (y, x), x) ∧ C(fD
1 (y, x)), V IHTD(y)

P (x) ∧ char(fD
1 (y, x), x) ∧ C(fD

1 (y, x))

The problems defined in Reiter’s default logics are easily recast in SRDC−:

– SRDC−-extension: Given a SRDC− KB K, does Υ (K) have an extension?
– SRDC−-skeptical deduction: Given a SRDC− KB K and a SG Q, does

Υ (K) |=S Φ(Q)? In this case we note K |=S Q.
– SRDC−-credulous deduction: Given a SRDC− KB K and a SG Q, does

Υ (K) |=C Φ(Q)? In this case we note K |=C Q.

Modeling Choices. Two features of our chosen semantics might seem surpris-
ing to the reader. First, the presence of sk(C) as an added justification. This
is due to the fact that we need to be able to represent normal defaults in our
language (if a default rule D = (H, C) has no negative constraint then Υ (D)
is a normal default). Second, we have introduced functional terms in the inter-
pretation of a default. This is due to the fact that the default interpretation is
composed of many formulae and functional terms are the only way to link up
the variables of these formulae.

Default Conceptual Graph Rules: Preliminary Results 95

4 Reasoning in SRDC−

4.1 The Defaults Derivation Tree (d.d.t.)

The defaults derivation tree (d.d.t.) of a SRDC− KB K = (S,G,R,N ,D) is a
rooted, labeled and possibly infinite tree ddt(K) used as a tool to compute exten-
sions. To define this tree, we need new objects generalizing negative constraints,
that we call attached constraints.

Attached Constraints. Let G be a SG. A constraint attached to G is a pair
(A, μ) where A is a SG and μ is a partial mapping from the concepts of A to
the concepts of G. We say that G violates (A, μ) iff there exists a projection π
from A into G such that π extends μ. Otherwise G satisfies (A, μ).

Note that attached constraints generalize negative constraints (the latter oc-
curs in the case of μ = ∅). A SR KB K = (S, G,R) violates a constraint (A, μ)
attached to G iff there exists i ≥ 0 and a projection π from A to αi

S(G,R) such
that π extends μ. It satisfies (A, μ) otherwise. K violates a set A of constraints
attached to G iff it violates one (A, μ) ∈ A. It satisfies A otherwise. The com-
plexity of computing satisfiability with attached constraints remains the same
as for negative constraints.

Note that if (A, μ) is a constraint attached to G and G′ is a SG containing G
(such as a SG obtained by applying rules on G), then we can consider (A, μ) as
a constraint attached to G′. In the same way, many algorithms rely on finding
a smaller equivalent SG G′ by fusioning concepts of the SG G. Then, for every
(A, μ) attached to G, we attach a constraint (A, μ′) to G′ such that if there is a
concept c in A such that μ(c) has been fusioned into c′ in G′, then μ′(c) = c′,
and μ′(c) = c otherwise.

Vertices of the d.d.t. The d.d.t. intuitively represents a kind of derivation
tree. Each node v is labeled by λ(v) = (Gv,Av). Gv represents a state of knowl-
edge derived from the initial KB and Av represents the suppositions that we
made to derive Gv. For example, consider the application of the default CG rule
represented in fig. 2 on a pasta product A which undergoes a quick drying Q.
To conclude that A is subject to cracking, we need to suppose (and remember
in Av for further derivation) that Q is not a vapor-injection high temperature
drying. To remember this ensures that no further derivation can conclude that
Q was a vapor-injection high temperature drying.

A vertex v of ddt(K) is labeled by λ(v) = (Gv,Av) where Gv is a SG and
Av is a set of constraints attached to Gv. The root r of ddt(K) is labeled by
λ(r) = (G, ∅). A vertex v of ddt(K) is satisfiable iff (S, Gv,R,N) is satisfiable
and (S, Gv ,R) satisfies Av.

If v is satisfiable, then for each D = (H, N1, · · · , Nn, C), for each projection π
into some G′ = αi

S(Gv,R), if π is not “blocked” v admits a child v′ = δ(v, π).
Let us consider the SG G′′ = α(G′, (H, C), π). For each justification Nk, we

build the constraint (Nk, μk) attached to G′′ where μk is defined as follows:
if c is a concept of Nk whose generic marker appears in a node c′ of H then
μk(c) = π(c′). Otherwise, if this marker appears in a node c′ of C then μk(c) is a

96 J.-F. Baget et al.

concept obtained from a copy of c′ in G′′. We note A′
v = Av∪{Ak}1≤k≤n. Finally

π is blocked iff there exists j ≥ i such that α(αj
S(Gv,R), (H, C), π) violates A′

v.
If π is not blocked, then λ(v′) = (G′′,A′

v).

Building Finite d.d.t. Given the expressive power of SG rules, ddt(K) is an
infinite tree: it can have an infinite depth and each vertex can have an infinite
number of children. To be able to finitely build d.d.t., let us now extend the
notion of finite expansion sets (sect. 2.2).

Definition 10 (Finite expansion property). If D = (H, N1, · · · , Nn, C) is
a default CG rule, we note fol(D) = (H, C) its associated SG rule. If D is a
set of default CG rules, we note fol(D) = {fol(D)}D∈D. Then a SRDC− KB
K = (S, G,R,N ,D) is said to have the finite expansion property iff R∪ fol(D)
is a finite expansion set.

If K = (S, G,R,N ,D) has a finite expansion property, then for every vertex v
of ddt(K), with λ(v) = (Gv,Av), Gv is a subgraph of the finite SG (S, G,R ∪
fol(D))∗. Then, since the graph Gv labeling each vertex v is bigger than the
graph labeling is parent, the depth of ddtK is finite. And since (S, Gv,R)∗ is
finite, there is a finite number of projections of the defaults in it, so the number
of children of v is finite, and its satisfiability can be computed in finite time. It
follows that:

Theorem 9. If a SRDC− KB K has the finite expansion property then ddt(K)
can be computed in finite time.

4.2 Sound and Complete Reasoning w.r.t. Υ

Let us now show that the d.d.t. can be used for sound and complete reasonings
in SRDC−.

Theorem 10. Let K = (S, G,R,N ,D) be a SRDC− KB, and Q be a SG. Then
either (S, G,R,N) is unsatisfiable or the following assertions are equivalent:

i There exists an extension E of Υ (K) such that E |= Φ(Q).
ii There exists a satisfiable leaf v of ddt(K) with λ(v) = (Gv,Av) such that

(S, Gv ,R) modelsQ.

Due to space requirements the proof of this theorem is omitted in this paper.
It follows that:

Theorem 11 (Soundness and completeness). Let K = (S, G,R,N ,D) be
a SRDC− KB, and Q be a SG. Then K |=S Q (resp. K |=C Q) iff either ddt(K)
has a unique unsatisfiable vertex, or, for all satisfiable leaves, (resp. there exists
one satisfiable leaf) v in ddt(K) with λv = (Gv,Av), (S, Gv,R) |= Q.

This latter theorem provides us with an effective characterization of the deduc-
tion problems in SRDC−. Thanks to thm. 9, this characterization also provides
a halting algorithm when K has the finite expansion property.

Default Conceptual Graph Rules: Preliminary Results 97

4.3 Relationship with SREC
The Language SREC. [3] presents a family of CG languages. The most ex-
pressive one in this language hierarchy is the language SREC. In this language
a KB K is composed of a support S, a SG G, a set R of inference rules (that
behave exactly as CG rules), a set E of evolution rules of form (H, C), and a set
C of constraints. By restricting constraints to the negative constraints presented
here we obtain the language SREC−.

Reasoning in SREC−. Reasonings in SREC− rely upon building a “tree of
possible worlds”, akin to the d.d.t. presented in this paper. Since SREC− does
not dynamically generate constraints, a possible world is only labeled by a SG.
Children of a possible world are generated as if we considered each evolution rule
as a default rule without justification. Finally, an answer to a SG Q can be found
in any possible world, not only in the leaves as done in SRDC−. However, default
rules translating evolution rules are normal, and thus any possible world is an
ancestor or an extension (thm. 8). Therefore, if an answer to Q can be found in
a possible world v, the same answer can be found in all leaves/extensions having
v as an ancestor.

Default Semantics for SREC−. By comparing the reasonings in SREC− and
SRDC− we obtain an interesting equivalence result that provides the formally
lacking semantics of SREC−. Let us consider the bijection τ from SREC− KBs to
SRDC− KBs that transforms each evolution rule into a default CG rule without
justification (i.e. a normal default CG rule).

Theorem 12. Let K = (S, G,R, E ,N) be a SREC− KB, and Q be a SG. Then
(S, G,R, τ(E),N) |=C Q iff (S, G,R,N) is unsatisfiable or K |= Q (|= being the
deduction used in SREC−).

We can finally provide a logical semantics ΥE to the SREC− language, by
defining:

ΥE((S, G,R, E ,N)) =
{

(⊥, ∅) if (S, G,R,N) is unsatisfiable
Υ ((S, G,R, τ(E),N)) otherwise.

SREC− is thus the subset of SRDC− restricted to normal defaults, and:

Theorem 13. Deduction in SREC− is sound and complete with respect to cred-
ulous deduction according to the ΥE semantics.

5 Conclusion and Perspectives

In this paper we have formally defined the syntax and semantics of a new lan-
guage of the SG family, namely the SRDC− language. This extension was nec-
essary in the agronomy application we are involved in, and the semantics of
this language are expressed in Reiter’s default logics. Since this subset of de-
fault logics is built upon a particular subset of FOL, we were able to provide a

98 J.-F. Baget et al.

constructive characterization of Reiter’s extensions (thm. 10). Using the finite
expansion sets that form a decidable subclass of SR, we defined a new decidable
subclass of Reiter’s default logics (thm. 9). Finally, we showed that the SREC−

language of [3] is a strict subclass of SRDC−, and provided a formerly lacking
default logic semantics for that language.

Some problems are still to be addressed to be able to encode the knowledge
required by our application and to compute deductions in an efficient way:

Functional Relations. For more precise reasonings we need to be able to
represent numerical information in a knowledge base and to express functional
constraints such as the following rule given by a domain expert: a high tempera-
ture for drying has to be above Naples average spring temperature. [11] extends
the language SR to handle such knowledge. This language could provide the
foundations for a functional extension of SRDC−.

Other Decidable Subclasses of CG Rules. The KB obtained from our
preliminary modeling has the finite expansion property that ensures finite rea-
sonings. It may be possible that with the introduction of new knowledge this
property no longer holds. It would then be essential to investigate other kinds
of decidable KBs. An interesting research direction could be to extend other
kinds of decidable subclasses of SR to SRDC−. Such decidable subclasses could
be finite unification sets (that ensure a finite backward chaining rewriting) or a
bounded treewidth sets (a strict generalization of f.e.s. ensuring that K∗ has a
bounded treewidth)[12].

Reasoning with Preferences. Default logics can be extended to take de-
faults preferences into account. In this model, one can define an order (partial
or total) on the set of defaults. Our default CG rule model provides a natural
order on defaults: a default CG rule D1 should be preferred to a default D2

if the prerequisite of D1 is a specialization of the prerequisite of D2. This is
exactly what is intuitively needed in our agronomy scenario. The consequent
problems of computing extensions are then transformed into finding the most
preferred extensions [10]. Even when defaults are totally ordered, the procedure
that chooses the application of the most preferred unblocked default at each
vertex of the d.d.t., is not ensured to lead to a preferred extension. Formally
defining and finding preferred extensions is left for further work.

References

1. Abécassis, J.: Qualité du blé dur de la semoule et des pâtes alimentaires, 7–11
(1991)

2. Faron, C., Ganascia, J.: Representation of defaults and exceptions in conceptual
graphs formalism. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa,
J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 153–167. Springer, Heidelberg (1997)

3. Baget, J.F., Mugnier, M.L.: Extensions of Simple Conceptual Graphs: the Com-
plexity of Rules and Constraints. Jour. of Artificial Intelligence Research 16, 425–
465 (2002)

Default Conceptual Graph Rules: Preliminary Results 99

4. Baget, J.F., Mugnier, M.L.: The sg family: Extensions of simple conceptual graphs.
In: Proc of Seventeenth International Joint Conference on Artificial Intelligence,
IJCAI 2001, Seattle, Washington, pp. 205–212. Morgan Kaufmann, San Francisco
(2001)

5. Baget, J.F.: Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive
Types for Efficient Projection Algorithms. In: Ganter, B., de Moor, A., Lex, W.
(eds.) ICCS 2003. LNCS, vol. 2746, pp. 229–242. Springer, Heidelberg (2003)

6. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural csp decomposition
methods. Artificial Intelligence 124 (2000)

7. Salvat, E., Mugnier, M.L.: Sound and complete forward and backward chainingd
of graph rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS,
vol. 1115. Springer, Heidelberg (1996)

8. Baget, J.F.: Improving the forward chaining algorithm for conceptual graphs
rules. In: Proceedings of the Ninth International Conference (KR 2004), Whistler,
Canada, pp. 407–414. AAAI, Menlo Park (2004)

9. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
10. Brewka, G., Eiter, T.: Prioritizing default logic: Abridged report. In: Festschrift on

the occasion of Prof.Dr. W. Bibel’s 60th birthday. Kluwer, Dordrecht (1999)
11. Baget, J.F.: A datatype extension for simple conceptual graphs and conceptual

graphs rules. In: Proc of ICCS 2007: Conceptual Structures: Knowledge Architec-
tures for Smart Applications. LNCS, vol. 4604, pp. 83–96. Springer, Heidelberg
(2007)

12. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for
rules with existential variables. IJCAI 2009 (submitted, 2009)

	Default Conceptual Graph Rules: Preliminary Results for an Agronomy Application
	Introduction and Motivation
	Conceptual Graphs, Rules and Constraints
	Simple Conceptual Graphs: The \mathcal{SG} Language
	Adding Rules: The \mathcal{SG} Language
	Adding Negative Constraints: The Languages $\mathcal{SGC^{-}}$ and $\mathcal{SRC^{-}}$

	Adding Defaults to Conceptual Graphs
	The Need for Default Reasonings
	Reiter's Default Logics
	Introducing Default CG Rules: The $\mathcal{SRDC^{-}}$ Language

	Reasoning in $\mathcal{SRDC^{-}}$
	The Defaults Derivation Tree (d.d.t.)
	Sound and Complete Reasoning w.r.t. Υ
	Relationship with \mathcal{SREC}

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

