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Abstract

Weintroducethe ��� family of graph-basedknowl-
edge representationand reasoningmodels, basi-
cally extensionsof the simpleconceptualgraphs
model. Objectsof thesemodelsare colored sim-
ple graphsand are usedto representfacts, rules
and constraints. Reasoningsare basedon graph-
theoretic mechanisms,mainly graph homomor-
phism. Models of this family are definedby the
kind of objectscomposinga knowledgebase. In
this paper, we focus on the formal definitionsof
thesemodels,includingtheiroperationalsemantics
andrelationshipswith FOL, andwe studytheir de-
cidability propertiesandcomputationalcomplexity.

1 Intr oduction
Conceptualgraphs (CGs) have been proposedin [Sowa,
1984] as a knowledgerepresentationand reasoningmodel,
mathematicallyfoundedon logicsandgraphtheory. Though
mainly studiedasa graphicalinterfacefor logics or asa di-
agrammaticsystemof logics, their graph-theoreticfounda-
tions have beenless investigated. Most works in this area
are limited to simpleconceptualgraphs (simplegraphsor
SGs)[Sowa,1984;CheinandMugnier, 1992], corresponding
to thepositive,conjunctive andexistentialfragmentof FOL.
Thismodelhasthreefundamentalcharacteristics:

1. objectsarebipartitelabelledgraphs(nodesrepresenten-
titiesandrelationsbetweentheseentities);

2. reasoningsare based on graph-theoreticoperations,
mainlya graphhomomorphismcalledprojection;

3. it is logically founded,reasoningsbeingsoundandcom-
pletew.r.t. a FOL semanticscalled � .

Main extensionsof the SG model, keeping projection-
basedoperationsandsoundandcompletesemantics,are in-
ference rules [Gosh and Wuwongse,1995; Salvat, 1998]
and nestedgraphs [Chein et al., 1998]; for general CGs,
[Kerdiles, 1997] introducesan original deductionsystem,
combininganalytictableauxwith projection.

Wepresenthereafamilyof extensionsof thesimplegraphs
model. Thecommongroundfor theseextensionsis thatob-
jects are colored simplegraphsrepresentingfacts, rules or

constraints, and operationsare basedupon projection; the
deductionproblemasks,given � a knowledgebaseand 	
a simple graph(which may representa query, a goal, . . . ),
whether	 canbededucedfrom � . Accordingto thekindsof
objectsconsideredin � , differentreasoningmodelsareob-
tained,composingthe �
� family. In this paper, we focuson
the formal definitionsof thesemodels,including their oper-
ationalsemanticsandrelationshipswith FOL, andwe study
their decidabilitypropertiesandcomputationalcomplexity.

In section 2 basic definitions and results about simple
graphsare recalled. Section3 presentsan overview of the�
� family. In particular, we explain why we considerSGs
graphicalfeaturesasessentialfor knowledgemodelingand
pointout thatthesepropertiesarepreservedin the �
� family.
In next sectionswestudythedifferentmembersof thefamily.

2 BasicNotions: the �
� Model
Basicontologicalknowledgeis encodedin a structurecalled
a support. Factualknowledgeis encodedinto simplegraphs
(SGs),which arebipartitelabelledmultigraphs(therecanbe
severaledgesbetweentwo nodes).Elementaryreasoningsare
computedby a graphhomomorphismcalledprojection.

Definition 1 (Support) A support is a 4-tuple � ����������������������
.
���

and
���

are two partially ordered finite
sets,respectivelyof concepttypesand relationtypes. Rela-
tion typesmaybeof anyarity greateror equalto 1.

�
is the

setof individual markersand
�

is a mappingfrom
�

to
���

.
We denoteby � thegenericmarker, where �! " � . Thepartial
order on

�$#&% �(' considers elementsof
�

as pairwisenon
comparable, and � asits greatestelement.

Definition 2 (Simple Graph) A simplegraph, definedon a
support � , is a bipartite multigraph )*� ��+,�.-/�.01�

, where+ � ��+ � �2+ � �
.
+ �

and
+ �

are the setsof conceptnodes
andrelationnodes,

-
is thesetof edges. Edgesincidentona

relationnodeare numberedfrom1 to thedegreeof thenode.
We denoteby )43 �657� the 8:96; neighborof a relationnode

5
in) . Each nodehasa labelgivenby themapping

0
. A concept

node < is labelled by a couple (type(c), marker(c)), where
type(c) is an elementof

���
, called its type, and marker(c)

is an elementof
�=#>% �(' , calledits marker. If marker(c) = m

is an individual marker, thentype(c)=
�?�6@!�

. A relationnode5
is labelledby type(r), anelementof

���
, calledits type, and

thedegreeof
5

mustbeequalto thearity of type(r).
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Figure1: Simplegraphs.

In thedrawing of a SG,conceptnodesarerepresentedby
rectanglesandrelationnodesby ovals. Genericmarkersare
omitted. And sincein our exampleswe usebinary relations
only, numberson edgesarereplacedby directededges:a re-
lation nodeis incidentto exactly oneincomingandoneout-
goingedge.Fig. 1 shows two (connected)simplegraphsas-
sumedto bedefinedover thesamesupport.

Simple graphscorrespondto the existential conjunctive
andpositive fragmentof FOL (by the semantics� ). Types
aremappedto predicatesandindividualmarkersto constants.
A setof formulas � ��A,� is assignedto any support� , trans-
lating partial orderson types. Given any SG ) , a formula� � ) � is built as follows. A term is assignedto eachcon-
ceptnode:a distinct variablefor eachgenericnode,andthe
constantcorrespondingto its marker otherwise. An atomB � < � (resp.

B � <DC!EFEGEH<JI � ) is associatedto eachconceptnode
(resp. relation node

5
of arity K ), where

B
is the type of

the node,and < (resp. <L3 ) is the term assignedto this node
(resp.assignedto ) 3 ��5M� ). Let N � ) � be the conjunctionof
theseatoms. � � ) � is the existentialclosureof N � ) � . E.g.
the formula assignedto the dashedsubgraphof ) in Fig. 1
is OQPROQS �6TVU7WDUYX(5 <JZ UD5[� P �[\^]V5Y_L`(U < B � S �[\^TVU7WDUYX(5 <JZ UD5[�ba>�[\@!UD@dceUf5[� P � S �?\g@hUf@dceUf5Q�ba=� S ��\ works-with

� P ��a>��� .
Definition 3 (Projection) Let 	 and ) be two SGsdefined
on a support � , a projectionfrom 	 into ) is a mapping i
from

+j�k� 	 � to
+j�k� ) � and from

+���� 	 � to
+j�
� ) � that pre-

servesedgesandmaydecreasenodelabels:

1. l�< 5 " -g� 	 �L� i � < � i ��5M� " -m� ) � ; andif <n�o	p3 ��5M� , theni � < � �q)43 � i �65M��� ;
2. lRP " +g� 	 �L��0r� i � P ���mst0H� P � (if P is a conceptnode,s

is the product of the orders on
� �

and
�u#v% �Q' ,

i.e.
B Sfw UQ� i � P ���xs B SYw UQ� P � and

@!X(5 K Uf5Q� i � P ���ys@!X(5 K UD5[� P ��� .
We note 	{z|) ( 	 subsumes) ) if thereexistsa projec-

tion from 	 into ) . Typically, 	 representsa query, ) a
fact, andprojectionsfrom 	 to ) defineanswersto 	 . In
Fig. 1, supposeResearcher

s
Person, thenthereis onepro-

jection from 	 into ) . The imageof 	 by this projection
is the dashedsubgraphof ) . Projectionis soundandcom-
pletew.r.t. the semantics� , up to a normality conditionfor
completeness;thenormalformof aSG ) is theSGnf

� ) � ob-
tainedby merging conceptnodeshaving thesameindividual
marker. This SG alwaysexists (andis computablein linear
timewith anaivealgorithm).Then:let 	 and ) betwo

A ) s.	{z nf
� ) �o} � � � �e� � � ) �4~ � � 	 � [CheinandMugnier,

1992], [GoshandWuwongse,1995].

For the sake of brevity, we considerin what follows that
SGs(andmorecomplex constructsbuilt uponSGs)aregiven
in normal form, and put into normal form if neededafter
a modification. And, sincea SG needsnot be a connected
graph,we confusea setof SGswith theSGobtainedby per-
forming thedisjoint unionof its elements.In following defi-
nition for instance,theSG � representsa setof SGs.

Definition 4 ( ��� Deduction) Let � and 	 be two SGs. 	
canbededucedfrom � if 	|z�� .

The �
� deductionproblem is NP-complete[Chein and
Mugnier, 1992]. Note that thesubsumptionrelationinduced
by projectionoverSGsis a quasi-order. Two graphsaresaid
to be equivalentif they project to eachother. A SG is said
to be redundantif it is equivalent to one of its strict sub-
graphs. Redundancy checkingis an NP-completeproblem.
Eachequivalenceclassadmitsa unique(up to isomorphism)
nonredundantgraph[CheinandMugnier, 1992].

3 Overview of the ��� Family
From a modeling viewpoint, the simple graphsmodel has
two essentialproperties.Theobjects,simplegraphs,areeas-
ily understandableby anend-user(a knowledgeengineer, or
even an expert). And reasoningsare easily understandable
too, for two reasons:projectionis a graphmatchingopera-
tion, thuseasilyinterpretableandvisualisable;andthesame
languageis usedat interfaceandoperationallevels. It fol-
lows that reasoningscan be explainedin a naturalmanner
to the user, stepby step,anddirectly on his own modeliza-
tion (seefor instancetheknowledgeengineeringapplication
describedin [Bos et al., 1997] or experimentsin document
retrieval doneby [Genest,2000], wherein bothcasestherep-
resentationlanguageis at the expert level). The �
� family
keepstheseessentialproperties.

Let us now informally presentthe mostgeneralmodelof
thefamily. Throughoutthissection,wewill useexamplesin-
spiredfrom a modelizationof a knowledgeacquisitioncase
study, called Sysiphus-I:it describesa resourceallocation
problem,wheretheaimis to assignofficesto personsof a re-
searchgroupwhile fulfilling constraints[Bagetet al., 1999].

Simplegraphsarethe basicconstructs,uponwhich more
complex constructs,rules and constraints,are defined,and
operationsarebasedonprojection.A rule expressesaknowl-
edgeof form “if � holdsthen � canbeadded”.It is encoded
into a simple graphprovided with two colors, highlighting
the hypothesisandthe conclusionof the rule. In drawings,
we representthehypothesisby white nodes,andtheconclu-
sion by gray ones. Rulesareusedin the following way: if
the hypothesisof a rule canbe projectedinto a graph,then
therule is applicableto thegraph,andits conclusioncanbe
addedto the graphaccordingto the projection. The rule of
Fig. 2 canbe understoodas “for all personsP and S , if P
workswith S , then S workswith P ”. It canbeappliedto ) of
Fig. 1, addinga relationnode(work-with) with predecessor
[Researcher:K] andsuccessor[Researcher].

A constraint canbeapositiveconstraintor anegativecon-
straint,expressinga knowledgeof form “if � holds,somust� ”, or “if � holds, � mustnot”. It is alsoa bicoloredsim-
ple graph: the first color definesthe conditionpart, andthe
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secondcolor the mandatory(or forbidden)part. A graph )
satisfiesa positive constraint � if each projectionfrom the
conditionpart of � into ) canbe extendedasa projection
of the whole � . And ) satisfiesa negative constraintif no
projectionof � into ) canbeextendedasa projectionof the
whole � . Fig. 2 representsthenegative constraint“two per-
sonsworking togethershouldnotshareanoffice”. Thegraph) of Fig 1 doesnot satisfythis constraintbecause“there is
a researcherwhoworkswith researcherK” (projectionof the
conditionpartof � ) “and they shareoffice #124” (extension
of theprojectionto aprojectionof thewhole � ).

Whenconstraintsareinvolved,wedistinguishbetweentwo
kindsof rules: inferencerulesof form “if � thenadd � ” and
evolution rulesof form “if � thenadd � , exceptif it brings
inconsistency”. Now, a knowledgebasecontainsfour sets
representingdifferent kinds of knowledge: a set � of sim-
ple graphsencodingfactualknowledge,a set � of inference
rules, aset � of evolutionrulesanda set � of constraints.

Let usoutlinethedeductionproblem:theproblemtakesin
input a knowledgebase(KB) anda goalexpressedasa SG,
andaskswhetherthereis a pathof consistentworlds evolv-
ing from theinitial oneto aworld satisfyingthegoal.Factual
knowledgedescribesan initial world; inferencerulesrepre-
sentimplicit knowledgeaboutworlds; evolution rulesrepre-
sentpossibletransitionsfrom oneworld to otherworlds;con-
straintsdefineconsistency of worlds;asuccessorof aconsis-
tentworld is obtainedby anevolution rule application;solv-
ing theproblemconsistsin findingapathof consistentworlds
evolving from theinitial oneto a world satisfyingthegoal.

In the particularcaseof the Sysiphus-Imodelization, �
and � describeinitial information(office locations,persons
andgrouporganization),� representsallocationconstraints,� consistsof oneevolutionrule: “wheneverthereareaperson
andanoffice,try to assignthisofficeto thisperson”.Thegoal
representsa situationwhereeachpersonof thegrouphasan
office. A solutionto theproblemis aworld obtainedfrom the
initial oneby a sequenceof office assignments,whereeach
personhasanoffice,while satisfyingallocationconstraints.

Let usnow specifydefinitionsandnotationsconcerningthe�
� family. RulesandconstraintsaredefinedascoloredSGs.

Definition 5 (coloredSGs) A coloredsimplegraphis a paira � � ) ���Q� where ) is a SGand
�

is a mappingfrom
+m� ) �

into
%f���J� ' . Thenumberassociatedto a nodeis called the

color of the node. We denoteby
a!� 3G� the subgraphof ) in-

ducedby 8 -colored nodes. Thesubgraph
a!��� � mustform a

SG(i.e. the neighbors of a relation nodeof the hypothesis
mustalsobelongto thehypothesis).

A KB is denotedby ��� � � � � � � � � � . Givena KB � and
a goal 	 , the deductionproblemaskswhether 	 canbe de-

ducedfrom � (we note 	�z�� ). If we imposesomeof the
sets � , � or � to be empty, oneobtainsspecificreasoning
models.Note that in theabsenceof constraints( �$��� ), in-
ferenceandevolution ruleshave the samebehavior, thus �
and � canbeconfused.The ��� family is thencomposedof
thesix following models.� the �
� modelfor � =

� � � � � � � � �� the �,� modelfor � =
� � � � � � � � �� the �
�H� modelfor � =
� � � � � � � � �� the �,�/� modelfor � =
� � � � � � � � �� the ����� modelfor � =
� � � � � � � � �� the �,�m��� modelfor � =
� � � � � � � � �

Sinceafacthasthesamesemanticsasarulewith anempty
hypothesis,theset � is only usedin modelsnameswhenboth
rule sets � and � areempty. The hierarchyof thesemod-
els is representedin Fig. 3. It highlightsthedecidabilityand
complexity of theassociateddeductionproblems.

Semi−decidable

NP−complete

Truly undecidable

−complete

PSfragreplacements �[���M��[���
���7�
�����

�[�
���

�?��

Figure3: Reasoningmodelshierarchyfor the �
� family

4 SGsand Rules: the �^� Model
A simplegraphrule (SGrule)embedsknowledgeof form “if� then � ”. Thefollowing definitionis equivalentto themore
traditionalone(two SGsrelatedwith coreferencelinks) used
in [GoshandWuwongse,1995;Salvat,1998].

Definition 6 (SGRules) A simplegraphrule
T

is a colored
SG.

Tp��� � is calledits hypothesis, and
T�� C � its conclusion.

Deductiondependson the notion of a rule application: it
is a graphtransformationbaseduponprojection.

Definition 7 (Application of a SG Rule) Let ) be a SG,
and

T
be a SGrule.

T
is applicableto ) if there existsa

projection,say i , from
T���� � (thehypothesisof

T
) into ) . In

thatcase, theresultof theapplicationof
T

on ) accordingtoi is thegraph )4  obtainedbymakingthedisjointunionof )
and of a copyof

Tp� C � (the conclusionof
T

), then,for every
edge < 5 , where < " T���� � and

5 " T�� C � , addingan edge with
thesamenumberbetweeni � < � andthecopyof

5
. )4  is said

to bean immediate
T

-derivationfrom ) .

A derivationis naturallydefinedasa (possiblyempty)se-
quenceof rule applications:

Definition 8 (Derivation) Let � bea setof SGrules,and )
bea SG.We call � -derivationfrom ) to a SG )4  a sequence
of SGs)t��) � � EDEJE � )pIm��)4  such that, for

�/s 8 s K , ) 3
is an immediate

T
-derivationfrom ) 3�¡ C , where

T " � .
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To deducea SG 	 , we mustbe able to derive a SG into
which¢£	 canbeprojected,hencethefollowing definition:

Definition 9 (Deduction in �,� ) Let �¤� � � � � � be a KB
andlet 	 bea SG. 	 canbededucedfrom � (notation 	�z� � � � � ) if thereexistsan � -derivationfrom � to a SG ¥ such
that 	�z¦¥ .

The semantics� is extendedto translateSG rules: letT �
and

T C be two SGs, s.t.
T � � Tp��� � and

T C is the
SG obtainedfrom

T�� C � by addingthe neighborsof the rela-
tion nodesof

Tp� C � which areconceptnodesof
T���� � . Then� �6T4� �§l1P�ChEFEGE¨P[© � N �6T � �$ª OQS(C!EGEGEHS¬«/N �6T C � ) wherePj3 are the variablesof N �6T � � and SY­ are the variablesofN �6T C � that do not appearin N �6T � � . The following sound-

nessand completenessresult is obtained: 	®z � � � � �!}� � � �e� � � � �e� � � � ��~ � � 	 � [Salvat, 1998]. The ��� deduc-
tion problemis semi-decidable[CoulondreandSalvat,1998].

5 SGsand Constraints: the ���°¯ Model
Let usnow introduceconstraints, which areusedto validate
knowledge. In presenceof constraints,deductionis defined
only on a consistentknowledgebase.

Definition 10 (Constraints) A positive (resp.negative) con-
straint � is a colored SG. � ��� � is called the trigger of the
constraint, � � C � is calledits obligation(resp.interdiction). A
SG )oi -violatesa positive(resp.negative)constraint � if i
is a projectionof thetrigger of � into thenonredundantform
of ) (resp.into ) ) thatcannotbeextended(resp.thatcanbe
extended)to a projectionof � asa whole. ) violates � if iti -violates� for someprojection i . Otherwise, ) satisfies� .

Noticetheremaybetwo equivalentSGs,suchthatonesat-
isfiesa positive constraintandtheotherdoesnot. E.g. given
a constraint� , take ) satisfying � , andthe equivalent(re-
dundant)graph ¥ obtainedby makingthe disjoint union of) andthetriggerof � . ¥ violates� . Wehavethuschosento
defineconstraintsatisfactionw.r.t. thenonredundantform of
a SG.This problemdoesnot occurwith negativeconstraints.

Two constraints��C and �
± aresaidequivalentif, for ev-
ery graph ) , ) violates � C if f ) violates � ± . Any negative
constraint� is equivalentto thenegativeconstraintobtained
from � by coloring all its nodesby 1. Furthermore,nega-
tive constraintsareindeeda particularcaseof positive ones:
considerthe positive constraint�V  obtainedfrom a negative
one � by coloringall nodesof � by 0, thenaddingaconcept
nodetypedNotThere, coloredby 1, whereNotThere is
incomparablewith all other typesanddoesnot appearany-
whereexceptedin � . Thena graph ) violates � if andonly
if it violates �V  . Positive constraintsstrictly includenegative
constraints,in thesensethattheassociatedconsistency prob-
lemsarenot in thesamecomplexity class(seetheorem3).

Let us relateour definitions to other definitionsof con-
straintsfoundin theCGliterature.Theconstraintsof [Mineau
andMissaoui,1997] correspondto a particularcaseof our
constraintswherethe triggerandthe obligationarenot con-
nected. In turn, our constraintsarea particularcaseof the
minimaldescriptiveconstraintsof [Dibie et al., 1998], where
thedisjunctivepartis restrictedto onegraph.

Definition 11 (Consistency/Deductionin �
�H� ) A KB �{�� � � � � is consistentif � satisfiesall constraints of � . A SG	 can be deducedfrom � if � is consistentand 	 can be
deducedfrom � .

Note that a 	 that violatesa constraintof � may still be
deducedfrom � . It doesnot mattersince 	 is a partial rep-
resentationof knowledgededuciblefrom � . How can we
translatethe notion of consistency into FOL? For negative
constraints,the correspondenceis immediate,andrelies on
projectionsoundnessandcompleteness.

Theorem1 A SG ) violates a negative constraint �²�� �V  �³�Q� iff � � � �e� � � ) �>~ � � �V  � , where �V  is the SG un-
derlying � .

Consistency relative to positive constraintscan be ex-
plainedwith FOL, translating“projection” into a notion of
logical “substitution” betweenthe formulas associatedto
graphs(see for instancethe S-substitutionof [Chein and
Mugnier, 1992]). Another bridge can be built using rules.
Indeed,agraph) satisfiesapositiveconstraint� if andonly
if, considering� asarule,all applicationsof � on ) produce
a graphequivalentto ) . Or, morespecifically:

Property 1 A SG )xi -violatesa positiveconstraint � iff,
considering� asa rule, theapplicationof � on ) according
to i producesa graphnot equivalentto ) .

Using soundnessandcompletenessof the �,� deduction,
andproperty1, oneobtainsthefollowing relationwith FOL:

Theorem2 A SG ) violatesa positiveconstraint � iff there
is a SG )4  such that � � � �e� � � ) �e� � � � �´~ � � )4  � and not� � � �e� � � ) �d~ � � )   � , where � � � � is the translationof �
consideredasa rule.

The problem “does a given graph satisfy a given con-
straint?” is co-NP-completeif this constraintis a negative
constraint(we mustchecktheabsenceof projection),but be-
comesµn¶± -completefor apositiveone( µ°¶± is co-NPNP).

Theorem3 (Complexity in �
�H� ) Consistencyin �
�H� isµn¶± -complete(but is co-NP-completeif all constraints are
negative).

Sketch of proof: �
�H� -Consistency belongsto µ°¶± since it
correspondsto the language·v� % P¨¸ l1SQCeOQS�± T
� P � S(C � S¬± � ' ,
where P encodesan instance)�¹2� and

� P � S(C � S�± � " T if fS C is a projection µ � from � ��� � into ) , S ± is a projection µ
from � into ) s.t. µ^º � ��� �:» ��µ � . Now, let us considertheµn¶± -completeproblem�
¼± : givenabooleanformula

-
, anda

partition
%D½ C ��½ ±M' of its variables,is it truethatfor any truth

assignmentfor thevariablesin
½ C thereexistsa truthassign-

ment for the variablesin
½ ± s.t.

-
is true? We first show

thatthespecialcasewhere
-

is aninstanceof 3-SAT remainsµn¶± -complete(let uscall this problem3-SAT ¼± ). For thatwe
usethepolynomialtransformationfrom any booleanformula
to a setof clausesdescribedin ([Papadimitriou,1994], ex-
ample8.3), followedby a polynomialtransformationfrom a
clauseto clauseswith 3 literals. The“new” variablesareput
in the set

½ ± . We thenreduce3-SAT ¼± to �
�H� -Consistency.-
is mappedto a constraint� : briefly said,thereis onecon-

ceptnode[t:*] for eachvariableandoneternaryrelationnode
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with type
5 3 for eachclause< 3 . � ��� � is composedof all con-

ceptnodescomingfrom variablesin
½ C . ) is composedof

two individual conceptnodes[t:0] and[t:1] correspondingto
the truth valuesand,for eachclause<L3 thereis onerelation
nodeof type

5 3 for eachtriple of truthvaluesgiving thevalue
true to < 3 . Note that, since � ��� � doesnot containany rela-
tion node,any truth assignmentfor the variablesof

½ C is a
projectionfrom � ��� � to ) , andreciprocally. ¾
Corollary 1 Deductionin �
�H� is µ ¶± -complete.

Notethatthetheorem3 canbeusedto show thatconsistency
of minimal descriptive constraintsin [Dibie et al., 1998] is
also µn¶± -complete.

6 Rulesand Constraints: ��¿n¯kÀ��^�¦¯
Thetwo kindsof rules,inferencerules � andevolution rules� , definetwo alternativemodels.In ����� , � is seenastheini-
tial world, rootof apotentiallyinfinite treeof possibleworlds,
and � describesthe possibleevolutions from one world to
others.Thedeductionproblemaskswhetherthereis a path
of consistentworldsfrom � to a world satisfying	 .

Definition 12 (Deduction in ����� ) Let �¤� � � � � � � � be a
KB, andlet 	 bea SG. 	 canbededucedfrom � if there is
an � -derivation �o��) � � EDEJE � ) I such that, for

�Ás 8 s K ,� )43 � � � is consistentand 	 canbededucedfrom ) I .
In �,�/� , � providedwith � is a finite descriptionof a po-

tentially infinite world, thathasto beconsistent.Applying a
rule to � cancreateinconsistency, but a furtherapplicationof
a rule may restoreconsistency. Let us formalizethis notion
of consistencyrestoration. Supposethereis a i -violation of
a positive constraint� in � ; this violation

� � � i � is saidto
be � -restorable if thereexists an � -derivation from � into)4  suchthat theprojection i of thetriggerof � into )4  can
be extendedto a projectionof � asa whole. The violation
of a negative constraintcannever berestored.Note that the� -restorationcancreatenew violations,thatmustthemselves
beproven � -restorable.

Definition 13 (Consistency/Deductionin �,�/� ) A KB �|�� � � � � � � isconsistentif, for anySG)   thatcanbe � -derived
from � , for everyconstraint � " � , for every i -violation of� in )4  , � � � i � is � -restorable. A SG 	 canbededucedfrom� if � is consistentand 	 canbededucedfrom

� � � � � .
Considerfor instancea KB containingtheSG ) in Fig. 4,

expressingthe existenceof the number0, a constraintanda
rule, both representedby the coloredSG

a
. The constraint

assertsthat for every integer Â , there mustbe an integer Â?  ,
successorof Â . If therule is anevolutionrule, ) is seenasan
inconsistentinitial world (thereis nosuccessorof 0 in ) ) and
nothingwill bededucedfrom this KB. If therule is aninfer-
encerule, its applicationimmediatelyrepairsthe constraint
violation, while creatinga new integer, that hasno succes-
sor, thusa new violation. Finally, every constraintviolation
couldeventuallyberepairedby aruleapplication,andtheKB
shouldbeprovenconsistent.

Let uspoint out that the ��� modelis obtainedfrom �,�/�
or ����� when � is empty, and �
�H� is obtainedfrom �,�/�
(resp.����� ) when � (resp.� ) is empty.

A simple graph G A colored SG K

successorInteger: Zero Integer Integer

Figure4: Consistency in �����r Y�,�/�
Theorem4 (Complexity in �����r f�,�/� ) Deductionin �����
is semi-decidable. Consistencyand deductionin �,�/� are
truly undecidable.

Proof: ����� includes �,� thus ����� -deductionis not decid-
able. When 	 is deduciblefrom � , a breadth-firstsearchof
thetreeof all derivationsfrom � , eachgraphbeingchecked
for consistency, ensuresthat ) I is found in finite time. For�,�/� , we show that checkingconsistency is truly undecid-
able. Let � be a KB where � containsa positive constraint�VÃ andanegativeconstraint� ¡ , bothwith anemptytrigger.
For proving consistency, onehasto provethat � ¡�Äz � � � � � ,
and the algorithm doesnot stop in this case(from semi-
decidability of deductionin ��� ). The sameholds for the
complementaryproblem(proving inconsistency) taking �VÃ
insteadof � ¡ , hencetheundecidability. ¾
7 Combining Inferenceand Evolution
The �,�m�?� modelcombinesboth derivationschemesof the�,�/� and ����� models. Now, � describesan initial world,
inferencerulesof � completethe descriptionof any world,
constraintsof � evaluatetheconsistency of aworld, evolution
rulesof � try to make evolve a consistentworld into a new,
consistentone. Thedeductionproblemis: can � evolve into
a consistentworld satisfyingthegoal?

Definition 14 (Deduction in �,�m��� ) A SG )   is an immedi-
ate �m� -evolution froma SG ) if thereexistsan � -derivation
from ) into )4    andan immediate� -derivationfrom )4    into)   . An �m� -evolution froma SG ) to a SG )   is a sequence
of SGs )*�Å) � � EJEDE � )pIÆ�Å)4  such that, for

�Æs 8 s K ,) 3 is an immediate�m� -evolution from ) 36¡ C . Givena KB�Ç� � � � � � � � � � , a SG 	 can be deducedfrom � if there
is an �m� -evolution �È��) � � EJEDE � ) I where, for

�´s 8 s K ,� ) 3 � � � � � is consistent,and 	 canbededucedfrom
� )pI � � � .

When �É�{� , oneobtainsthe �,�/� model (thereis only
one world). When �Ê�Ë� , one obtains ����� (information
containedin a world is complete). As a generalizationof�,�/� , deductionin ���m��� is truly undecidable.Let us now
considera decidablefragmentof �,�m��� (which in particular
wassufficient for the Sysiphus-Imodelization).First notea
rule hasonly to beappliedonceaccordingto a givenprojec-
tion: furtherapplicationswith this projectionobviously pro-
duceredundantinformation.Suchapplicationsaresaidto be
useless. A SG ) is saidto beclosedw.r.t. a rule

T
if all ap-

plicationsof
T

on ) areuseless.Givena setof rules � , we
note,whenit exists, )�Ì� (theclosureof ) w.r.t. � ) thesmall-
estgraphderivedfrom ) thatis closedw.r.t. everyrule in � .
Whenit exists )�Ì� is unique. � is calleda finite expansion
set(f.e.s.)if, for everySG ) , its closure)�Ì� exists(andthus
canbecomputedin finite time). If � is afinite expansionset,
the deductionproblemin the �,� modelbecomesdecidable
(but it is not anecessaryconditionfor decidability).
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Property 2 (Finite expansionsets) Let �Í� � � � � � � � bea
KB wherÎ e � is a finite expansionset. Then � is consistent
iff
�Ï% �ÐÌ� ' � � � is consistent,anda SG 	 canbededucedfrom� � � � � iff 	 canbededucedfrom

�Ï% �ÐÌ� ' � .
Thefollowing decidablecaseis basedon property2.

Property 3 (Decidablecase) Deductionin �,�m��� is semi-
decidableif � is a f.e.s. andis decidableif � # � is a f.e.s.

Proof: Suppose� is a f.e.s. When 	 canbe deduced,one
obtainsananswerin finite time; we proceedasfor ����� (see
proof of theorem4) but consistency checksaredoneon the
graphclosureinsteadof the graphitself. Now, if � # � is
a f.e.s., �ÐÌ�
ÑQ� exists, thus the derivation tree is finite, and
consistency checksmayonly cut somepartsof this tree. ¾

A rule is saidto be range restricted(by analogywith the
so-calledrules in Datalog, whereall variablesof the head
must appearin the conclusion)if no genericconceptnode
belongsto its conclusion.Then:

Property 4 A setof rangerestrictedrulesis a f.e.s.

Proof: Sinceall graphsareput into normalform, anindivid-
ualmarkerappearsat mostoncein a graph.Thentheclosure
of aSG ) canbeobtainedwith aderivationof length Ò � Â I � ,
where Â is thesizeof

� ) � � � and K is thegreatestarity of a
relationtypeappearingin a rule conclusion. ¾
8 Conclusion
We proposea family of modelsthat canbe seenas the ba-
sis of a genericmodelingframework. Main featuresof this
framework arethefollowing: a cleardistinctionbetweendif-
ferent kinds of knowledge,that fit well with intuitive cate-
gories,a uniform graph-basedlanguagethat keepsessential
propertiesof theSGmodel,namelyreadabilityof objectsas
well asreasonings.We guessthis later point is particularly
importantfor the usability of any knowledgebasedsystem.
In our framework, all kinds of knowledgearegraphseasily
interpreted,andreasoningscanbegraphicallyrepresentedin
anaturalmannerusingthegraphsthemselves,thusexplained
to theuseron its own modelization.

Technicalcontributions,w.r.t. previousworks on concep-
tualgraphs,canbesummarizedasfollows:� the representationof different kinds of knowledge as

coloredSGs: facts,inferencerules,evolution rulesand
constraints.� the integration of constraintsinto a reasoningmodel;
moreor lesssimilar notionsof a constrainthadalready
beenintroducedin [Dibie etal., 1998;MineauandMis-
saoui,1997] but wereonly usedto checkconsistency of
a simplegraph(asin the �
�H� model). Thecomplexity
of consistency checkingwasnot known.� a systematicstudy of the obtainedfamily of models
with a complexity classificationof associatedconsis-
tency/deductionproblems.

We establishedlinks betweenconsistency checkingand
FOL deduction.Theoperationalsemanticsof modelsinclud-
ing constraints,namely �,�m��� , ���/� and ����� , is easyto

understandbut thereis anunderlyingnonmonotonicmecha-
nismwhoselogicalinterpretationshouldrequirenonstandard
logics.Thedefinitionof a logical semanticsfor thesemodels
is anopenproblem.
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