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Abstract

Weintroducethe SG family of graph-baseénowl-
edge representatiorand reasoningmodels, basi-
cally extensionsof the simple conceptualgraphs
model. Objectsof thesemodelsare colored sim-
ple graphsand are usedto represenfacts rules
and constaints Reasoningsare basedon graph-
theoretic mechanisms,mainly graph homomor
phism. Models of this family are definedby the
kind of objectscomposinga knowledgebase. In
this paper we focus on the formal definitions of
thesemodels,ncludingtheir operationabemantics
andrelationshipswith FOL, andwe studytheir de-
cidability propertiesandcomputationatomplexity.

1 Intr oduction

Conceptualgraphs (CGs) have been proposedin [Sawa,
1984 as a knowledgerepresentatiormnd reasoningmodel,
mathematicallyfoundedon logics andgraphtheory Though
mainly studiedasa graphicalinterfacefor logics or asa di-
agrammaticsystemof logics, their graph-theoretidounda-
tions have beenlessinvestigated. Most works in this area
are limited to simple conceptualgraphs (simple graphsor
SGs)[Sawva, 1984;CheinandMugnier, 1997, corresponding
to the positive, conjunctive andexistentialfragmentof FOL.
This modelhasthreefundamentatharacteristics:

1. objectsarebipartitelabelledgraphs(nodesepresenén-
tities andrelationsbetweerntheseentities);

2. reasoningsare based on graph-theoreticoperations,
mainly agraphhomomorphisntalledprojection

3. itislogically founded reasoning®eingsoundandcom-
pletew.r.t. a FOL semanticzalled®.

Main extensionsof the SG model, keeping projection-
basedoperationsand soundand completesemanticsarein-
ference rules [Gosh and Wuwongse, 1995; Sahat, 1994
and nestedgraphs[Chein et al., 1999; for geneal CGs
[Kerdiles, 1997 introducesan original deductionsystem,
combininganalytictableauxwith projection.

We presentereafamily of extensionf thesimplegraphs
model. The commongroundfor theseextensionss that ob-
jects are colored simple graphsrepresentingacts rules or
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constrints and operationsare basedupon projection; the
deductionproblemasks,given K a knowledgebaseand @
a simple graph (which may represent query a goal, ...),
whetherQ) canbededucedrom K. Accordingto thekindsof
objectsconsideredn X, differentreasoningmodelsare ob-
tained,composinghe SG family. In this paperwe focuson
the formal definitionsof thesemodels,including their oper
ationalsemanticsandrelationshipswith FOL, andwe study
their decidabilitypropertiesandcomputationatomplexity.
In section2 basic definitions and results about simple
graphsare recalled. Section3 presentsan overview of the
SG family. In particular we explain why we considerSGs
graphicalfeaturesas essentiafor knowledgemodelingand
pointoutthatthesepropertiesarepreseredin theSG family.
In next sectionsve studythedifferentmemberof thefamily.

2 BasicNotions: the SG Model

Basicontologicalknowledgeis encodedn a structurecalled
a support Factualknowledgeis encodednto simplegraphs
(SGs),which arebipartitelabelledmultigraphs(therecanbe
severaledgesetweertwo nodes) Elementaryeasoningare
computedoy a graphhomomorphisntalledprojection

Definition 1 (Support) A support is a 4-tuple § =
(T¢,Tr,Z,7). Tc and Tg are two partially ordered finite
sets,respectivelyf concepttypesand relationtypes Rela-
tion typesmaybe of any arity greateror equalto 1. 7 is the
setof individual markersand 7 is a mappingfromZ to T¢.
We denoteby x the genericmarker, whee « ¢ Z. Thepartial
order on Z U {x} consides elementf 7 as pairwise non
comparble andx asits greatestelement.

Definition 2 (Simple Graph) A simplegraph definedon a

supportS, is a bipartite multigraph G = (V, E, \), whee

V = (Vo,VRr). Ve and Vg are the setsof conceptnodes
andrelationnodes F is thesetof edges Edgesincidentona

relationnodeare numbeedfrom 1 to the degreeof thenode

We denoteby G;(r) theit* neighborof a relation noder in

G. Eadh nodehasa label givenby the mapping\. A concept
nodec is labelled by a couple (type(c), marker(c)), whee

type(c)is an elementof T, called its type, and marker(c)
is anelemenbfZ U {x}, calledits marker. If marker(c)= m

is anindividual marker, thentype(c)=7(m). A relationnode
r is labelledby type(r), an elemenbf T'g, calledits type, and

thedegreeof » mustbe equalto thearity of type(r).
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Figurel: Simplegraphs.

In the drawing of a SG, conceptodesarerepresentedy
rectanglesandrelationnodesby ovals. Genericmarkersare
omitted. And sincein our exampleswe usebinary relations
only, numberson edgesarereplacedby directededges:are-
lation nodeis incidentto exactly oneincomingandoneout-
going edge.Fig. 1 showvs two (connectedsimplegraphsas-
sumedo bedefinedoverthe samesupport.

Simple graphscorrespondto the existential conjunctive
and positive fragmentof FOL (by the semanticsp). Types

aremappedo predicatesandindividual markersto constants.

A setof formulas®(.S) is assignedo ary supportS, trans-
lating partial orderson types. Givenary SG G, a formula
®(G) is built asfollows. A termis assignedo eachcon-
ceptnode: a distinct variablefor eachgenericnode,andthe
constantcorrespondingo its marker otherwise. An atom
t(c) (resp.t(c1 ... ¢x)) is associatedo eachconceptnode
(resp.relation node r of arity k), wheret is the type of
the node,andc (resp.c;) is the term assignedo this node
(resp.assignedo G;(r)). Let a(G) be the conjunctionof
theseatoms. ®(G) is the existential closureof a(G). E.g.
the formula assignedo the dashedsubgraptof G in Fig. 1
is 33y (Researcher(z) A Project(y) A Researcher(K) A
member(z,y) A member(K, y)A works-with{z, K)).

Definition 3 (Projection) Let ) and G be two SGsdefined
on a supportS, a projectionfrom @ into G is a mappingm
from Vo (Q) to Vo (G) andfrom Vg(Q) to Vr(G) that pre-
servesdgesandmaydeceasenodelabels:

1. Ver € E(Q),n(c)n(r) € E(G); andif ¢ = Q;(r), then
m(c) = Gi(w(r));

2. Vz € V(Q), Mn(z)) < A=) (if z is a conceptnode
< is the product of the orders on T and Z U {x},
i.e. type(n(z)) < type(x) and marker(w(z)) <
marker(z)).

Wenote@ > G (Q subsumesy) if thereexistsa projec-
tion from @ into G. Typically, @ representsa query G a
fact, and projectionsfrom @) to G defineanswerso @. In
Fig. 1, supposeéReseather < Person thenthereis onepro-
jection from @ into G. Theimageof @ by this projection
is the dashedsubgraphof G. Projectionis soundand com-
pletew.r.t. the semanticsp, up to a normality conditionfor
completenesghenormalformof aSGG istheSGnf(G) ob-
tainedby memging conceptodeshaving the sameindividual
marker. This SG alwaysexists (andis computabldn linear
time with anaive algorithm). Then:let Q andG betwo SGs.
Q > nf(G) & ¥(S),2(G) F ®(Q) [CheinandMugnier,
1994, [GoshandWuwongse 1995.
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For the sale of brevity, we considerin what follows that
SGs(andmorecomplex constructduilt uponSGs)aregiven
in normal form, and put into normal form if neededafter
a modification. And, sincea SG needsnot be a connected
graph,we confusea setof SGswith the SG obtainedby per
forming the disjoint union of its elements.In following defi-
nition for instancethe SG G representa setof SGs.

Definition 4 (SG Deduction) Let G and ) be two SGs. @
canbededucedromgG if ) > G.

The SG deductionproblemis NP-complete[Chein and
Mugnier, 1994. Notethatthe subsumptiorrelationinduced
by projectionover SGsis a quasi-order Two graphsaresaid
to be equivalentif they projectto eachother A SGis said
to be redundantif it is equivalentto one of its strict sub-
graphs. Redundang checkingis an NP-completeproblem.
Eachequivalenceclassadmitsa unique(up to isomorphism)
nonredundangraph[CheinandMugnier, 1997.

3 Overview of the SG Family

From a modeling viewpoint, the simple graphsmodel has
two essentiaproperties. The objects simplegraphsareeas-
ily understandablby anend-useia knowledgeengineeror
even an expert). And reasoningsare easily understandable
too, for two reasons:projectionis a graphmatchingopera-
tion, thuseasilyinterpretableandvisualisable;andthe same
languageis usedat interfaceand operationallevels. It fol-
lows that reasoningscan be explainedin a naturalmanner
to the user stepby step,anddirectly on his own modeliza-
tion (seefor instancethe knowledgeengineeringapplication
describedn [Bos et al., 1997 or experimentsin document
retrieval doneby [Genest200d, wherein bothcasegsherep-
resentatiorianguageis at the expertlevel). The SG family
keepstheseessentiaproperties.

Let us now informally presentthe mostgeneralmodel of
thefamily. Throughouthis sectionwe will useexamplesn-
spiredfrom a modelizationof a knowledgeacquisitioncase
study called Sysiphus-I:it describesa resourceallocation
problemwheretheaimis to assignofficesto personf are-
searchgroupwhile fulfilling constraint§Bagetetal., 1999.

Simple graphsare the basicconstructsuponwhich more
comple constructs,rules and constraints,are defined,and
operationarebasedn projection.A rule expressesknowl-
edgeof form “if A holdsthenB canbeadded”.It is encoded
into a simple graphprovided with two colors, highlighting
the hypothesisandthe conclusionof therule. In drawings,
we representhe hypothesisy white nodesandthe conclu-
sion by gray ones. Rulesare usedin the following way: if
the hypothesisof a rule canbe projectedinto a graph,then
therule is applicableto the graph,andits conclusioncanbe
addedto the graphaccordingto the projection. The rule of
Fig. 2 canbe understoodas “for all personse andy, if x
workswith y, theny workswith z”. It canbeappliedto G of
Fig. 1, addinga relationnode(work-with) with predecessor
[ResearcherK] andsuccessofResearcher].

A constiaint canbea positive constrainior a negative con-
straint,expressinga knowledgeof form “if A holds,somust
B, or“if A holds,B mustnot”. It is alsoa bicoloredsim-
ple graph: the first color definesthe condition part, andthe
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Figure2: ColoredSGs

secondcolor the mandatory(or forbidden)part. A graphG
satisfiesa positive constraintC' if ead projectionfrom the
conditionpart of C' into G can be extendedas a projection
of thewhole C. And G satisfiesa negative constraintif no
projectionof C into G canbe extendedasa projectionof the
whole C'. Fig. 2 representshe negative constraint‘two per
sonsworking togethershouldnot shareanoffice”. Thegraph
G of Fig 1 doesnot satisfythis constraintbecauséthereis
aresearchewhoworkswith researcheK” (projectionof the
conditionpartof C') “and they shareoffice #124” (extension
of the projectionto a projectionof thewhole C).

Whenconstraintsareinvolved,we distinguishbetweertwo
kindsof rules:inferencerulesof form “if A thenaddB” and
evolutionrules of form “if A thenadd B, exceptif it brings
inconsisteng”. Now, a knowledgebasecontainsfour sets
representinglifferentkinds of knowledge: a setG of sim-
ple graphsencodingfactualknowledge,asetR of inference
rules, aset€ of evolutionrulesandasetC of constaints

Let usoutlinethedeductionproblem:the problemtakesin
input a knowledgebase(KB) anda goal expressedasa SG,
andaskswhetherthereis a pathof consistentvorlds evolv-
ing from theinitial oneto aworld satisfyingthegoal. Factual
knowledgedescribesan initial world; inferencerulesrepre-
sentimplicit knowledgeaboutworlds; evolution rulesrepre-
sentpossibletransitionsrom oneworld to otherworlds; con-
straintsdefineconsisteng of worlds; a successoof a consis-
tentworld is obtainedby anevolution rule application;solv-
ing theproblemconsistsn finding apathof consistentvorlds
evolving from theinitial oneto aworld satisfyingthe goal.

In the particular caseof the Sysiphus-Imodelization,G
andR describeinitial information (office locations,persons
andgrouporganization),C representsllocationconstraints,
£ consistf oneevolutionrule: “wheneverthereareaperson
andanoffice, try to assigrthis officeto this person”.Thegoal
represents situationwhereeachpersonof the grouphasan
office. A solutionto the problemis aworld obtainedrom the
initial one by a sequencef office assignmentswhereeach
persorhasanoffice, while satisfyingallocationconstraints.

Letusnow specifydefinitionsandnotationsconcerninghe
SG family. RulesandconstraintaredefinedascoloredSGs.

Definition 5 (colored SGs) A coloredsimplegraphis a pair
K = (G, p) whee G is a SGandp is a mappingfromV(G)
into {0,1}. Thenumberassociatedo a nodeis called the
color of the node We denoteby K;, the subgiaph of G in-
ducedby i-colored nodes. The subgaph Ky mustform a
SG(i.e. the neighbos of a relation nodeo% the hypothesis
mustalsobelongto the hypothesis).

A KB is denotecby K = (G, R, &,C). GivenaKB K and
a goal @, the deductionproblemaskswhether@) canbe de-
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ducedfrom K (we note@ > K). If we imposesomeof the

setsR, £ or C to be empty one obtainsspecificreasoning
models. Note thatin the absencef constraintC = §), in-

ferenceand evolution rules have the samebehaior, thusR

and& canbe confused.The SG family is thencomposeaf

thesix following models.

the SG modelfor K = (G, 0, 0, 0)

¢ theSR modelfor K = (G, R, &, 0)
e theSGC modelfor K = (G, 0, 0, C)
e theSRC modelfor K = (G, R, 0, C)

theSEC modelfor K = (G, 0, &, C)
the SREC modelfor K = (G, R, &, C)

Sinceafacthasthesamesemanticasarule with anempty
hypothesisthesetg is only usedin modelsnamesvhenboth
rule setsR and& areempty The hierarchyof thesemod-
elsis representeth Fig. 3. It highlightsthe decidabilityand
compleity of theassociatedieductionproblems.

Truly undecidable

Semi-decidable

% -complete

NP-complete

Figure3: Reasoningnodelshierarchyfor theSG family

4 SGsand Rules: the SR Model

A simplegraphrule (SGrule) embedsknowledgeof form “if
A thenB”. Thefollowing definitionis equivalentto themore
traditionalone(two SGsrelatedwith coreferencéinks) used
in [GoshandWuwongse 1995;Salat, 1994.

Definition 6 (SG Rules) A simplegraphrule R is a colored
SG.Rg) is calledits hypothesisand Ry its conclusion

Deductiondependson the notion of a rule application it
is agraphtransformatiorbaseduponprojection.

Definition 7 (Application of aSGRule) Let G be a SG,
and R bea SGrule. R is applicableto G if there existsa
projection,say, from R, (the hypothesiof R) into G. In
that case theresultof theapplicationof R on G accordingo
m is thegraphG' obtainedby makingthe disjointunionof G
and of a copyof Ry (the conclusionof R), then,for every
edgcr, wheec € R andr € Ry, addingan edge with
the samenumberbetweenr(c) andthe copyof r. G' is said
to beanimmediateR-derivationfromG.

A derivationis naturallydefinedasa (possiblyempty)se-
quenceof rule applications:

Definition 8 (Derivation) LetR bea setof SGrules,andG
bea SG.We call R-derivationfromG to a SGG’ a sequence
of SGsG = Gy, ...,Gr = G' sudthat,for1 <i <k, G;
is animmediateR-derivationfromG;_,, whee R € R.
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To deducea SG (), we mustbe ableto derive a SG into
which @) canbe projected hencethefollowing definition:

Definition 9 (Deductionin SR) Let KX = (G,R) bea KB
andlet @ bea SG.@Q canbededucedromX (notation >
(G, R)) if thereexistsan R-derivationfromg toa SGH sud
thatQ > H.

The semantics® is extendedto translateSG rules: let
Ry and R, betwo SGs,st. Ry = R and R; is the
SGobtainedfrom R, by addingthe neighborsof the rela-
tion nodesof R(;y which areconceptnodesof R). Then
®(R) = Vz1 ... zp (a(Ro) = Ty1 ... yq a(R1)) where
z; are the variablesof a(Ry) andy; are the variablesof
a(R;) that do not appearin a(Ry). The following sound-
nessand completenessesultis obtained: Q > (G,R) <
®(S),®(G), ®(R) E ®(Q) [Sahat, 1994. The SR deduc-
tion problemis semi-decidabl¢CoulondreandSalat, 1994.

5 SGsand Constraints: the SGC Model

Let usnow introduceconstaints which areusedto validate
knowledge. In presencef constraintsdeductionis defined
only onaconsistenknowledgebase.

Definition 10 (Constraints) A positive (resp.negative) con-
straintC' is a colored SG. C|q, is called the trigger of the
constaint, C(y) is calledits obligation(resp.interdiction). A
SGG w-violatesa positive(resp.negative)constiaint C' if
is a projectionof thetrigger of C into thenonredundanform
of G (resp.into G) thatcannotbe extendedresp.thatcanbe
extended}o a projectionof C' asa whole G violatesC' if it
m-violatesC for someprojectionz. Otherwise G satisfies”.

Noticetheremaybetwo equivalentSGs,suchthatonesat-
isfiesa positive constraintandthe otherdoesnot. E.g. given
a constraintC, take G satisfyingC, andthe equivalent(re-
dundant)graph H obtainedby makingthe disjoint union of
G andthetriggerof C. H violatesC'. We havethuschoserto
defineconstrainsatishctionw.r.t. the nonredundantorm of
a SG.This problemdoesnot occurwith negative constraints.

Two constraint; andC, aresaidequivalentif, for ev-
ery graphG, G violatesC, iff G violatesCs. Any negative
constraintC' is equivalentto the negative constraintobtained
from C by coloring all its nodesby 1. Furthermorenega-
tive constraintsareindeeda particularcaseof positive ones:
considerthe positive constraintC’ obtainedfrom a negative
oneC by coloringall nodesof C by 0, thenaddinga concept
nodetypedNot Ther e, coloredby 1, whereNot Ther e is
incomparablawith all othertypesand doesnot appearany-
whereexceptedin C. ThenagraphG violatesC' if andonly
if it violatesC". Positve constraintsstrictly includenegative
constraintsin the sensehatthe associatedonsisteng prob-
lemsarenotin thesamecompleity class(seetheorem 3).

Let us relate our definitionsto other definitions of con-
straintsfoundin the CG literature. Theconstraint®f [Mineau
and Missaoui, 1997 correspondo a particularcaseof our
constraintavherethe trigger andthe obligationare not con-
nected. In turn, our constraintsare a particularcaseof the
minimal descriptie constraintf [Dibie etal., 1994, where
thedisjunctive partis restrictecto onegraph.
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Definition 11 (Consistency/Deductiorin SGC) AKB K =
(G,C) is consistenif G satisfiesall constaintsof C. A SG
@ canbe deducedrom K if K is consistentand ¢ can be
deducedromg.

Note thata () that violatesa constraintof K may still be
deducedrom K. It doesnot mattersince( is a partial rep-
resentationof knowledge deduciblefrom K. How canwe
translatethe notion of consisteng into FOL? For negative
constraintsthe correspondences immediate,andrelieson
projectionsoundnesandcompleteness.

Theorem1 A SG G violates a negative constaint C' =
(C', p) iff &(S),®(G) F &(C'), wheer C' is the SGun-
derlyingC.

Consisteng relative to positive constraintscan be ex-
plainedwith FOL, translating“projection” into a notion of
logical “substitution” betweenthe formulas associatedo
graphs(seefor instancethe S-substitutionof [Chein and
Mugnier, 1992). Another bridge can be built using rules.
IndeedagraphG satisfiesa positive constraintC if andonly
if, considering” asarule,all applicationof C onG produce
agraphequialentto G. Or, morespecifically:

Property 1 A SG G w-violatesa positive constaint C iff,
consideringC asa-rule, theapplicationof C onG accoding
to 7 producesa graphnotequivalento G.

Using soundnessnd completenessf the SR deduction,
andpropertyl, oneobtainsthefollowing relationwith FOL:

Theorem?2 A SGG violatesa positiveconstaint C' iff there
is a SGG' sud that &(S), ®(G), ®(C) F ®(G') and not
?(S),®(G) E ®(G"), whee ®(C) is the translationof C
consideedasarule.

The problem “does a given graph satisfy a given con-
straint?” is co-NP-completéf this constraintis a negative
constrainfwe mustcheckthe absencef projection),but be-
comeslI¥ -completefor a positive one (I is co-NP'F).

Theorem 3 (Complexity in SGC) Consistencyin SGC is
17 -complete(but is co-NP-completef all constaints are
negative).

Sletch of proof: SGC-Consisteng belongsto I sinceit
correspondso thelanguagel. = {z|Vy1 3y R(z, y1, y2)}.
wherez encodesaninstanceG; C and(z, y1, y2) € R iff
y1 is aprojectionIly from C(q) into G, y» is a projectionII
from C into G s.t. T[[Cq)] = TIp. Now, let us considerthe

1Y -completeproblemBS: givenaboolearformulaE, anda
partition{ X, X} of its variablesjs it truethatfor ary truth
assignmentor thevariablesn X thereexistsatruth assign-
mentfor the variablesin X, s.t. E is true? We first show

thatthespecialcasewvhereF is aninstanceof 3-SAT remains
17 -complete(let us call this problem3-SATS). For thatwe
usethe polynomialtransformatiorfrom ary boolearformula
to a setof clausesdescribedn ([Papadimitriou,1994, ex-

ample8.3), followedby a polynomialtransformatiorfrom a
clauseto clauseswith 3 literals. The “new” variablesareput
in the setX,. We thenreduce3-SATS to SGC-Consisteny.

E is mappedo a constraintC': briefly said,thereis onecon-
ceptnodelt:*] for eachvariableandoneternaryrelationnode
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with typer; for eachclausec;. C(q) is composedf all con-
ceptnodescomingfrom variablesin X;. G is composedf
two individual conceptodedt:0] and[t:1] correspondingo
the truth valuesand, for eachclausec; thereis onerelation
nodeof typer; for eachtriple of truth valuesgiving thevalue
trueto ¢;. Note that, since Cp) doesnot containary rela-
tion node,ary truth assignmentor the variablesof X; is a
projectionfrom C(o) to GG, andreciprocally O

Corollary 1 Deductionin SGC is IT¥ -complete

Notethatthetheorem3 canbeusedto showv thatconsistenyg
of minimal descriptve constraintsn [Dibie et al., 1994 is
alsoIll’-complete.

6 Rulesand Constraints: SEC/SRC

Thetwo kindsof rules,inferencerulesR andevolutionrules
&, definetwo alternatve models.In SEC, G is seerastheini-
tial world, root of a potentiallyinfinite treeof possibleworlds,
and £ describeghe possibleevolutions from one world to
others. The deductionproblemaskswhetherthereis a path
of consistentvorldsfrom G to a world satisfying@.

Definition 12 (Deductionin SEC) Let K = (G,€&,C) bea
KB, andlet @ bea SG.Q canbededucedromK if there is
an £-derivationG = Gy, ..., G sudthat, for 0 < i < k,
(G;,C) is consistenand @ canbededucedromGy,.

In SRC, G providedwith R is afinite descriptionof a po-
tentially infinite world, thathasto be consistent Applying a
ruleto G cancreateinconsistenyg, but afurtherapplicationof
a rule may restoreconsisteng. Let usformalizethis notion
of consistencyestoation. Supposehereis a w-violation of
a positive constraintC' in G; this violation (C, r) is saidto
be R-restomble if thereexists an R-derivationfrom G into
G' suchthatthe projection of thetriggerof C into G’ can
be extendedto a projectionof C' asa whole. The violation
of a negative constraintcannever be restored.Note thatthe
‘R-restoratiorcancreatenew violations,thatmustthemseles
beprovenR-restorable.

Definition 13 (Consistency/Deductiorin SRC) AKBK =
(G,R,C) isconsistenif, foranySGG' thatcanbeR-derived
from G, for every constaint C' € C, for every w-violation of
Cin@, (C,n)isR-restoable ASG(Q canbededucedrom
K if K is consistenaind () canbededucedrom (G, R).

Considerfor instancea KB containingthe SGG in Fig. 4,
expressingthe existenceof the number0, a constraintanda
rule, both representedby the coloredSG K. The constraint
assertghat for every integer n, there mustbe an integer n’,
successoofn. If theruleis anevolutionrule,G is seerasan
inconsisteninitial world (thereis nosuccessoof 0in G) and
nothingwill be deducedrom this KB. If theruleis aninfer-
encerule, its applicationimmediatelyrepairsthe constraint
violation, while creatinga new integer, that hasno succes-
sor, thusa new violation. Finally, every constraintviolation
couldeventuallyberepairedby arule applicationandthe KB
shouldbe provenconsistent.

Let uspointoutthatthe SR modelis obtainedfrom SRC
or SEC when(C is empty and SGC is obtainedfrom SRC
(resp.SEC) whenR (resp.£) is empty
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Figure4: Consisteng in SEC/SRC

Theorem4 (Complexity in SEC/SRC) Deductionin SEC
is semi-decidable Consistencyand deductionin SRC are
truly undecidable

Proof: SEC includesSR thusSEC-deductionis not decid-
able. When( is deduciblefrom K, a breadth-firstsearchof
thetreeof all derivationsfrom K, eachgraphbeingchecled
for consisteng, ensureghat Gy, is foundin finite time. For
SRC, we show that checkingconsisteng is truly undecid-
able. Let K be a KB whereC containsa positive constraint
C+ andanegative constrainiC'—, bothwith anemptytrigger.
For proving consisteng, onehasto provethatC~ % (G, R),
and the algorithm doesnot stop in this case(from semi-
decidability of deductionin SR). The sameholdsfor the
complementaryproblem (proving inconsisteng) taking C+
insteadof C—, hencethe undecidability m|

7 Combining Inferenceand Evolution

The SREC modelcombineshoth derivation schemef the
SRC andSEC models. Now, G describesan initial world,
inferencerulesof R completethe descriptionof arny world,
constraint®f C evaluatetheconsisteng of aworld, evolution
rulesof £ try to make evolve a consistenworld into a new,
consistenbne. Thedeductionproblemis: cang evolve into
aconsistentvorld satisfyingthe goal?

Definition 14 (Deductionin SREC) ASGG' is animmedi-
ateR&-evolutionfroma SGG if there existsan R-derivation
from@G into G andanimmediate€-derivationfromG" into
G'. An RE-evolutionfroma SGG to a SGG' is a sequence
of SGsG = Gy,...,Gr = G' sudh that,for1 < i < k,
G; is an immediateRE-evolution from G;_1. Givena KB
K = (G,R, &,C), aSGQ canbe deducedrom K if there
isanRE-evolutionG = Gy, ...,G, wher, for 0 < i < &,
(G;, R,C) is consistentand@ canbededucedrom(Gy, R).

Whené& = (), oneobtainsthe SRC model (thereis only
oneworld). WhenR = (), one obtainsSEC (information
containedin a world is complete). As a generalizationof
SRC, deductionin SREC is truly undecidable.Let us now
considera decidablefragmentof SREC (whichin particular
wassufficient for the Sysiphus-Imodelization).First notea
rule hasonly to be appliedonceaccordingto a givenprojec-
tion; furtherapplicationswith this projectionobviously pro-
duceredundantnformation. Suchapplicationsaresaidto be
uselessA SGG is saidto beclosedw.r.t. arule R if all ap-
plicationsof R on G areuselessGivena setof rulesR, we
note,whenit exists,G’% (theclosureof G w.r.t. R) thesmall-
estgraphderivedfrom G thatis closedw.r.t. everyrulein R.
Whenit exists G, is unique. R is calleda finite expansion
set(f.e.s.)if, for every SGG, its closureG?, exists(andthus
canbecomputedn finite time). If R is afinite expansiorset,
the deductionproblemin the SR modelbecomesiecidable
(butit is nota necessargonditionfor decidability).
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Property 2 (Finite expansionsets) LetX = (G, R,C) bea
KB where R is a finite expansionset. Thenk is consistent
iff ({G },C) is consistentanda SG(@ canbededucedrom
(G, R) iff @ canbededucedrom ({G}, }).

Thefollowing decidablecaseis basedon property2.

Property 3 (Decidablecase) Deductionin SREC is semi-
decidablef R isaf.es.andis decidablef R U £ isaf.es.

Proof: SupposeR is af.e.s. When(@ canbe deducedpne
obtainsananswetin finite time; we proceedasfor SEC (see
proof of theorem4) but consisteng checksare doneon the
graphclosureinsteadof the graphitself. Now, if R U £ is
afe.s., Gy ¢ eXists, thusthe derivation tree s finite, and
consisteng checksmayonly cutsomepartsof thistree. O

A ruleis saidto be range restricted(by analogywith the
so-calledrulesin Datalog, whereall variablesof the head
must appearin the conclusion)if no genericconceptnode
belongsto its conclusion.Then:

Property 4 A setof range restrictedrulesis af.es.

Proof: Sinceall graphsareputinto normalform, anindivid-
ual marker appearsat mostoncein a graph.Thentheclosure
of aSGG canbeobtainedwith aderivationof lengthO(n*),
wheren is the sizeof (G, R) andk is the greatestrity of a
relationtype appearingn arule conclusion. O

8 Conclusion

We proposea family of modelsthat can be seenasthe ba-
sis of a genericmodelingframewnork. Main featuresof this
framawork arethefollowing: a cleardistinctionbetweerdif-
ferentkinds of knowledge,that fit well with intuitive cate-
gories,a uniform graph-basedanguagethat keepsessential
propertiesof the SG model,namelyreadabilityof objectsas
well asreasonings.We guessthis later point is particularly
importantfor the usability of any knowledgebasedsystem.
In our framework, all kinds of knowledgeare graphseasily
interpretedandreasoningsanbe graphicallyrepresenteth
anaturalmanneusingthe graphshemseles,thusexplained
to theuseronits own modelization.

Technicalcontributions,w.r.t. previousworks on concep-
tual graphscanbe summarizedasfollows:

o the representatiorof different kinds of knowledge as
coloredSGs: facts,inferencerules, evolution rulesand
constraints.

o the integration of constraintsinto a reasoningmodel;
moreor lesssimilar notionsof a constrainthadalready
beenintroducedn [Dibie etal., 1998;MineauandMis-
saoui,1997 but wereonly usedto checkconsisteng of
asimplegraph(asin the SGC model). The complexity
of consisteng checkingwasnotknown.

e a systematicstudy of the obtainedfamily of models
with a complexity classificationof associatedconsis-
teng/deductiorproblems.

We establishedinks betweenconsisteng checkingand
FOL deduction.Theoperationabemantic®f modelsinclud-
ing constraints,namely SREC, SRC and SEC, is easyto
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understandbut thereis anunderlyingnon monotonicmecha-
nismwhoseogicalinterpretatiorshouldrequirenonstandard
logics. The definitionof alogical semanticgor thesemodels
is anopenproblem.
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