
Backtracking Thr oughBiconnectedComponentsof a Constraint Graph

Jean-François Baget
LIRMM

161,rueAda
34392Montpellier, Cedex 5

France
E-mail: baget@lirmm.fr

Yannic S.Tognetti
LIRMM

161,rueAda
34392Montpellier, Cedex 5

France
E-mail: tognetti@lirmm.fr

Abstract

Thealgorithmpresentedhere,BCC,is anenhance-
ment of the well known Backtrack usedto solve
constraint satisfaction problems. Though most
backtrackimprovementsrely on propagationof lo-
cal informations,BCC usesglobal knowledgeof
the constraintgraphstructure(andin particularits
biconnectedcomponents)to reducesearchspace,
permanentlyremovingvaluesandcompilingpartial
solutionsduring exploration. This algorithm per-
formswell by itself, withoutany filtering, whenthe
biconnectedcomponentsaresmall,achieving opti-
mal timecomplexity in caseof a tree.Otherwise,it
remainscompatiblewith mostexisting techniques,
addingonly a negligible overheadcost.

1 Intr oduction
Constraintsatisfactionproblems(CSPs),sincetheir introduc-
tion in theearly60’s,haveflourishedin many branchesof Ar-
tificial Intelligence,andarenow usedin many “real-life” ap-
plications.Sincethesatisfiabilityof a CSPis a NP-complete
problem,mucheffort havebeendevotedto proposefasteral-
gorithmsandheuristics.Backtrackcanbe seenasthe back-
bonefor thoseimprovements:this algorithmfirst extendsa
partialsolutionby assigningavalueto avariable,andundoa
previousassignmentif no suchvaluecanbefound.

Backtracking heuristicstry to restrict searchspace,their
goalcanbeto maximizetheprobabilityof a“goodguess”for
the next assignment(variableandvalueorderings),or to re-
covermoreefficiently from a dead-end(backjumpingandits
variants).Filtering techniquesusepropagationof somelocal
consistency propertyaheadof thecurrentpartialsolution,ef-
fectively reducingvariabledomains;they canbeusedeither
in a preprocessingphase,or dynamicallyduringexploration.
Structure-drivenalgorithmsemergedfrom the identification
of tractableclassesof CSP, suchas trees[Mackworth and
Freuder, 1985]; they often transformthe CSPinto one that
canbesolvedin polynomialtime [Gottlobet al., 1999].

The algorithmpresented,BCC, doesnot fit easily in this
classification. It acceptsany preprocessedorderingof the
variables,aslong asit respectssomepropertiesrelatedto the
biconnectedcomponentsof theconstraintgraph.Thenit ex-
ploits the underlyingtreestructureto reducethrashingdur-

ing thebacktrack,storingpartialsolutionsandremoving per-
manentlysomevalues.Thoughno kind of local consistency
propertyis used,andno look-aheadis performed,BCC per-
formswell whenthegraphcontainssmallbiconnectedcom-
ponents,achieving optimaltimecomplexity in caseof a tree.

After basicdefinitionsaboutCSPs,we presentin Sect.3
the versionof Backtrack usedasthe kernelof BCC. Sect.4
is devotedto definitionsof thevariableorderingscompatible
with BCC.Thealgorithmis presentedin Sect.5, alongwith a
proofof its soundnessandcompletenessandanevaluationof
its worst-casecomplexity. In Sect.6, we compareBCC with
popularbackjumpingor filtering techniques,pointingout the
orthogonalityof theseapproachesandshowing thata mixed
algorithmis possible.Finally, we discusslimitations of our
algorithm,andsuggestamethodto overcomethem.

2 Definitions and Notations

A binary constraint network
�

overa setof symbols� con-
sistsof asetof variables�������
	���
�
�
�������� (denoted��� ���

),
each��� associatedto a finite valuedomain ������� , andof
a setof constraints. A constraint� ��� betweentwo variables
��� and � � is a subsetof �!�#"$�%� . A variable ��� is called
instantiatedwhenit is assigneda valuefrom its domain. A
constraint� �&� betweentwo instantiatedvariablesis saidsat-
isfied if � value�'� � � � value�'� � ���)(� ��� . This test is calleda
consistencycheck between��� and �*� . A consistentinstantia-
tion of asubset+,�-��� ���

is aninstantiationof all variables
in + that satisfiesevery constraintbetweenvariablesof + .
TheCONSTRAINT SATISFACTION PROBLEM (CSP),givena
constraintnetwork

�
, askswhetherthereexistsa consistent

instantiationof �.� ���
, calledasolutionof

�
.

Without lossof generality, wecanconsiderthatconstraints
arealwaysdefinedovertwo differentvariables,andthatthere
is atmostoneconstraint(either �/��� or �0�1�) betweentwo vari-
ables.Sotheconstraint graphof anetwork (associatingeach
variableto a nodeandconnectingtwo nodeswhosevariables
appearin thesameconstraint)is a nonorientedsimplegraph
withoutloops.In thispaper, wewill considersometotalorder2/3

on ��� ���
, inducingan orientationof this graph: edges

canbe seenasorientedfrom the smallestto the greatestof
their ends. Accordingto this orientation,we candefinethe
predecessors 4657�8� � andthe successors 4:90�8� � of a node � .
Notethat ; 4<5=�8� � ; is thewidthof � [Freuder, 1982].

291SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

3 Back to Backtrack
As theBacktrack algorithm(BT) is thekernelof BCC,we
consideredasvital to make it asefficientaspossible,accord-
ing to its usualspecifications:1) variablesareexaminedin a
fixed,arbitraryordering;and2) no informationon theCSPis
known or propagatedaheadof thecurrentvariable.

3.1 Algorithm Kernel

Algorithm 1: BackTrack(
�

)
Data : A nonemptynetwork > .
Result : true if > admitsasolution,false otherwise.

computeOrder (?);
level @ 1;
failure @ false;
while ((level AB 0) and (level AB�C 3<D >7E C 9)) do

currentVariable @ 3
[level];

if (failure) then
if (hasMoreValues (currentVariable)) then

failure @ false;
level @ nextLevel (currentVariable);

elselevel @ previousLevel (currentVariable);

else
if (getFirstValue (currentVariable)) then

level @ nextLevel (currentVariable);

else
failure @ true;
level @ previousLevel (currentVariable);

return (level = C 3FD >7E C 9);
As in [Prosser, 1993], BT is presentedin its derecursived

version:we will latereasilycontrol thevariableto studyaf-
tera successfulor failedinstantiation,withoutunstackingre-
cursive calls. For the sake of clarity, it is written to solve
a decisionproblem,thougha solutioncould be “read in the
variables”. This algorithmshouldconsiderany variableor-
dering,socomputeOrder only builds thepredecessorand
successorsetsaccordingto theimplicit orderonthevariables,
andsortsthepredecessors sets(for soundnessof partial his-
tory). To respectour specifications,if � is the G th variable
accordingto

2 3
, previousLevel(�) must return G0HJI

andnextLevel(�) G
KLI . Accordingto this restriction,our
only freedomto improve BT is in the implementationof the
functionsgetFirstValue andhasMoreValues.

3.2 Computing Candidates
Suppose BT has built a consistent instantiation of
��� 	 ��
�
�
���� � 5 	 � . Valuesthat,assignedto � � , would make the
instantiationof �M�N	���
�
�
������O� consistent,are the candidates
for ��� . ThenBT is soundandcompleteif getFirstValue
indicatesthefirst candidate,returningfalse whenmissing
(a leaf dead-endat � � , [Dechter and Frost, 1999]), and
successive calls to hasMoreValues iteratethroughthem,
returning false when they have all been enumerated
(internal dead-end). Testingwhethera valueis a candidate
for � is donein at mostwidth(�) consistency checks.

The iterati ve method: The mostnaturalmethodto imple-
mentgetFirstValue (resp.hasMoreValues) is to it-
eratethroughthedomainof � � , haltingassoonasavaluepass
a consistency checkwith every P in 4657�8��� � , startingat the
first domainvalue(resp.afterthelastsuccessfulvalue).Both

return false when the whole domain has beenchecked.
Thoughin the worst case,the costof is Q��R; �!�R; width �'��� ��� ,
valuesarechecked only whenneeded:this methodis good
whentheCSPis underconstrainedor whenwidth(� �) issmall.
The partition refinement method: Suppose4<57�'��� � �
��PS	M��
�
�
��1PUTV� , andnote WYX thedomain �!� of ��� . Thencom-
pute W 	 ��
�
�
Z�RW T suchthat W � containsthe valuesof W � 5 	
satisfyingtheconstraint� �1� . Then W T is thesetof candidates
for ��� . Thoughworstcasecomplexity (whenconstraintsare
“full”) is thesame,it is efficient in practice:if []_^ 2 I is
theconstraint tightnessof a randomnetwork [Smith,1996],
thentheexpectedsizeof W � 9 	 is �OI#H)^ � "_; W � ; ; sotheex-
pectedtime to compute W!T is ; �!�1; `a^ . Thoughsomecom-
putedcandidatesmaynotbeused,thismethodperformswell
whenconstraintstightnessandvariableswidth arehigh. The
methodhasMoreValues only iteratesthroughthis result.
Storing refinementhistory: A partial history is a traceof
therefinementscomputedin thecurrentbranch of theback-
track tree: so having computedW 	
�
�
1W T andstoredthese
setsas well as the valuesof P � usedto obtain them, if we
backtrackup to Pcb andcomebackagainlater to ��� , we only
have to refinedomainsfrom Wdb 9 	 to W!T , replacingthepre-
viousvalues.This mechanismis implementedin Alg. 2.

Algorithm 2: getFirstValue(�)
Data : A variable e , belongingto a network > whereBT hascomputed

a consistentinstantiationof all variablesprecedinge . We also
supposethat e hasat leastoneancestor.

Result : Storesrefinementhistory, andreturnstrue unlessthe computed
setof candidatesis empty.

last @ 1;
w @ width(e);
y @gf h [0];
while (last i w and j [last] ABlk and usedVal[last] = y.value) do

y @mf*h [last];
last++;

while ((last i w) and (j [last-1] ABlk)) do
y @mf*h [last-1];
usedVal[last] @ y.value;j [last] @ k ;
for (n=o0j [last-1]) do

if ((y.value, v) o constraint(y, x)) thenj [last] @pj [last] q0r v s ;
last++;

success@ (last= w+1) and (j [last-1] ABlk);
if (success)then value @mj [last-1][0];
return success;

Eachvariable � is assigneda field last (denoted,in an
OOPstyle, � .last or simply last whenthereis no ambi-
guity),afieldvalue pointingto thecurrentvalueof � , avec-
tor containingthesortedvariablesin 4<5=�8� � , andtwo vectors
of size width(x)+1: W containsthe successive refinements,
andusedVal containsthe valuesof the ancestorsusedfor
successiverefinementsof the Wd� . Notethat W [k] containsall
valuesof W [k-1] consistentwith the assignmentof used-
Val[k] to thevariableancestors[k-1]. W [0] is initialized
with the domainof � . The partial history mechanismadds
the samebenefit as Backmarking (BM) [Gaschnig,1979].
Thoughmorememoryexpensive(t��R; � � ;u" width �'� � ��� space,
for eachvariable� �) thantheusualversionof BM, it is more
resistantto the jumpsforwardandbackwardthatwill beex-
plicited furtherin this paper.

292 SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

4 Variables Orderings Compatible with BCC
Let us now definethe particularvariableorderingsthat will
be compatiblewith BCC. Let ��	v��
�
�
��a��T beorderedsubsets
of �.� ���

suchthat ��� ��� ��w T� B 	 � � (their intersectionis not
necessarilyempty), then predset(���)= w � 5 	� B 	 �*� . We call an
orderingof ��� ���

compatiblewith this decompositionif, for
everysubset� � , for everyvariable� (� � , if �mx(predset�y� � � ,
then � is greaterthanevery variableof predset�z� � � . Given
suchanordering,theaccessorof ��� is its smallestelement.

4.1 ConnectedComponents
A nonemptygraph{ is connectedif, for everypairof nodes,
thereis awalk from onenodeto theother. A connectedcom-
ponentof { is amaximumconnectedsubsetof ���y{ � .

Now supposea network
�

whoseconstraintgraphadmits|~}��
connectedcomponents,namely �N	c��
�
�
��R��T . We call a

CC-compatibleorderingof thevariablesof
�

anorderingof
��� ���

compatiblewith somearbitraryorderingof thesecon-
nectedcomponents.Shouldwe launchBT on this network,
andshouldcomputeOrder storesuchanordering,a well-
known kind of thrashingcanoccur:if BT failsoncomponent
� � (i.e. it registersa dead-endat the accessorof � �), thenit
will keepon generatingevery consistentinstantiationof the
variablesin ��	c��
�
�
��a��� 5 	 to repeatthesamefailureon ��� .

Sincethe ��� representindependentsubproblems(a global
knowledgeon the graph),the usualmethodis to launchBT
on eachconnectedcomponent,stoppingthe whole process
whenever some � � admitsno solution. It could alsobe im-
plementedin a simpleway with a slight modificationof the
function previousLevel: if � is the accessorof a con-
nectedcomponent,previousLevel(�) mustreturn0.

Though very simple, this example illustrates well the
methodweuselater: introducein thevariablesorderingsome
“global” propertiesof thegraph,thenusethemduringback-
track.With aCC-compatibleordering,webenefitfrom thein-
dependenceof thesub-problemsassociatedto theconnected
components;with BCC-compatibleorderings,wewill benefit
from “restricteddependence”betweenthesesub-problems.

4.2 BiconnectedComponents
A graph { is

|
-connectedif theremoval of any

| H�I differ-
ent nodesdoesnot disconnectit. A

|
-connectedcomponent

of { is a maximum
|
-connectedsubgraphof { . A bicon-

nectedcomponent(or bicomponent), is a 2-connectedcom-
ponent.Noteweconsiderthecompletegraphontwo vertices
biconnected.Thegraphof bicomponents(obtainedby repre-
sentingeachbicomponentasanode,thenaddinganedgebe-
tweentwo componentsif they shareanode)is a forestcalled
the BCC treeof { . It is computedin linear time, usingtwo
depth-firstsearch(DFS)traversalsof { [Tarjan,1972]. Fig.1
representsa constraintgraphandits associatedBCC tree.

If we considerthe BCC treeasa rootedforest,a natural
ordering of its nodes(representingbicomponents)is a total
order suchthat children are greaterthan their parent. For
the BCC tree in Fig. 1, choosing� and � asroots,a DFS
couldgive theorder �M�%�1���1�.�1{!�R�l�1�)�R���R�)�R�Y� , anda BFS
(breadth-firstsearch)�M�d�R���1�.�1{!�1���R���1���1���1�]� . BothDFS
andBFStraversalsresultin anaturalordering.

A = {1, 5, 6}

F = {6, 10}

G = {7, 11, 12}

E = {11, 15, 16}

B = {2, 3, 7, 8}

H = {7, 13}

I = {13, 17}

D = {14, 17, 18}

C= {4, 8, 9}13

17 18

1 2 3 4

5 6

10
11

7

8 9

1412

15

16

Figure1: A constraintgraphandits BCC tree.

13

1

8

2 3

4

5

6

7

9
10

11

12 14 15

16

17

18A = {1, 2, 3}

F = {3, 4} B = {5, 6, 7, 8}

G = {6, 9, 10}

E = {9, 11, 12}

H = {6, 13}

I = {13, 14}

D = {14, 15, 16}

C= {8, 17, 18}

Figure2: A BCC(DFS,BFS)ordering.

A BCC-compatibleorderingof thevariablesof a network�
is an orderingcompatiblewith a naturalorderingof its

BCC tree (it is also CC-compatible). Suchan ordering, if
computedby a DFS traversal of the BCC tree, and by a
BFStraversalinsidethecomponents,would bedenotedby a
BCC(DFS,BFS)ordering.It canbecomputedin lineartime.

Nodes of the graph in Fig. 2 have been orderedby a
BCC(DFS,BFS)ordering.Accessorsof a bicomponenthave
beenrepresentedin white. Thesecondvariableof a bicom-
ponentis thesmallestvariablein thiscomponent,its accessor
excepted.By example,in Fig. 2, 9 is the secondvariableof
the component��� �R� ��IM[*� . Given a BCC-compatibleorder-
ing, the accessorof a variable is definedasthe accessorof
thesmallest(accordingto thenaturalordering)bicomponent
in whichit belongs.A secondvariableis alwayschosenin the
neighborhoodof its accessor. Tab. 1 givestheaccessorsdeter-
minedby theBCC(DFS,BFS)orderingillustratedin Fig. 2.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Accessor 1 1 1 3 5 5 5 5 6 6 9 9 6 13 14 14 8 8

Table1: Accessorsdeterminedby theorderingof Fig. 2.

Supposea naturalorderingof a BCC treenodes. A leaf
variableis thegreatestvariableappearingin aleafof theBCC
tree.In Fig.2, leafvariablesarecolouredin grey. Wesaythat
a bicomponent� covers a leaf variable P if P is thegreatest
nodeappearingin the subtreerootedby � (including � it-
self). Now, wedefinethecompilersof a leaf variableP asthe
accessorsof thebicomponentscovering P . For theorderingin
Fig. 2, compilersare: cmp�8� � ���UI��R�*� , cmp��I � � ����� �1� � ,
cmp�OI�� � ����� ��IM� ��I�� � andcmp�OIM� � �����*�R�*� .
5 The Algorithm BCC
Thekernelof BCC is BT, asdescribedin Sect.3. Thecall to
computeOrder ordersthe variablesin a BCC-compatible
way, andstoresall informationon accessors,leaf variables
andcompilers.Thispreprocessingtakeslineartime. Wesup-
poseBT is runningon anetwork

�
.

293SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

5.1 Theoretical Foundations
Theorem1 If � is thesecondvariableof somebicomponent,
anycall to previousLevel(�) cansafely(andoptimally)
returntheindex of its accessorP .

Moreover, no solutionof
�

containsthevariable P instan-
tiatedwith its currentvalue.

A call to previousLevel(�) meansthat we have de-
tectedsomedead-end(either internalor leaf) at variable � .
The first part of this theoremassertsthat we canbackjump
right to theaccessorof � , without missingany possiblesolu-
tion, andthat it couldbedangerousto backjumpany further
(formal definitionsaboutsafeandoptimalbackjumpscanbe
found,byexample,in [DechterandFrost,1999]). A dead-end
foundat variable13 in Fig. 2 would resultin a backjumpto
variable6. Thesecondpartof thetheoremmeansthatwecan
permanentlyremovethecurrentvalueof P from its domain.

Proof of Theorem1: Thefirst part is provedby showing that
previousLevel(�) performsa particularcaseof Graph-
BasedBackjumping(GBBJ)[Dechter, 1990]. TheaccessorP
of a secondvariable � is the only variablein 4657�8� � . GBBJ
performsa safebackjumpto the greatestpredecessorof � ,
we have no other choicethan P . It also addsto P a “tem-
poraryneighborhood”containingall otherpredecessorsof �
(Sect.6.1).Thissetbeingempty, notmaintainingit is safe. �

Secondpart relieson the ordering. The following lemma
locatestheleafdead-endsresponsiblefor thedead-endat � .

Lemma 1 Let � be the set of variables that registered a
dead-endafter the last successfulinstantiationfollowing � .
Thenvariablesin � belongto thesubtree � of bicomponents
rootedbythesmallestcomponentcontaining� (theBCCsub-
treeof � , theaccessorof � is alsocalledtheaccessorof �).

Sketch of proof: A failureis “propagatedupward” in thesame
bicomponentuntil a secondvariable(sincevariablesin the
samecomponent,the accessorapart,arenumberedconsec-
utively by the compatibleordering). At this point, failure is
propagatedto the accessor(the backjumpin the first part of
thetheorem),andthisaccessorbelongsto aparentcomponent
(aconsequenceof thenaturalordering). �

Now supposethere is a solution suchthat P is assigned
the value � , and we prove it is absurd. Let us now con-
sider the subnetwork

�.�
of

�
, containingall the variables

in the the BCC subtreeof � , orderedin the sameway as
in

�
. Let us reducethe domainof P in

� �
to ����� . Then� �

admitsa solution,andBT will find the first one for the
given ordering. Let us now examinethe first leaf dead-end
(at variable ���) thatcausedto bypassthis solutionin theBT
on

�
(thanksto Lem.1, it is a variableof

�.�
). Sincewe had

just beforea partof thesolutionof
� �

, thedomainof ��� has
beenemptiedby a variableoutside

� �
(or it would not have

beena solutionof
�.�

). So thereis a constraintbetween� �
andsomevariable� � � in a biconnectedcomponentoutsideof� �

: this is absurd,sincetherewould beanelementarycycle
���c��
�
�
��1����PN��
�
�
����c��
�
�
���� � � ����� where � appearsin somean-
cestorof boththecomponentof P andtheoneof � � . Then � �
and � � � would bein thesamebicomponent. �

SincenovariablesmallerthanP is responsiblefor thedead-
endregisteredat � , thebackjumpis optimal. �

Theorem2 We supposepreviousLevel hasbeenimple-
mentedto match specificationsof Th. 1. If � is a leaf vari-
ablenumbered G , anycall to nextLevel(�), before return-
ing G�KLI , canmark,for everyvariable P beinga compilerof
� , that the current value � of P hasbeencompiledand that
GVKpI is theforwardjump (FJ) for thatvalue(eventuallyeras-
ing previousFJ for that value).

Thereafter, everytimea call tonextLevel shouldreturn
the index of a secondvariable , if thecurrentvalue � of its
accessor¡ hasbeencompiled,nextLevel cansafely(and
optimally)returninsteadtheforward jumpfor � .

Sketch of proof: This is the dual of Th. 1 secondpart: we
hadshown thatwhensomefailurepropagatesto theaccessor
� of a BCC subtree� , thenno modificationoutside � can
give a consistentinstantiationof � , while keeping� current
value.Now, whenwehavefoundaconsistentinstantiationof
� , thennomodificationoutside� canmakeall instantiations
of � inconsistent,unlessmodifying thecurrentvalueof � . �

A call to nextLevel on a leaf meansthata wholeBCC
subtreehasbeensuccessfullyinstantiated.In Fig. 2, a call to
nextLevel(12)meanswehaveaconsistentinstanciationof
the BCC subtreerootedby the bicomponent{ covering12.
Beforereturning13, this call will storein theaccessorsof {
and � theircurrentvalues���y� � and ���y� � , andmarkthattheFJ
for thesecompiledvaluesis 13. Now we go to 13 andbegin
to instantiatethe subtreecontaining6 (alreadyinstantiated,
andeven compiled)and13, . . . , 16. If thereis a dead-end
at 13,we shouldbackjumpto 6 (seeTh. 1), andpermanently
remove its currentvalue ���y� � (we mustalsoremove it from
its compiledvalues). Otherwise,it meanswe cansuccess-
fully instantiatethis subtreeuntil leaf 16, thenmake a call to
nextLevel. Thiscall updatesall informationfor compilers
of 16, and in particularin 6: the FJ for the compiledvalue
�N�'� � is now 17. Now supposewe have somedead-endat 17.
According to Th. 1, we can backjumpto 8. Now suppose
further failuresmake usbacktrackto 5, thatwe successfully
instantiate,and that we also instantiate6 with its compiled
value.Shoulda call to nextLevel return9, it would mean
thatwe founda consistentinstantiationof thewholecompo-
nent ���*�R� �£¢S�1� � . Thenweknow thereis aconsistentinstanti-
ationof � 5,.. . , 16� , andwe cansafelyjump forwardto 17.

5.2 Implementation
FunctionspreviousLevel andnextLevel (Alg. 3, 4)
naturally encodethe above theorems. nextIndex and
previousIndex assumethepreviousroleof nextLevel
andpreviousLevel (returningG
¤-I).
Algorithm 3: previousLevel(�)

Data : A variable e .
Result : Theindex of thevariableto beexaminedby BCCafteradead-end.

if (accessor(e) = x) then return 0;
if (isSecondVariable? (e)) then

accessor@ accessor(e);
val @ accessor.value ;
for (i = 0; i i width(accessor);i++) do

accessor. j [i] @ accessor. j [i] ¥�r val s ;
return getIndex (accessor(e));

return previousIndex (e);

294 SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

Algorithm 4: nextLevel(�)
Data¦ : A variable e .
Result : Theindex of thevariableto beexaminedby BCC afterasuccess.

index @ nextIndex(e);
if (isLeaf?(e)) then

for §�o compilers(e) do§ .compiledValues @p§ .compiledValues q�rR§ .value s ;
addKey/Value(§ .FJ, (§ .value, index));

if (index AB�C 3<D >7E C 9) then
nextVariable @ V[index];
if (isSecondVariable?(nextVariable))then

accessor@ accessor(nextVariable);
if (accessor.value o accessor.compiledValues) then

index @ getKey/Value(accessor.FJ, accessor.value);

return index;

5.3 Worst-CaseComplexity
Lemma 2 UsingtheBCCalgorithm,anyBCCsubtreeis en-
teredat mostoncefor each valuein its accessor’sdomain.

Proof: A consequenceof Th. 1 and 2. Shouldwe entera
BCC subtree� , eitherwe find a consistentinstantiationof
� , and the currentvalue for its accessor� is compiled(so
every time nextLevel shouldreturnthesecondvariable P
for thesmallestbicomponentcontaining� , it jumpsinsteadto
the next subtree);or we have registeredsomedead-endat P
(thanksto Lem.1, this failurecamefrom �), andthecurrent
valuefor theaccessoris permanentlyremoved. �
Corollary 1 When

�
is a tree, BCCrunsat mostin t.�'¨V©�ª � ,

where ª)�J; ��� ��� ; and ¨ is thegreatestdomainsize.

Proof: Bicomponentsare completegraphswith two nodes
(accessorandsecondvariableP). They areenteredon P , and
therewill be at most ¨ consistency checkson P . Thereis ª
bicomponents,eachoneenteredat most ¨ time (Lem.2). �

This resultis thesameastheonegivenin [Freuder, 1982],
obtainedby first achieving arcconsistency (t��y¨U©�ª �), thenby
a backtrack-freesearch.Preprocessingrequiredfor BCC is
linear, and all possibledead-endscan be encountered,but
BCC benefitsasmuchfrom thesefailuresasfrom successes.
This complexity is optimal [DechterandPearl,1988]. Th. 3
extendsthis resultto any constraintgraph.

Theorem3 Let ª be the numberof bicomponents,
|

be the
sizeof thelargestone, and ¨ bethesizeof thelargestdomain,
thenBCCrunsin theworst casein t.�'¨ T ª � .

Thoughthisworst-casecomplexity is thesameas[Freuder,
1982], BCCshouldbemoreefficientin practice:it backtracks
alongbicomponentsinsteadof generatingall their solutions.

6 BCC and Other Algorithms
ThoughBCC is efficient whenthe constraintgraphcontains
numerousbicomponents,it is nothingmorethana BT inside
thesecomponents.We studyin this sectionhow to improve
BCC with somewell-known BT add-ons,andpoint out that
BCC reducesthesearchtreein anoriginalway.

6.1 Backjumping Schemes
To besound,BCCmustperformavery limited form of Back-
jumping(BJ) (seeTh. 1). Thenaturalquestionis: whatif we
usemoreperformantbackjumps?

Gaschnig’s Backjumping (GBJ) [Gaschnig,1979] is only
triggeredin caseof a leafdead-end.It jumpsbackto thefirst
predecessorof � that emptiedits domain. This backjumpis
safeandoptimalin caseof a leafdead-end.

Graph-basedBackjumping (GBBJ)[Dechter, 1990] is trig-
geredon any dead-end� , andreturnsits greatestpredecessor
P . Safetyis ensuredby addingto P a temporaryset (jump-
backset)of predecessorsconsistingof all thepredecessorsof
� . It is optimalwhenonly graphinformationis used.

Conflict Dir ectedBackjumping (CDBJ)[Prosser, 1993] in-
tegratesGBJandGBBJ.It backjumpsat any dead-endto the
greatestvariablethat removed a value in the domainof � .
The jumpbackset containsonly the predecessorsof � that
removedsomevaluein � . CDBJis safeandoptimal.

Theorem4 Letprevious(�) bea functionimplementinga
safeBackjumpschemeXBJ, alwaysreturningthe index of a
variable P belongingto a bicomponentcontaining� . Thenif
P is theaccessorof � , andif no further backjumpfrom P will
return in the componentof � , the current valueof P can be
permanentlyremoved.

TheobtainedalgorithmBCC+XBJis soundandcomplete.

Ideaof proof: Restrictionsenableto pasteproofof Th. 1. �
Corollary 2 The algorithms BCC+GBJ, BCC+GBBJ and
BCC+CDBJare soundandcomplete.

Sketch of proof: Seethat BCC+GBBJandBCC+CDBJre-
spectthe specificationsin Th. 4, andthat a backjumpon an
accessorP makesusremovea valueonly if thejumpbackset
of P only containsits predecessors.NotealsothatGBJdoes
not alwaysbackjumpin thesamecomponent(a secondvari-
ablecanbackjumpto the last elementof the parentcompo-
nent,notnecessarilytheaccessor),soBCCspecificbackjump
mustbekeptto makeBCC+GBJsoundandcomplete. �

Finally, we note that these BJ schemesrecover more
quickly from a failure thanBT, but nothingensuresthat this
failurewill not be repeatedover andover. BCC’s behaviour
cannotbeobtainedby suchaBJ mechanism.

6.2 Filtering Techniques
Differentlevelsof arcconsistency canbeusedin algorithms
to prunevaluesthatbecomeinconsistentaheadof thelast in-
stantiatedvariable.A constraint� �&� is saidarc-consistentif,«!¬ � (��� , ­ ¬ � (�%��`%� ¬ �1� ¬ � ��(����� , andconversely.

Maintaining Ar c-Consistency(MAC) [SabinandFreuder,
1994] is believed to be the mostefficient generalCSPalgo-
rithm. This family of algorithmsrely on maintainingsome
kind of arc-consistency aheadof thecurrentvariable.

Theorem5 Let � bethevariablecurrentlystudiedby MAC,
and P be a variable whosedomainwasemptiedby the AC
phase. Let �0	c��
�
�
��a�=T bethebicomponentsbelongingto the
branch of theBCCtree, betweenthecomponent�0	 of � and
thecomponent� T of P . Let © ��
�
�
Z�1 T betheir acessors. Then
all valuesfrom their domainsthat were not temporarily re-
movedby theAC phasecanbedefinitively removedbyBCC.

Sketch of proof: Considerthe accessor cT of the component
containingP . If AC propagationhasemptiedthe domainof

295SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

P , considerthefiltereddomain � �T of cT . This failuremeans
that, shouldwe extend our currentinstantiationof all vari-
ablesuntil � with any assignmentof

¬ (� �T to T , this in-
stantiationdoesnot extendto a solution.Thanksto Th. 1, no
instantiationof cT with thevalue

¬
extendsto asolution. �

Finally, having proventhatBCC andMAC combinetheir
effort to producea goodresult,we point out thatMAC alone
cannotreplaceBCC’s efficiency: perhapsMAC will never
considera valuethathadto beremoveby BCC,but shouldit
considerit, nothingwill restrainMAC to fail againon it.

7 Conclusionand Future Works
WehavepresentedhereavariationonBT calledBCC,whose
efficiency relieson the numberof bicomponentsof the con-
straint graphs. Early testshave shown that, the numberof
componentsincreasing,BCC alonequickly compensatesits
inefficiency insidea componentandits resultsaremorethan
a match for other BT improvements. Moreover, we have
shown thatBCC itself couldbeaddedsomewell-known BT
improvements,suchasBJ, FC or MAC, effectively combin-
ing thebestof two worlds.SoanimprovedBCCcouldbethe
perfectcandidatefor networks whoseconstraintgraphcon-
tainsmany bicomponents.

However, we mustconfessthatsuchconstraintgraphsare
notsocommon...So,apartfrom anoriginal theoreticalresult
expressingthat a network whoseconstraintgraphis a tree
doesnot needanAC phasenor a backtrack-freesearchto be
solvedin t.�'¨ © ª � , whatcanBCCbeusedfor?

Let
�

bea binaryconstraintnetwork of size ª , and ��� and
� � betwo of its variables.Thenwe cantransform

�
into an

equivalentnetwork of ª%H®I variables,by fusioning � � and � �
into a singlevariable ����� . Thedomainof ���&� is composedof
thepairsof compatiblevaluesin theconstraint���&� (it is �!�*"
� � whenthereis no suchconstraint).Any constraint� T£� is
thentransformedin thefollowingway: if � ¬ T � ¬ � �=(� T£� , then
all pairs � ¬ T*��� ¬ ��� ¬ ��� suchthat � ¬ �1� ¬ � belongsto thedomainof
����� arepossiblevaluesfor theconstraintbetween��T and ����� .
The sameconstructionis performedfor constraintsincident
to �*� . Theobtainednetwork is equivalent,but hasnow ª�H
I variables,andits maximumdomaincanhave now size ¨V©
(incident constraintscan have size ¨U¯). We can iteratively
fusion

|
differentnodes,obtaininganetwork of size ª=H | K.I ,

but whereavariabledomaincanhavesize ¨ T .
If a constraintgraphadmitsa

|
-separator(a setof

|
nodes

whoseremoval disconnectsthe graph), then, by fusioning
these

|
variablesas indicatedabove, we createat leasttwo

bicomponentssharingtheobtainedvariable.Supposethatwe
canfind in someway separatorsof size

2
k, the fusion of

theseseparatorscreatinĝ bicomponentsof size
2J°

. Then
BCC (without any improvement),will run in time t��y¨ TZ± ^ � .
This decompositionmay be quite efficient when

|
is small

and the separatorscut the graph in a non degenerateway,
keepingthesizeof componentscomparable.This decompo-
sition method(wherepolynomialcasesareobtainedwhen

|
and

°
arebothboundedby a constant)is still to becompared

to theonesstudiedin [Gottlobetal., 1999].
To implementandtestthis decompositionmethod,we are

currently looking for an heuristicthat, given an undirected

simplegraphwith weightededges,find a “small” separator
of thegraphsuchthat:
(1) removal of theseparatorcreatesa graphwhosegreatest

connectedcomponentis assmallaspossible;

(2) productof theweighton edgesthatbelongto thesepa-
ratoris assmallaspossible.

Theweightonedgeswill beinitializedby theconstrainttight-
ness.We believe thatnetworksdesignedby a humanbeing,
whodecomposesaprobleminto subproblemsslightly related
to eachother, will begoodcandidatesfor thisheuristic.

Acknowledgements
We would like to thanksChristianBessìere for his biblio-
graphicalsuggestions,Michel CheinandMichel Habibwho
helpedmakingtheconceptof “semi-independantsubgraphs”
evolve into the muchmoreformal oneof

|
-connectedcom-

ponents,aswell astheanonymousreferees,for theirprecious
commentsandadvices.

References
[DechterandFrost,1999] R. Dechterand D. Frost. Back-

trackingAlgorithmsfor ConstraintSatisfactionProblems.
ICS technicalreport,Universityof California,1999.

[DechterandPearl,1988] R. DechterandJ.Pearl.Network-
Based Heuristics for Constraint Satisfaction Problems.
Artficial Intelligence, 34(1):1–38,1988.

[Dechter, 1990] R.Dechter. EnhancementSchemesfor Con-
straint Processing:Backjumping,Learning, and Cutset
Decomposition. Artificial Intelligence, 41(3):273–312,
January1990.

[Freuder, 1982] E. C. Freuder. A Sufficient Condition for
Backtrack-FreeSearch.Journalof theACM, 29(1):24–32,
January1982.

[Gaschnig,1979] J. Gaschnig. Performancemeasurement
andanalysisof certainsearchalgorithms.Researchreport
CMU–CS–79–124,Carnegie-MellonUniversity, 1979.

[Gottlobet al., 1999] G.Gottlob,N. Leone,andF. Scarcello.
A Comparisonof StructuralCSPDecompositionMethods.
In Proc.of IJCAI’99, pages394–399,1999.

[MackworthandFreuder, 1985] A.K. Mackworth andE. C.
Freuder. The complexity of somepolynomial network
consistency algorithms for constraintsatisfaction prob-
lems.Artificial Intelligence, 25,1985.

[Prosser, 1993] P. Prosser. Hybrid Algorithms for the Con-
straintSatisfactionProblem. ComputationalIntelligence,
9(3):268–299,1993.

[SabinandFreuder, 1994] D. SabinandE. C. Freuder. Con-
tradicting Conventional Wisdom in ConstraintSatisfac-
tion. In Proc.of ECAI’94, pages125–129,1994.

[Smith,1996] B. Smith. Locating the PhaseTransition in
BinaryConstraintSatisfactionProblems.Artificial Intelli-
gence, 81:155–181,1996.

[Tarjan,1972] R. E. Tarjan. Depth-FirstSearchandLinear
GraphAlgorithms. SIAM J. of Computing, 1:146–160,
1972.

296 SEARCH, SATISFIABILITY, AND CONSTRAINT SATISFACTION PROBLEMS

	IJCAI-2001-c.pdf

