
E

F
a

b

c

a

A
R
R
A
A

K
S
Q
R
S
R

1

r
m
k
m
f
A
t

R
t
A
h
M
l
p

l
i

J

1
d

Web Semantics: Science, Services and Agents on the World Wide Web 7 (2009) 57–73

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journa l homepage: www.e lsev ier .com/ locate /websem

xtending SPARQL with regular expression patterns (for querying RDF)�

aisal Alkhateeba,∗, Jean-François Bagetb, Jérôme Euzenatc

Yarmouk University, Irbid, Jordan
INRIA Sophia-Antipolis Méditéranée and LIRMM, Montpellier, France
INRIA Grenoble Rhône-Alpes and LIG, Montbonnot, France

r t i c l e i n f o

rticle history:
eceived 23 November 2006
eceived in revised form 22 July 2008
ccepted 23 February 2009
vailable online 21 March 2009

eywords:

a b s t r a c t

RDF is a knowledge representation language dedicated to the annotation of resources within the frame-
work of the semantic web. Among the query languages for RDF, SPARQL allows querying RDF through
graph patterns, i.e., RDF graphs involving variables. Other languages, inspired by the work in databases,
use regular expressions for searching paths in RDF graphs. Each approach can express queries that are out
of reach of the other one. Hence, we aim at combining these two approaches. For that purpose, we define
a language, called PRDF (for “Path RDF”) which extends RDF such that the arcs of a graph can be labeled
emantic web
uery language
DF
PARQL
egular expression patterns

by regular expression patterns. We provide PRDF with a semantics extending that of RDF, and propose
a correct and complete algorithm which, by computing a particular graph homomorphism, decides the
consequence between an RDF graph and a PRDF graph. We then define the PSPARQL query language,
extending SPARQL with PRDF graph patterns and complying with RDF model theoretic semantics. PRDF
thus offers both graph patterns and path expressions. We show that this extension does not increase
the computational complexity of SPARQL and, based on the proposed algorithm, we have implemented
a correct and complete PSPARQL query engine.
. Introduction

Resource Description Framework (RDF [49]) is a knowledge rep-
esentation language dedicated to the annotation of documents and
ore generally of resources within the semantic web. It represents

nowledge as a graph relating resources (see Fig. 1). Nowadays,
ore resources are annotated via RDF due to its simple data model,

ormal semantics, and a sound and complete inference mechanism.
query language that provides a range of querying paradigms is

herefore needed.
Several languages have been developed for querying RDF (cf.

ef. [37] for a comparison of query languages for RDF). Among
hem, SPARQL [56] is a W3C recommendation for querying RDF.
nswers to SPARQL queries can be computed by a kind of graph

omomorphisms known as projection in conceptual graphs [50].
ore precisely, the answer to a SPARQL query Q relies on calcu-

ating the set of possible homomorphisms from the basic graph
attern(s) of Q into the RDF graph representing the knowledge base

� This work has been partially supported by the Knowledge Web network of excel-
ence (IST-2004-507482). This work has been done while the authors are working
n the EXMO team.
∗ Corresponding author.

E-mail addresses: alkhateebf@yu.edu.jo (F. Alkhateeb),
ean-Francois.Baget@inria.fr (J.-F. Baget), Jerome.Euzenat@inrialpes.fr (J. Euzenat).

570-8268/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.websem.2009.02.002
© 2009 Elsevier B.V. All rights reserved.

(see Example 1). Unfortunately, SPARQL lacks the ability of express-
ing paths, which is necessary for many applications (see Example
2).

Example 1. SPARQL graph patterns allow to match a query graph
against an actual RDF graph. Fig. 1(a) presents such a graph pat-
tern. It can be used for finding the name and email address of any
one related in any way, i.e., not family restricted, to a daughter of
a person named “Faisal”. If this pattern is used in a SPARQL query
against the graph G of Fig. 1, it will return “Natasha” (with email
“natasha@example.org”).

Another approach, that has been successfully used in databases
[25,28,48,59,62] but little in the context of the semantic web, uses
path queries, i.e., regular expressions, for finding regular paths in
a database graph. The answer to a path query R over a database
graph G, is the set of all pairs of nodes in G satisfying the language
denoted by R, i.e., all pairs connected by a directed path such that
the concatenation of the labels of the arcs along the path forms a
word that belongs to the language denoted by R (see Example 2).

Example 2. Assuming an RDF graph representing a social network,

i.e., a graph representing relations between people, like the graph
G of Fig. 1, the regular expression (ex : son|ex : daughter)+?b4,
when used as a query, searches all pairs of nodes connected by
paths with a sequence of son and daughter relations followed by
any relation (not restricted to family relation). Applied to node

http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:alkhateebf@yu.edu.jo
mailto:Jean-Francois.Baget@inria.fr
mailto:Jerome.Euzenat@inrialpes.fr
dx.doi.org/10.1016/j.websem.2009.02.002

58 F. Alkhateeb et al. / Web Semantics: Science, Services an

e
e
p
o
p
s

q
i
i
e
m
w
p
e

S
a
l
E

E
t
d
n
g
g

R
l
t
w
s
a
s
t
t
s
s

c
b
p
p
P
r
h

Fig. 1. An RDF graph.

x:c1of G, it should match the paths leading to ex:Person1,
x:Person2, ex:Person3and ex:c3. This query, as it represents
aths of unknown length, cannot be expressed in SPARQL. On the
ther hand, the graph of Fig. 1(a), which represents a basic graph
attern of a SPARQL query, cannot be expressed by a regular expres-
ion.

None of these approaches can be reduced to the other, i.e., some
ueries that can be expressed in one approach cannot be expressed
n the other. As shown in Fig. 1(a), a query whose homomorphic
mage in the database is not a path cannot be expressed by a regular
xpression, while RDF does not allow expressing paths of undeter-
ined length. Furthermore, regular expressions provide a simple
ay to capture additional information along paths that is not be
rovided by SPARQL graph patterns, but they are not powerful
nough as a query language.

Therefore, an approach that combines the advantages of both
PARQL and path queries is herein investigated. This combined
pproach, in which the arcs of the SPARQL graph patterns may be
abeled with regular expression patterns, supports path queries (see
xample 3).

xample 3. Assuming that we are interested in finding, among
he persons related in any way, i.e., not family restricted, to Faisal’s
escendants, people who know Faisal, and we want to know their
ames and email addresses. This query can be expressed using
raph patterns labeled with regular expression patterns, as shown
raphically in Fig. 2(b).

In order to formally define that language, we first introduce Path
DF (PRDF) as an extension of RDF in which arcs of the graphs can be

abeled by regular expression patterns. Because we want to ground
he definition of our language on the semantics of RDF, and we
ant to leave the door open to further extensions, we define the

emantics of PRDF on top of RDF semantics and we provide a sound
nd complete algorithm for checking if a PRDF graph is entailed by
ome RDF graph. However, those readers who are not interested in
he semantic justification of this extension, and only require syn-
actic definitions, can skip Sections 2.2 and 4.2 (GRDF and PRDF
emantics) and trust Theorems 1 and 3 for grounding our language
emantically (see Appendix A).

PRDF graphs are then used to define an extension to SPARQL,
alled PSPARQL, that replaces RDF graph patterns used in SPARQL
y PRDF graph patterns, i.e., graph patterns with regular expression

atterns. We present the syntax and the semantics of PSPARQL. We
rovide algorithms, which are sound and complete for evaluating
SPARQL graph patterns over RDF graphs. We establish complexity
esults on evaluating PSPARQL graph patterns over RDF graphs. We
ave implemented a PSPARQL query engine.

Fig. 2. A SPARQL graph pattern (a) an
d Agents on the World Wide Web 7 (2009) 57–73

1.1. Paper outline

This paper is organized as follows: we introduce simple RDF in
Section 2. Section 3 presents the two approaches mentioned so far
for querying RDF graphs. In Section 4, we give the syntax and the
semantics of PRDF, as well as a sound and complete inference mech-
anism for querying RDF graphs with PRDF queries. Section 5 defines
the syntax of the PSPARQL language and establishes the complex-
ity results of PSPARQL query evaluation. Section 6 presents sound
and complete algorithms for answering a PSPARQL query, i.e., for
enumerating the set of all answers to a PSPARQL query. We provide
the first experimental results with an implementation of a PSPARQL
query evaluator (Section 7). After a review of related work (Section
8), we conclude in Section 9. The proof of the most important results
are given in Appendix A.

2. Simple RDF

This section is devoted to the presentation of the Simple RDF
knowledge representation language. We first recall (Section 2.1) its
abstract syntax [23], its semantics (Section 2.2), using the notions of
simple interpretations, models, simple entailment of Ref. [39]), then
Section 2.3 uses homomorphisms to characterize simple RDF entail-
ment (as done in Ref. [15] for a graph-theoretic encoding of RDF,
and in Ref. [36] for a database encoding), instead of the equivalent
interpolation lemma of Ref. [39].

2.1. RDF syntax

To define the syntax of RDF, we need to introduce the terminology
over which RDF graphs are constructed.

2.1.1. Terminology
The RDF terminology T is the union of three pairwise disjoint

infinite sets of terms [39]: the set U of urirefs, the set L of literals
(itself partitioned into two sets, the set Lp of p lain literals and the
set Lt of typed literals), and the set B of variables. The set V = U ∪ L
of names is called the v ocabulary. From now on, we use different
notations for the elements of these sets: a variable will be prefixed
by ? (like ?b1), a literal will be between quotation marks (like “27”),
and the rest will be urirefs (like foaf:Person — foaf: is the prefix
used for identifying the “Friend of a friend” name space used for
representing personal information — or ex:friend).

RDF graphs are usually constructed over the set of urirefs, blanks,
and literals [23]. “Blanks” is a vocabulary specific to RDF. Because
we want to stress the compatibility of the RDF structure with
classical logic, we will use the term v ariable instead. The speci-
ficity of a blank with regard to variables is their quantification.
Indeed, a blank in RDF is an existentially quantified variable. We
prefer to retain this classical interpretation which is useful when
an RDF graph is put in a different context. When switching to
SPARQL, variables and blanks have different behaviors in complex

cases. For example, a blank shared in different simple patterns of a
group query pattern has a local scope which is easier to describe
as changing the quantification scope of a variable than chang-
ing a blank into a variable. So, for the purpose of this paper and
without loss of generality, we have chosen to follow [54] to not

d a PSPARQL graph pattern (b).

F. Alkhateeb et al. / Web Semantics: Science, Services an

d
i

D
U

u
i
s
c
s
g

D
B

2

a
s
G
a
a
o
o
i

t

2

l
o
t
a
t
a
a
i
b
r
t
l
t

E
f

f

i
e
(
n
n

2

R

Fig. 3. A GRDF graph.

istinguish between variables and blanks, and speak of variables
nstead.

efinition 1 (RDF graph). An RDF triple is an element of (U ∪ B) ×
× T. An RDF graph is a finite set of RDF triples.

Excluding variables as predicates and literals as subject was an
nnecessary restriction in the RDF design, that has been relaxed

n many RDF extensions. Relaxing these constraints simplifies the
yntax specification and neither changes RDF semantics nor the
omputational properties of reasoning. In consequence, we adopt
uch an extension introduced in Ref. [41] and called generalized RDF
raphs, or simply GRDF graphs.

efinition 2 (GRDF graph). A GRDF triple is an element of T × (U ∪
) × T. A GRDF graph is a finite set of GRDF triples.

.1.2. Notations
If 〈s, p, o〉 is a GRDF triple, s is called its s ubject, p its predicate,

nd o its object. We denote by subj(G) the set {s|〈s, p, o〉 ∈ G} the
et of elements appearing as a subject in a triple of a GRDF graph
. pred(G) and obj(G) are defined in the same way for predicates
nd objects. We call nodes(G) the nodes of G, the set of elements
ppearing either as subject or object in a triple of G, i.e., subj(G) ∪
bj(G). A term of G is an element of term(G) = subj(G) ∪ pred(G) ∪
bj(G). If Y ⊆ T is a set of terms, we denote Y ∩ term(G) by Y(G). For
nstance, V(G) is the set of names appearing in G.

A ground GRDF graph G is a GRDF graph with no variable, i.e.,
erm(G) ⊆ V.

.1.3. GRDF graphs as graphs
A simple GRDF graph can be represented graphically as a directed

abeled multigraph 〈N, E, �, �〉 where the set of nodes N is the set
f terms appearing as a subject or object in at least one triple of G,
he set of arcs E is the set of triples of G, � associates to each arc
pair of nodes (its extremities) �(e) = 〈�1(e), �2(e)〉 where �1(e) is

he source of the arc e and �2(e) its target; finally, � labels the nodes
nd the arcs of the graph: if s is a node of N, i.e., a term, then �(s) = s,
nd if e is an arc of E, i.e., a triple 〈s, p, o〉, then �(e) = p. When draw-
ng such graphs, the nodes resulting from literals are represented
y rectangles while the others are represented by rectangles with
ounded corners. In what follows, we do not distinguish between
he two views of the RDF syntax (as sets of triples or directed
abeled multigraphs). We will then speak interchangeably about
heir nodes, their arcs, or the triples which make it up.

xample 4. The GRDF graph defined by the set of triples {〈?b1,
oaf : name, “Faisal”〉, 〈?b1, ex : daughter, ?b2〉, 〈?b2, ?b4, ?b3〉, 〈?b3,
oaf : knows, ?b1〉, 〈?b3, foaf : name, ?name〉} is represented graph-
cally in Fig. 3. Intuitively, this GRDF graph means that there
xists an entity named (foaf:name) “Faisal”that has a daughter
ex:daughter) that has some relation with another entity whose
ame is non-determined, and that knows (foaf:knows) the entity
amed “Faisal”.
.2. Simple RDF semantics

Ref. [39] introduces different semantics for RDF graphs. Since
DF and RDFS entailments can be polynomially reduced to simple
d Agents on the World Wide Web 7 (2009) 57–73 59

entailment via RDF or RDFS rules [36,39,41], we are only inter-
ested in the simple semantics without RDF/RDFS vocabulary [18].
The definitions of interpretations, models, satisfiability, and entail-
ment correspond to the simple interpretations, simple models, simple
satisfiability, and simple entailments of Ref. [39].

Definition 3 (Interpretation of a vocabulary). Let V ⊆ Vbe a vocabu-
lary. An interpretation of V is a 5-tuple I = 〈IR, IP, IEXT , IS, IL〉, where:

• IR is a set of resources containing plain literals of Lp;
• IP ⊆ IR is a set of properties;
• IS : U → IR, maps each uriref to a resource;
• IL : Lt → IR, maps each typed literal to a resource;
• IEXT : IP → 2(IR×IR), maps each property p to a set of pairs of

resources called the extension of p.

In order to simplify the notations, and without loss of generality,
we assume that IP ⊆ IR, which is true for RDF, but not necessar-
ily for Simple RDF. If I = 〈IR, IP, IEXT , IS, IL〉 is an interpretation of a
vocabulary V, we also denote by I the mapping defined by:

• ∀x ∈U, I(x) = IS(x);
• ∀x ∈Lt , I(x) = IL(x);
• ∀x ∈Lp, I(x) = x.

We have defined the interpretation of a vocabulary. Now, we
want to specify the conditions under which an interpretation I is
a model for a GRDF graph G, i.e., G is satisfied by the interpreta-
tion I. For that matter, we need to extend the interpretations of a
vocabulary to interpret the variables in G.

Definition 4 (Extension to variables). Let I be an interpretation of a
vocabulary V ⊆ V, and B ⊆ B a set of variables. An extension of I to
B is a mapping I′ : V ∪ B → IR such that ∀x ∈ V , I′(x) = I(x).

This definition implies that a variable can be interpreted (or
mapped) to any resource of IR.

Definition 5 (Model of a GRDF graph). Let G be a GRDF graph. An
interpretation I = 〈IR, IP, IEXT , IS, IL〉 of a vocabulary V ⊇ V(G) is a
model of G if and only if there exists an extension I′ of I to B(G) such
that for each triple 〈s, p, o〉 ∈ G, 〈I′(s), I′(o)〉 ∈ IEXT (I′(p)). The mapping
I′ is called a proof of G.

This definition is necessary for GRDF graphs having variables as
predicates [41], and PRDF graphs (cf Section 4). It is equivalent to
the standard definition [39], i.e., 〈I′(s), I′(o)〉 ∈ IEXT (I(p)), in the case
of RDF graphs.

The notions of satisfiability and entailment are then defined as
usual.

Definition 6 (Satisfiability). A GRDF graph G is satisfiable iff there
exists a model of G.

Definition 7 (Entailment). Let G and H be two GRDF graphs. Then
G entails H (denoted by G�RDF H) iff every model of G is also a model
of H.

The definitions of satisfiability and entailment will be the same
when we extend the syntax and the semantics of GRDF. Two GRDF
graphs G, H are said equivalent if and only if G�RDF H and H�RDF G.
We associate to this semantics the decision problem called SIMPLE

RDF ENTAILMENT:

SIMPLE RDF ENTAILMENT
Instance: two GRDF graphs G and H.
Question: Does G�RDF H?

SIMPLE RDF ENTAILMENT is an NP-complete problem for RDF
graphs [36]. For GRDF graphs, its complexity remains unchanged.

60 F. Alkhateeb et al. / Web Semantics: Science, Services an

P
u

•

•

2

h
a
n

e

i
u
R
t
i

D
m
�

8
t

D
g
t

E
Q
t
d
〈
〈
A
〈
c

b
i

T
o

t
w

Our proposal is based upon extending these graph patterns, and
leaving the remainder of the query forms unchanged. So, we illus-
Fig. 4. An RDF homomorphism � from Q into G.

olynomial subclasses of the problem have been exhibited based
pon the structure or labeling of the query:

when the query is ground [40], or more generally when it has a
bounded number of variables,
when the query is a tree or admits a bounded decompositions
into a tree, according to the methods in Ref. [35] as shown in Ref.
[15].

.3. Simple RDF entailment as a graph homomorphism

SIMPLE RDF ENTAILMENT[39] can be characterized as a kind of graph
omomorphism. A graph homomorphism from an RDF graph H into
n RDF graph G, as defined in Refs. [15,36], is a mapping � from the
odes of H into the nodes of G preserving the arc structure, i.e., for

ach node x ∈ H, if �(x) ∈U ∪ L then �(�(x)) = �(x); and each arc x
p→y

s mapped to �(x)
�(p)→ �(y). This definition is similar to the projection

sed to characterize entailment of conceptual graphs (CGs) [50](cf.
ef. [26] for precise relationship between RDF and CGs). We modify
his definition to the following equivalent one that maps term(H)
nto term(G).

efinition 8 (Map). Let V1 ⊆ T, and V2 ⊆ T be two sets of terms. A
ap from V1 to V2 is a mapping � : V1 → V2 such that ∀x ∈ (V1 ∩ V),
(x) = x.

The map defined in Refs. [36,54] is a particular case of Definition
. An RDF homomorphism is a map preserving some structure (here,
he arc structure).

efinition 9 (RDF homomorphism). Let G and H be two GRDF
raphs. An RDF homomorphism from H into G is a map � from
erm(H) to term(G) such that ∀〈s, p, o〉 ∈ H, 〈�(s), �(p), �(o)〉 ∈ G.

xample 5 (RDF homomorphism). Fig. 4 shows two GRDF graphs
and G (note that the graph Q is the graph P of Fig. 3, to which

he following triple is added 〈?b3, foaf : mbox, ?mbox〉. The map �1
efined by {〈“Faisal” , “Faisal” 〉, 〈?b1, ex : c1〉, 〈?name, “Natasha” 〉,
?mbox, natasha@example.org〉, 〈?b2, ex : c2〉, 〈?b4, ex : friend〉,
?b3, ex : Person1〉} is an RDF homomorphism from Q into G.
nd the map �2 defined by {〈“Faisal” , “Faisal” 〉, 〈?b1, ex : c1〉,

?name, “Deema” 〉, 〈?b3, ex : Person2〉, 〈?b4, ex : friend〉, 〈?b2, ex :
2〉} is an RDF homomorphism from P into G. Note that �2 cannot
e extended to an RDF homomorphism from Q into G since there

s no mailbox for “Deema” in G.

heorem 1. Let G and H be two GRDF graphs, then G� H if and
RDF

nly if there is an RDF homomorphism from H into G.

The definition of RDF homomorphisms (Definition 9) is similar
o the map defined in Ref. [36] for RDF graphs. Ref. [36] provides
ithout proof an equivalence theorem (Theorem 3) between RDF
d Agents on the World Wide Web 7 (2009) 57–73

entailment and maps. A proof is provided in Ref. [15] also for RDF
graphs, but the homomorphism involved is a mapping from nodes
to nodes, and not from terms to terms. In RDF, the two definitions
are equivalent. However, the terms-to-terms version is necessary to
extend the theorem of RDF (Theorem 1) to the PRDF graphs studied
in Section 3.1. The proof of Theorem 1 will be a particular case of
the proof of Theorem 3 for PRDF graphs.

This equivalence between the semantic notion of entailment and
the syntactic notion of homomorphism is the ground by which a
correct and complete query answering procedure can be designed.

3. Querying RDF graphs

This section presents two approaches for querying RDF graphs.
In Section 3.1, a simplified version of the SPARQL query language,
insisting on its development on top of RDF, is given. Section 3.2
shows how “path queries” developed in databases, and which use
regular expression patterns, can be used to query RDF knowledge
bases. Lastly, in Section 3.3, we discuss the significance of the com-
bined approach which will be the goal of this paper.

3.1. The SPARQL query language

SPARQL is the RDF query language developed by the W3C [56].
SPARQL query answering is characterized by defining a mapping
from the query to the queried RDF graph.

We think that query languages for a semantically defined lan-
guage like RDF should be defined semantically. This ensures the
correct interpretation of the queried database, e.g., guaranteeing
that querying two semantically equivalent graphs will yield the
same result in the sense that the application of the variable assign-
ments to the graph patterns would return equivalent sets of graphs.
This also preserves the opportunity to extend this language beyond
what can be defined through simple maps or even homomor-
phisms, e.g., querying modulo an OWL ontology.

Hence, we ground the definition of answers to a (P)SPARQL query
on consequence, i.e., we show that a GRDF graph G contains an
answer � to a (P/G)RDF graph H if and only if G entails �(H).

In this section we first define SPARQL semantically, i.e., we char-
acterize SPARQL answers with regard to entailment. Theorem 1
shows that this definition is conform to the classical definition of
SPARQL. As a benefit, this provides a standard way to extend SPARQL
— by changing the entailment relation — and to define new query
evaluation mechanisms — by proving them sound and complete
with regard to the definition. This is what we will do in Section 5.

The basic building blocks of SPARQL queries are graph patterns
which are shared by all SPARQL query forms. Informally, a graph
pattern can be a triple pattern, i.e., a GRDF triple, a basic graph pat-
tern, i.e., a GRDF graph, the union of graph patterns, an optional
graph pattern, or a constraint (cf. Ref. [56] for more details).

Definition 10 (SPARQL graph pattern). A SPARQL graph pattern is
defined inductively in the following way:

• every GRDF graph is a SPARQL graph pattern;
• if P, P′ are SPARQL graph patterns and R is a SPARQL constraint,

then (PANDP ′), (PUNIONP ′), (POPTP ′), and (PFILTERR) are SPARQL
graph patterns.
trate our extension using the SELECT query form.1 For a complete

1 SPARQL provides several result forms that can be used for formatting the query
results. For example, CONSTRUCT that can be used for building an RDF graph from

ces an

v
[

w
a
a
o

a
c
w

3

s
i
o

b
�
�
b
�
t

•
•

t
o

D
S
a

S

S

S

S

S

i
S
a
m
e
t

D
S

g
t
c

g

C
m

t
F

F. Alkhateeb et al. / Web Semantics: Science, Servi

ersion of SPARQL, the reader is referred to the SPARQL specification
56] or to Refs. [54,55] for formal semantics of SPARQL.

A SPARQL SELECT query is of the form SELECTBFROMuWHEREP
here u is the URL of an RDF graph G, P is a SPARQL graph pattern

nd B is a tuple of variables appearing in P. Intuitively, an answer to
SPARQL query is an instantiation � of the variables of B by terms
f the RDF graph G.

Such an instantiation, called a variable assignment, is a map from
set of variables to terms. Any homomorphism is a map too (the

onverse is not true). Hence, we can define operations on maps that
ill be used for maps, assignments and homomorphisms.

.1.1. Operations on maps
If � is a map, then the domain of �, denoted by dom(�), is the

ubset of Twhere � is defined. The restriction of � to a set of terms X
s defined by �|X = {〈x, y〉 ∈ �|x ∈ X} and the completion of � to a set
f terms X is defined by �|X = � ∪ {〈x, null〉|x ∈ X and x /∈ dom(�)}.

If P is a graph pattern, then �(P) is the graph pattern obtained
y the substitution of �(b) to each variable b ∈B(P). Two maps
1 and �2 are compatible when ∀x ∈ dom(�1) ∩ dom(�2), �1(x) =
2(x). If �1 and �2 are two compatible maps, then we denote
y � = �1 ⊕ �2 : T1 ∪ T2 → T the map defined by: ∀x ∈ T1, �(x) =
1(x) and ∀x ∈ T2, �(x) = �2(x). Analogously to Ref. [54] we define

he join of two sets of maps �1 and �2 as follows:

(join) �1��2 = {�1 ⊕ �2|�1 ∈ �1, �2 ∈ �2 are compatible};
(difference) �1 \ �2 = {�1 ∈ �1|∀�2 ∈ �2, �1 and �2 are not
compatible}.

Ref. [55] defines different semantics for the join operation when
he maps contain null value, and their effects in the answers are
utlined.

efinition 11 (Answers to a SPARQL graph pattern). Let P be a
PARQL graph pattern and G be an RDF graph. The set S(P, G) of
nswers to P in G is defined inductively in the following way:

(P, G) = {�|B(P)|G � �(P)} if P is a GRDF graph (1)

((PANDP ′), G) = S(P, G)�S(P ′, G) (2)

(PUNIONP ′, G) = S(P, G) ∪ S(P ′, G) (3)

(POPTP ′, G) = (S(P, G)�S(P ′, G)) ∪ (S(P, G) \ S(P ′, G)) (4)

(PFILTERR, G) = {� ∈S(P, G)|�(R) = �} (5)

As usual for this kind of query languages, an answer to a query
s an assignment of distinguished variables (those variables in the
ELECT part of the query). Such an assignment is a map from vari-
bles in the query to nodes of the graph. The defined answers
ay assign only one part of the variables, those sufficient to prove

ntailment. The answers are these assignments extended to all dis-
inguished variables.

efinition 12 (Answers to a SPARQL query). Let Q =
ELECT B FROM u WHERE P be a SPARQL query, G be the RDF
raph identified by the URL u, and S(P, G) is the set of answers
o P in G, then the answers to the query Q are the restriction and
ompletion to B of answers to P in G, i.e., ANS(Q) = {�|BB|� ∈S(P, G)}.

From Theorem 1, this definition corresponds to the definition
iven in Ref. [54]:
onsequence 1 (Answers to SPARQL graph patterns and homo-
orphisms). Let P be a GRDF graph and G be an RDF graph. The

he set of answers, ASK that returns TRUE if there is a answer to a given query and
ALSE otherwise, and DESCRIBE that can be used for describing a resource RDF graph.
d Agents on the World Wide Web 7 (2009) 57–73 61

set S(P, G) of answers to P in G is

S(P, G) = {�|B(P)|� is an RDF homomorphism from P into G}

Example 6. Consider the following SPARQL query Q:

SELECT ?name?mbox
FROM <http://example.org/index1.ttl>
WHERE {P OPT {(?b2, foaf : mbox, ?mbox)}}

such that P is the GRDF graph of Fig. 3, and the RDF graph iden-
tified by the uriref of the FROM clause is the graph G of Fig. 4. We
construct the answer to the query by taking the join of homomor-
phism Q into G and the homomorphism from the optional triple
into G; i.e., the homomorphisms from Q into G, e.g., the homomor-
phism �1 of Example 5, and the homomorphisms from P into G that
cannot be extended to include the optional triple, e.g., the homo-
morphism �2 of Example 5. There are therefore two answers to the
query:

?name ?mbox

“Deema” null

“Natasha” natasha@example.org

Hence, what we have done so far is only to provide a seman-
tic definition of answers to SPARQL queries (through Definitions
11 and 12) and to show that this definition exactly corresponds to
the original SPARQL definition (though Consequence 1). We have
gained two benefits in doing this:

• Finding an RDF homomorphism is now one way to find SPARQL
answers which is complete and correct; other ways may be
designed.

• Extensions of SPARQL can be defined semantically and the pro-
posed evaluation strategies, like finding a particular kind of
homomorphism, can be compared with this definition. So exten-
sions can be defined in the same way as SPARQL.

This is what we will do in the next sections.

3.1.2. SPARQL complexity
To evaluate the complexity of SPARQL, we consider the deci-

sion problem which consists of checking if a given assignment is an
answer and is called SPARQL QUERY EVALUATION:

SPARQL QUERY EVALUATION[54]
Instance: an RDF graph G, a graph pattern P and an assignment �.
Question: Is � ∈S(P, G)?

SPARQL QUERY EVALUATIONis shown to be PSPACE-complete for
SPARQL graph patterns [54]. Restricting the graph pattern con-
structs to the AND, FILTER and UNION operators makes it
NP-complete. This problem is equivalent to that of checking the
existence of a solution.

3.2. Regular expression patterns for path queries

Regular expressions are the usual way for expressing path
queries [27,28,21,2,31,46]. Informally, the set of answers to a path
query R over a database graph G is the set of all pairs of nodes in
G connected by a directed path such that the concatenation of the
labels of the arcs along the path forms a word that belongs to the

language denoted by R.

3.2.1. Languages and regular expression patterns
Let � be an alphabet. A language over � is a subset of �∗: its

elements are sequences of elements of � called words. A (non-

http://example.org/index1.ttl

6 ces an

e
e
d
b

D
R

•
•
•

d
K

o
t
p
p

3
e
e
t
[
u
m
m
i
w
e
a
c
b

D
b
i

•
•
•
•

d

D
�
r
d

e
T
g

2 F. Alkhateeb et al. / Web Semantics: Science, Servi

mpty) word (a1, . . . , ak) is denoted by a1 · · · · · ak. If A = a1 · · · · · ak

t B = b1 · · · · · bq are two words over �, then A · B is the word over �
efined by A · B = a1 · · · · · ak · b1 · · · · · bq. Regular expressions can
e used for defining languages over �.

efinition 13 (Regular expression). Let � be an alphabet, the set
(�) of regular expressions is inductively defined by:

∀a ∈ �, a ∈R(�) and !a ∈R(�);
	 ∈R(�);
If A ∈R(�) and B ∈R(�) then A|B, A · B, A∗, A+ ∈R(�).

such that !a is the complement of a over �, A|B denotes the
isjunction of A and B, A · B the concatenation of A and B, A∗ the
leene closure, and A+ the positive closure.

We have restricted regular expressions to atomic negation in
rder to have a reasonable time complexity in the query language
hat we are building. However, the semantics, soundness and com-
leteness results as well as the algorithms defined throughout this
aper still work with non-atomic regular expressions [12].

.2.1.1. Introduction of variables. More general forms of regular
xpressions are the ones that include variables, we call them regular
xpression patterns. Their combined power and simplicity con-
ribute to their wide use in different fields. For example, in Ref.
31], in which they are called universal regular expressions, they are
sed for compiler optimizations. In Ref. [46], they are called p ara-
etric regular expressions, and are used for program analysis and
odel checking. The use of variables in regular expression patterns

s different from the use of variables in Unix (“regular expressions
ith back referencing” in Ref. [4]). A variable appearing in a regular

xpression pattern matches any symbol of the alphabet or any vari-
ble, while a variable in regular expressions with back referencing
an match strings. Matching strings with regular expressions with
ack referencing has been shown to be NP-complete [4].

efinition 14 (Regular expression pattern). Let � be an alphabet, X
e a set of variables, the set R(�, X) of regular expression patterns

s inductively defined by:

∀a ∈ �, a ∈R(�, X) and !a ∈R(�, X);
∀x ∈ X , x ∈R(�, X);
	 ∈R(�, X);
If A ∈R(�, X) and B ∈R(�, X) then A|B, A · B, A∗, A+ ∈R(�, X).

The language generated by a regular expression pattern R,
enoted by L∗(R), is given in the following definition.

efinition 15 (Language defined by a regular expression pattern). Let
be an alphabet, X be a set of variables, and R, R′ ∈R(�, X) be

egular expression patterns. L∗(R) is the set of words of (� ∪ X)∗

efined by:

L∗() = {	};
L∗(a) = {a};
L∗(!a) = � \ {a};
L∗(x) = � ∪ X;
L∗(R|R′) = {w|w ∈ L∗(R) ∪ L∗(R′)};
L∗(R · R′) = {w · w′|w ∈ L∗(R) and w′ ∈ L∗(R′)};
L∗(R+) = {w1 · · · · · wk|∀i ∈ [1 . . . k], wi ∈ L∗(R)};

L∗(R∗) = {	} ∪ L∗(R+).

With regard to a more traditional definition of the language gen-
rated by a regular expression, our definition ranges over � ∪ X .
his is necessary because variables may match variables in GRDF
raphs.
d Agents on the World Wide Web 7 (2009) 57–73

3.2.2. Paths in graphs and languages
Informally, a pair of nodes 〈x, y〉 in a given graph satisfies a lan-

guage L∗(R) if there exists a directed path from x to y in the graph
such that the word obtained from the concatenation of arc labels
along the path is in L∗(R). We define this notion more precisely. First
we define the notion of a path in a graph and the word associated
to this path.

Definition 16 (Path in a directed graph). Let G = 〈N, E, �, �〉 be a
directed labeled graph, let x and y be two nodes of N, a path from x
to y is a non-empty list of arcs (a1, . . . , ak) of E such that �1(a1) = x,
�2(ak) = y, and for all 1 ≤ i < k, �2(ai) = �1(ai+1).

Definition 17 (Word associated to a path). Let G = 〈N, E, �, �〉 be
a labeled directed graph, whose arcs are labeled over an alphabet
� ∪ X , the word �(P) = �(a1) · · · · · �(ak) over (� ∪ X)∗ is associated
to the path P = (a1, . . . , ak) of G.

Then, we establish when a path satisfies a regular expression
patterns as defined above.

Definition 18 (Satisfaction of a regular expression pattern). Let G =
〈N, E, �, �〉 be a directed labeled graph where the arcs are labeled
by elements of an alphabet � and X a set of variables, a pair 〈x, y〉
of nodes of G satisfies a regular expression pattern over � and X, if
one of the following conditions is satisfied:

• 	 ∈ L∗(R) and x = y; or
• there exists a path P from x to y in G and a map � from � ∪ X to

term(G) such that �(P) ∈ L∗(�(R)).

The definition involves a map � which ensures that variables
which are matched against several arcs in the path — because of
multiple occurrences in the regular expression pattern or because
of repetitions like in x+ — match the same label (predicate or vari-
able) in G. In fact, the same definition without the introduction of �
would treat variables in regular expression patterns as wildcards,
i.e., each occurrence of a variable would behave independently of
the other ones, e.g., x · a · x would behave exactly like x · a · y. Our
definition of regular expression patterns is thus more powerful than
regular expression with wildcards which is more powerful than
simple regular expressions.

3.2.3. Regular expression patterns as queries
Let G be an RDF graph, and R be a regular expression pattern over

� and X. An answer to R in G is a triple (x, y, �) (where x et y are two
nodes and � is a map from terms of R to terms of G) such that there
exists a path P from x to y and a word w ∈ L∗(R) with �(P) = �(w).

Example 7. Consider the RDF graph G of Fig. 4, and the regular
expression pattern R = (ex : son|ex : daughter)+ · ?b5. Intuitively,
this regular expression pattern encodes the paths from the entity
x to the entity y such that y has a relation, by any predicate, with a
descendant of x. The answers to R are:

{〈ex : c1, ex : c3, {〈?b5, ex : son〉}〉,
〈ex : c1, ex : Person1, {〈?b5, ex : friend〉}〉,
〈ex : c1, ex : Person2, {〈?b5, ex : friend〉}〉,
〈ex : c1, ex : Person3, {〈?b5, ex : friend〉}〉}

The decision problem for the satisfiability of regular expression
patterns is defined as follows:
PATH SATISFIABILITY[61]
Instance: a directed labeled graph G, two nodes x, y of G, and a
regular expression pattern R ∈R(�, X), where � ⊇ V(G).
Question: Is there a map � from � ∪ X to term(G) such that the
pair 〈x, y〉 satisfies L∗(�(R))?

ces and Agents on the World Wide Web 7 (2009) 57–73 63

r
l

P
u
i

r
g

P

3

a
W
u
i
f
i
t
c

f
t
q
t
e
u
w

4
m

a
a
a
a
i
o
s
g

4

p
a

r
t

D
R

g
s
c

4

t
b

F. Alkhateeb et al. / Web Semantics: Science, Servi

We have established the complexity results for two classes of
egular expression patterns. First, when paths are reduced to regu-
ar expressions, they satisfiability can be checked efficiently.

roposition 1. PATH SATISFIABILITYin which X = ∅ (R ∈R is a reg-
lar expression that does not contain variables) can be decided

nNLOGSPACEin G and R.

Then, when paths contain variables, checking satisfiability
equires to find a map from the regular expression pattern to the
raph. This increases complexity.

roposition 2. PATH SATISFIABILITYis inNP.

.3. Discussion

We have presented in this section the SPARQL query language
nd we have provided its semantics with regard to RDF entailment.
e have also presented regular expression patterns. Although reg-

lar expression patterns can easily capture information along paths
n a graph (they are good for graph traversals), they are not power-
ul enough as a query language for RDF and for processing queried
nformation. Furthermore, both approaches are incomparable, i.e.,
here are some queries that can be expressed by one approach and
annot be expressed by the other (cf. Section 1).

In order to benefit from the query capabilities of both query
rameworks, we will extend SPARQL with regular expression pat-
erns. To that extent, we will replace the graph patterns of SPARQL
ueries with graph patterns embedding regular expression patterns
hat we call Path RDF graphs or simply PRDF graphs. This will require
xtending RDF syntax, semantics, and the inference mechanism
sed for SPARQL, i.e., RDF homomorphism, with path semantics as
e will see in the following section.

. Path RDF graphs: syntax, semantics, and inference
echanism

PRDF graphs are GRDF graphs where predicates in the triples
re regular expression patterns constructed over the set of urirefs
nd the set of variables. We extend the RDF semantics to take into
ccount these constructs. Section 4.1 presents its abstract syntax,
nd its semantics is presented in Section 4.2. Section 4.3 presents an
nference mechanism for checking if a PRDF graph is a consequence
f a GRDF graph. This mechanism will be used for calculating the
et of answers to a PRDF graph over a GRDF graph when using PRDF
raphs for constructing PSPARQL graph patterns.

.1. PRDF syntax

Since arcs in GRDF graphs are labeled by the elements of U ∪ B,
ath queries will be defined by regular expression patterns over U
nd B.

We denote by Path RDF, or PRDF, the extension to GRDF with
egular expression patterns used in the predicate position of PRDF
riples.

efinition 19 (PRDF graph). A PRDF triple is an element of T ×
(U,B) × T. A PRDF graph is a set of PRDF triples.

All PRDF graphs with atomic predicates are not necessarily RDF
raphs, but they are GRDF graphs [41]. A PRDF graph can be repre-
ented graphically in the same way as a GRDF graph in which arcs
an be labeled by elements of R(U,B).
.1.1. Notations
Let R be a regular expression patterns, u ∈U(R) if u ∈ U and U is

he smallest set such that R ∈R(U,B). In the same way, b ∈B(R) if
∈ B and B is the smallest set such that R ∈R(U, B). Let G be a PRDF
Fig. 5. A PRDF homomorphism from a PRDF graph to a GRDF graph represented in
dashed lines.

graph, pred(G) is the set of regular expression patterns appearing
as a predicate in a triple of G. Let UB(R) = U(R) ∪ B(R), ∀R ∈ pred(G).
Then term(G) = subj(G) ∪ UB(R) ∪ obj(G).

For example, the graph P of Fig. 5 searches among any related one
to Faisal’s descendants, the names and email addresses of people
who know Faisal.

4.2. PRDF semantics: interpretations and models

Since the terminology of RDF is the one used for PRDF, RDF
interpretations remain unchanged in the case of PRDF. However,
an RDF interpretation has specific conditions to be a model for a
PRDF graph. These conditions are the transposition of the classical
path semantics within the RDF semantics.

Definition 20 (Support of a regular expression pattern). Let I =
〈IR, IP, IEXT , IS, IL〉 be an interpretation of a vocabulary V = U ∪ L, I′

be an extension of I to B ⊆ B, and R ∈R(U, B), a pair 〈x, y〉 of (IR × IR)
supports R in I′ if and only if one of the two following conditions is
satisfied:

(i) the empty word 	 ∈ L∗(R) and x = y;
(ii) there exists a word of length n ≥ 1w = w1 · · · · · wn where

w ∈ L∗(R) and wi ∈ U ∪ B (1 ≤ i ≤ n), and a sequence of resources
of IRx = r0, . . . , rn = y such that 〈ri−1, ri〉 ∈ IEXT (I′(wi)), 1 ≤ i ≤ n.

Instead of considering paths in RDF graphs, Definition 20 consid-
ers paths in the interpretations of PRDF graphs, i.e., paths are now
relating resources. This definition is the semantic substitute for the
satisfaction of a regular expression pattern by two nodes (Definition
18). It has the same function: ensuring that variables have only one
image. This is achieved by the “extension to variables” (I′) which
plays the same role as � in Definition 18.

It is used in the following definition of PRDF models in which it
replaces the direct correspondences that exists in RDF between a
relation and its interpretation (see Definition 5), by a correspon-
dence between a regular expression pattern and a sequence of
relation interpretations. This allows to match regular expression
patterns, e.g., r+, with variable length paths.

Definition 21 (Model of a PRDF graph). Let G be a PRDF graph, and
I = 〈IR, IP, IEXT , IS, IL〉 be an interpretation of a vocabulary V ⊇ V(G).
I is a PRDF model of G if and only if there exists an extension I′ of I

to B(G) such that for every triple 〈s, R, o〉 ∈ G, 〈I′(s), I′(o)〉 supports R
in I′.

This definition extends the definition of RDF models (Definition
5), and they are equivalent when all regular expression patterns

6 ces an

R
G
u
t

P
a
t
(

4

b

w
i
d

E

g
N

T
t

l
P

4

m
c
o
g

f
I
w
c
a

D
H
�

(

�
d
t
�
x

4 F. Alkhateeb et al. / Web Semantics: Science, Servi

are reduced to atomic terms, i.e., urirefs or variables. Moreover,
RDF graphs are PRDF graphs with the regular expression patterns
sed to label the arcs restricted to atomic regular expression pat-
erns.

roposition 3. If G is a PRDF graph with pred(G) ⊆ U ∪ B, i.e., G is
GRDF graph, and I be an interpretation of a vocabulary V ⊇ V(G),

hen I is an RDF model of G (Definition 5) iff I is a PRDF model of G
Definition 21).

.2.1. Complexity of PRDF–GRDF entailment
We associate the following decision problems to the entailment

etween PRDF graphs.

PRDF ENTAILMENT

Instance: a PRDF graph G and a PRDF graph H.
Question: Does G�PRDF H?

We have studied independently the PRDF ENTAILMENT problem [8]
hich is useful if one wants to consider query containment for

nstance. For the purpose of defining a query language, we will only
eal with the simpler PRDF–GRDF ENTAILMENT problem:

PRDF–GRDF ENTAILMENT

Instance: a GRDF graph G and a PRDF graph H.
Question: Does G�PRDF H?

This problem is at least NP-hard, since it contains SIMPLE RDF

NTAILMENT, an NP-complete problem. However, when the entailed
raph, i.e., the query, is ground, this problem can be decided in
LOGSPACE.

heorem 2. Let G be a GRDF graph and H be a ground PRDF graph,
henPRDF–GRDF ENTAILMENTis inNLOGSPACE.

The following section shows the complexity of the latter prob-
em through the equivalence between PRDF–GRDF ENTAILMENT and
RDF–GRDF HOMOMORPHISM.

.3. PRDF homomorphisms

In order to answer queries, it is necessary to find homo-
orphisms between PRDF graph patterns and the database. We

onsider that the database is made of simple GRDF graphs, so we
nly investigate homomorphisms between PRDF graphs and GRDF
raphs.

This section presents a restriction of PRDF homomorphism
or checking if a PRDF graph is a consequence of an RDF graph.
t extends RDF homomorphisms to deal with nodes connected

ith regular expression patterns, that can be mapped to nodes
onnected by paths. PRDF homomorphism will then be used for
nswering PRDF graphs over RDF graphs.

efinition 22 (PRDF homomorphism). Let G be a GRDF graph, and
be a PRDF graph. A PRDF homomorphism from H into G is a map
from term(H) into term(G) such that: ∀〈s, R, o〉 ∈ H, either

(i) the empty word 	 ∈ L∗(R) and �(s) = �(o); or
ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = �(s), nk =

�(o), and p1 · · · · · pk ∈ L∗(�(R)).

Definition 22 is equivalent to ∀〈s, R, o〉 ∈ H, 〈�(s), �(o)〉 satisfies

(R) in G (Definition 18). This means that we can reformulate the
efinition using Definition 18. If R is a regular expression pattern,
hen �(R) is the regular expression pattern obtained by substituting
(x) to each atom x in R. Also (thanks to Definition 8), �(x) = x where
∈U: no mapping is needed in that case.
d Agents on the World Wide Web 7 (2009) 57–73

Example 8. Fig. 5 shows a PRDF homomorphism from the PRDF
graph P into the RDF graph G. Note that the path satisfying the reg-
ular expression pattern of P is one of those given in Example 7.

The existence of a PRDF homomorphism is exactly what is
needed for deciding entailment between GRDF and PRDF graphs:

Theorem 3. Let G be a GRDF graph, and H be a PRDF graph, then
there is a PRDF homomorphism from H into G iff G�PRDF H.

This result, which proof is in appendix, shows that, as for RDF,
there is an equivalence between PRDF homomorphisms and entail-
ment of a PRDF graph by a GRDF graph. So, testing the entailment
between PRDF graphs and RDF graphs, can be reduced to the
PRDF–GRDF HOMOMORPHISM problem.

PRDF–GRDF HOMOMORPHISM

Instance: a PRDF graph H and a GRDF graph G.
Question: Is there a PRDF homomorphism from H into G?

Since any solution can be checked by checking as many times
as there are edges in the query an instance of the PATH SATISFIABILITY

problem, the problem is subject to its satisfaction checking. Since
PATH SATISFIABILITY is in NP and PRDF–GRDF HOMOMORPHISM contains RDF

HOMOMORPHISM which is equivalent to SIMPLE RDF ENTAILMENT, an NP-
complete problem, then PRDF–GRDF HOMOMORPHISM is NP-complete.

The next section presents how this framework is used to extend
the SPARQL query language, and Section 6 presents algorithms for
enumerating the answers to such queries, i.e., computing PRDF
homomorphisms.

5. The PSPARQL query language

We have defined, in the previous section, the syntax and the
semantics of PRDF, where regular expression patterns can be used
in the predicate position of PRDF graphs. The PSPARQL query lan-
guage is built on top of PRDF in the same way that SPARQL is built
on top of RDF. Section 5.1 presents the syntax of PSPARQL. Sec-
tion 5.2 defines the answer to a given PSPARQL query following the
framework of Ref. [54], as well as an evaluation algorithm. Finally,
Section 5.3 presents the complexity study of evaluating PSPARQL
graph patterns.

5.1. PSPARQL syntax

PSPARQL graph patterns are built on top of PRDF in the same way
that SPARQL graph patterns are built on top of RDF, by building on
basic graph patterns which are here PRDF graphs instead of GRDF
graphs.

Definition 23 (PSPARQL graph patterns). A PSPARQL graph pattern
is defined inductively in the following way:

• every PRDF graph is a PSPARQL graph pattern;
• if P, P ′ are PSPARQL graph patterns and R is a SPARQL constraint,

then (PANDP ′), (PUNIONP ′), (POPTP ′), and (PFILTERR) are PSPARQL
graph patterns.

Example 9. The following PSPARQL graph pattern P

F. Alkhateeb et al. / Web Semantics: Science, Services an

Table 1
PSPARQL graph pattern grammar.

[21′] 〈TriplesBlock〉 : :=〈PathTriples1〉
|(‘ .’ 〈PathTriples1〉?)∗

[30.1] 〈PathTriples1〉 : :=〈VarOrTerm〉〈PathPropLNE〉
|〈PathTripleNode〉〈PathPropL〉

[31.1] 〈PathPropL〉 : :=〈PathPropLNE〉?
[32.1] 〈PathPropLNE〉 : :=〈PathVerb〉〈PathObL〉(‘ ;’ 〈PathPropL〉)?
[33.1] 〈PathObL〉 : :=〈PathGraphNode〉(‘ ,’ 〈PathObL〉)?
[34.1] 〈PathVerb〉 : :=〈RegularExp〉
[35.1] 〈PathTripleNode〉 : :=〈PathCollection〉

|〈PathBNodePropL〉
[36.1] 〈PathBNodePropL〉 : :=‘ [’ 〈PathPropLNE〉‘]’
[37.1] 〈PathCollection〉 : :=‘ (’ 〈PathGraphNode〉 + ‘)’
[38.1] 〈PathGraphNode〉 : :=〈VarOrTerm〉

|〈PathTripleNode〉
[39.1] 〈RegularExp〉 : :=〈Rexp〉((‘ |’ |‘ · ’)〈Rexp〉)∗
[39.2] 〈Rexp〉 : :=(‘ + ’ |‘ ∗ ’)?〈Atom〉
[

a

5

d
g
e
p

t
e
r
g
p

E

a
r
{
i

5

g
T
t
e

D
P
a

ment �.
Question: Is � ∈S(P, G)?

We have studied the PSPARQL QUERY EVALUATION problem for basic
graph patterns. We have first considered ground graph patterns,
which is reduced to checking if a given map is a PRDF homomor-
phism. So there is no need to seek such a map, and the REGULAR PATH

problem is considered in this case (see Appendix). Theorem 4 shows
that PSPARQL QUERY EVALUATION for ground basic graph patterns is no
39.3] 〈Atom〉 : :=‘ !’ 〈IRIref 〉
|〈VarOrIRIref 〉
|‘ (’ 〈RegularExp〉‘)’

consists of the following basic graph patterns, i.e., PRDF graphs,
nd constraint:

P = (P1AND (P2UNION (P3FILTERR))), where
P1 = {ex : Paris(ex : train|ex : plane)+?City.} that finds cities
reachable from Paris by a sequence of trains or planes;
P2 = {?Cityex : capitalOf?Country.} that finds capital cities
together with their countries;
P3 = {?Cityex : populationSize?Population.} that finds cities and
their population size;
R = Filter(?Population > 200,000) is a constraint that restricts
the values of the variable ?Population to be greater than 200,000.

.1.1. PSPARQL query
A PSPARQL query is of the form SELECTBFROMuWHEREP. The only

ifference with a SPARQL query is that, this time, P is a PSPARQL
raph pattern, i.e., a PRDF graph. The use of variables in PRDF regular
xpression patterns is a generalization of the use of variables as
redicates in the basic graph patterns of SPARQL.

As PSPARQL introduces PRDF graph patterns, we give in Table 1
he necessary modifications to the SPARQL grammar [56] in the
xtended Backus–Naur form, where the production rule [21′]
eplaces [21] in SPARQL, and all other rules are added to SPARQL
rammar to have a complete grammar for PSPARQL (see also
sparql.inrialpes.fr).

xample 10. The following PSPARQL query:

searches the first element of a collection (a list) containing
n element “X”. For instance, if queried against an RDF graph
educed to the list [“A” “B” “X” “C”], it will return the answers
〈?First, “A” 〉, 〈?First, “B” 〉, 〈?First, “X” 〉}. However, if we use +
nstead of *, then “X” is not an answer.

.2. Evaluating PSPARQL queries

As in the case of GRDF, the answer to a query reduced to a PRDF
raph is also given by an assignment to distinguished variables.
he definition of an answer to a PSPARQL query will thus be iden-
ical to that given for SPARQL in Section 3.1 (but it will use PRDF

ntailment).

efinition 24 (Answers to a PSPARQL graph pattern). Let P be a
SPARQL graph pattern and G be an RDF graph, the set S(P, G) of
nswers to P in G is defined inductively in the following way:
d Agents on the World Wide Web 7 (2009) 57–73 65

• if P is a PRDF graph, S(P, G) = {�|B(P)|G�PRDF �(P)};
• (2,3,4,5) are the rules used to define answers to SPARQL graph

patterns of Definition 11.

The answers to a PSPARQL query are defined from the answers
to PSPARQL graph patterns, exactly like answers to a SPARQL query
in Definition 12.

As a consequence of Theorem 3, PSPARQL answers can be com-
puted through PRDF homomorphisms because they corresponds to
PRDF–GRDF ENTAILMENT.

Consequence 2 (Answers to PSPARQL graph patterns and PRDF
homomorphisms). Let P be a PRDF graph and G be an RDF graph,
the set S(P, G) of answers to P in G is

S(P, G) = {�|B(P)|� is a PRDF homomorphism from P into G}

This means that it is possible to obtain answers to PSARQL
queries by computing PRDF homomorphisms.

Example 11. According to Consequence 2, the set of answers to
the PSPARQL graph pattern P of Example 9 in a given RDF graph G
is defined as:

P = (S(P1, G)�(S(P2, G) ∪ ({� ∈S(P3, G)|�(R) = �})))

In words, the set of maps, i.e., PRDF homomorphisms, from P1
into G joined with the union of that from P2 into G and those from
P3 into G that satisfy the constraint R.

Example 12. The following PSPARQL query that uses the graph
pattern P of Example 9:

returns in an ascending order the set of cities reachable from
Paris by a sequence of trains and planes, which are either capital
cities or have a population size greater than 200,000.

5.3. PSPARQL complexity

We define the PSPARQL QUERY EVALUATIONdecision problems for
PSPARQL in the same way as for SPARQL. This problem depends on
calculating PRDF homomorphisms, and hence it is parameterized
by the PRDF HOMOMORPHISM problem.

PSPARQL QUERY EVALUATION

Instance: an RDF graph G, a PSPARQL graph pattern P and a assign-
more difficult than REGULAR PATH (defined in Appendix).

Theorem 4. PSPARQL QUERY EVALUATIONis inNLOGSPACEfor ground basic
graph patterns andNP-complete for basic graph patterns.

http://psparql.inrialpes.fr

6 ces and Agents on the World Wide Web 7 (2009) 57–73

t
p
q
s
s
P

6
h

g
f
a
R

(

(
(

m
s
b

6

f
t
a
m

A
e
t
t
o
w

u
〈
R

P

Table 2
Notations for complexity analysis.

Name Meaning

vars the number of variables.
predicateSize the maximum predicate size appearing in G or as a term in

R.
6 F. Alkhateeb et al. / Web Semantics: Science, Servi

The complexity of PSPARQL QUERY EVALUATION for basic graph pat-
erns is thus the same as SPARQL QUERY EVALUATION for basic graph
atterns [36]. Since PSPARQL queries are the same as SPARQL
ueries with the difference of the kind of basic graph patterns and
ince PSPARQL QUERY EVALUATIONfor PRDF graphs is in NP, our exten-
ion does not increase the worst case complexity of SPARQL, i.e.,
SPACE-complete [54].

. Answering PSPARQL queries: algorithms for PRDF
omomorphism

To answer a PSPARQL query Q involving PRDF graphs as basic
raph patterns, mandates to enumerate all PRDF homomorphisms
rom the graph pattern(s) of Q into the data RDF graph of Q. So, we
re interested in an algorithm which, given a PRDF graph H and an
DF graph G, answers the following problems:

1) Is there a PRDF homomorphism from H into G? (PRDF–GRDF

HOMOMORPHISM).
2) Exhibit, if it exists, a PRDF homomorphism from H into G.
3) Enumerate all PRDF homomorphisms from H into G.

Two possible methods can be used for solving these problems: a
ethod based on evaluating the PRDF graph triple-by-triple is pre-

ented in Section 6.1; a backtracking method based on the standard
acktrack techniques is presented in Section 6.2.

.1. Triple-by-triple evaluation

One possible method to enumerate all PRDF homomorphisms
rom a given PRDF graph H into an RDF graph G is to evaluate
he graph H triple-by-triple and take the join of the intermedi-
te results. This method is similar to the edge-by-edge evaluation
ethod presented in Ref. [28].
Refs. [46,31] present the algorithm Reach(G, R, s, �i) (see also

ppendix B), where G is a graph (for us, an RDF graph), R is a regular
xpression patterns, and s is a node of G. This algorithm calculates
he set of triples 〈s, o, �〉, where o is a node of G and � is a map from
erms of R into terms of G such that there exists a path P from s to
in G and a word w ∈ L∗(R) with �(P) = �(w) and �i is compatible
ith �.

The Reach(G, R, s, �i) algorithm is used by the algorithm E val-

ate (Algorithm 1), which, given an RDF graph G and a PRDF triple
x, R, y〉, calculates the set of maps � such that 〈�(x), �(y)〉 satisfies
in G with the map � (it is said that � satisfies 〈x, R, y〉 in G).

The results of the algorithm Evaluate are used to calculate the
RDF homomorphisms of a PRDF graph P into an RDF graph G by
maps the number of possible maps from variables and variables
of R into terms of G that match some path in G with some
path in R; the worst case is pred(G)vars(R) .

successive joins in the algorithm Eval (Algorithm 2), whose initial
call will be Eval(P, G, {�∅}), where �∅ is the map with the empty
domain.

The Eval algorithm is given for evaluating PRDF graphs, and can
be extended to evaluate PSPARQL graph patterns following the Eval
algorithm for evaluating SPARQL graph patterns [54].

Algorithm 1. Evaluate(t, G).

Algorithm 2. Eval(P, G, �).

6.1.1. Algorithmic time complexity
The Reach algorithm has worst-case time complexity O(|G| ×

|Ri| × maps × (predicateSize + vars(Ri))) (the notations used in
Table 2 are reformulated from Ref. [46] and adapted to our problem).
Now, for each triple 〈x, Ri, y〉 in P, the Reach algorithm is called by
the Evaluate algorithm once if x is a constant, i.e., a uriref or a literal
if it is allowed in the subject position; otherwise it is called for each
node in G multiplied by the number of variables in P in the subject
position. So, the E valuate algorithm has overall worst-case time
complexity O((varss(P) × subj(G) + consts(P)) × |G| × |Ri| × maps ×
(predicateSize + vars(Ri))), where varss(P) (respectively, consts(P)) is
the number of variables (respectively, constants) appearing in the
subject position in a triple of P.

This result shows an exponential complexity with respect to the

number of variables in the regular expression patterns of the PRDF
graph representing the query (O(pred(G)vars(R)))). However, the size
of the query, and in particular, the number of variables is usually
considered very small with regards to the knowledge base. Hence,
the number of variables in each regular expression pattern can be

F. Alkhateeb et al. / Web Semantics: Science, Services an

a
w
q
[

e
m
c
f
h
h
F
w
s
w
M
v
n
?
a
s

i
g
b
c
fi

A

6

i
a
i
o
t

a
g
a
y

f

Fig. 6. A case in which the path closure method is not efficient.

ssumed a constant. With this assumption, the data complexity,
hich is defined as the complexity of query evaluation for a fixed

uery [60], is O(|G|2), i.e., not much worse than the one of SPARQL
54].

Though the above method is correct and complete, it is not
fficient, in particular, for testing the existence of a PRDF homo-
orphism which is sufficient for checking if a PRDF graph is a

onsequence of an RDF graph. Using this method, we need to per-
orm the join operation for all PRDF triples to have the set of PRDF
omomorphism, while we need to test the existence of one PRDF
omomorphisms. Consider the PRDF graph P and the RDF graph of
ig. 6. To test if there exists a PRDF homomorphism from P into G,
e need to solve PATH SATISFIABILITYN2 times for the regular expres-

ion pattern R in P, where N is the number of nodes of G. However,
e need to solve PATH SATISFIABILITY only once as it appears in Fig. 6.
ore precisely, since the extremities of the regular expression R are

ariables (namely, ?b6and ?b7), we need to check for each pair of
odes 〈x, y〉 of G if they satisfy R in G while, in this example, ?b6 and
b7 can be only mapped to ex:c1 and ex:c2, respectively. In such
case, it is sufficient to determine whether the pair 〈ex : c1, ex : c2〉
atisfies R in G.

The next section presents a backtracking algorithm for calculat-
ng the set of PRDF homomorphisms from PRDF graph into an RDF
raph. This algorithm has the same worst-case time as the triple-
y-triple method, but it is more efficient in practice since in some
ases there is no need to traverse all the backtrack tree to find the
rst PRDF homomorphism.

lgorithm 3. Extendhomomorphism(H, G, partialProj).

.2. A backtrack algorithm for calculating PRDF homomorphisms

An alternative method for evaluating PSPARQL graph patterns,
.e., enumerating all PRDF homomorphisms from the PRDF graph of
given PSPARQL query into the data graph, is based on a backtrack-

ng technique that generates each possible map from the current
ne by traversing the parse tree in a depth-first manner and using
he intermediate results to avoid unnecessary computations.

Algorithm 3 is a simple recursive version of the basic Backtrack
lgorithm [34]. The input of this algorithm is: a PRDF graph, an RDF

raph, and a partial map, denoted by partialProj. partialProj includes
set of pairs {〈xi, yi〉} such that xi is a term of H, i.e., xi ∈ term(H), and
i is the image of xi in G, i.e., yi ∈ term(G).

The other parts of the algorithm perform as follows (see Ref. [10]
or a full description of the algorithm):
d Agents on the World Wide Web 7 (2009) 57–73 67

complete(partialProj) checks if each term x ∈ nodes(H) is mapped to
a term in G. It returns TRUE if all x ∈ nodes(H) are mapped, and FALSE

otherwise.
chooseTerm(nodes(H)) chooses a term x ∈ nodes(H).
candidates(partialProj, x, G) calculates all possible candidate images
in G for the current term x satisfying the partial map partialProj. It
returns all sets of pairs 〈y,
〉 such that y is a possible image of x,
and
 is the possible map from the terms of each regular expres-
sion pattern Ri appearing in a triple with x and one of the terms
in nodes(H) already mapped in p artialProj. That is, if there is no
term in nodes(H) involved in a triple with x, then the possible can-
didate images of x are all y in nodes(G) such that x can be mapped
to y (cf. the definition of mapping Definition 8). Otherwise, there
exists a set of terms z1, . . . , zk ∈ nodes(H) involved in a triple with x,
which are already mapped in partialProj. In this case, image(zi) and
y satisfies
(Ri), where Ri is the regular expression pattern appear-
ing in the predicate position of the triple between zi and x. The
order in which the two nodes image(zi) and y satisfy
(Ri) depends
on the order in which x and zi appear in the triple, that is, if the
triple is 〈zi, Ri, x〉 then 〈image(zi), y〉 satisfies
(Ri) in G, otherwise
〈y, image(zi)〉 satisfies
(Ri) in G.
 maps the terms appearing in the
regular expression patterns of H into the terms appearing along
the paths in G with respect to partialProj, that is,
 is a possible
map such that
 and partialProj are compatible.

Then the algorithm takes each candidate y of the current term
x ∈ nodes(H) and the possible map
, put y in the image(x), and
tries to generate the possible candidates of y with the current map
partialProj�{〈x, y〉}�
 (note that partialProj, {〈x, y〉} and
 are com-
patible, since the set 〈y,
〉 is calculated with respect to partialProj).
This is done recursively in a depth-first manner through the call
of Extendhomomorphism(H, G, partialProj�{〈x, y〉}�
). At the end of
the algorithm, we have a tree that contains one level with a term
from H, i.e., a node from H, and one level with the possible images
of that term in G. The input to each node of each level is the current
map. Each possible path in the tree from the root to a leaf labeled
by a term of G represents a possible PRDF homomorphism.

If we call Extendhomomorphism(H, G, partialProj∅) where
partialProj∅ denotes the empty map, then at the end of the algo-
rithm we have all PRDF homomorphisms from the PRDF graph H
into the RDF graph G.

Proposition 4. Algorithm 3 is correct and complete for enumerating
all PRDF homomorphisms from a given PRDF graph into an RDF graph.

This can be proved inductively because, at the beginning, the set
of all homomorphisms is complete for the empty set, and at each
step the partial homomorphism, i.e., partialProj, are completely

extended for the current node if Algorithm 4[46] is complete, and
the number of nodes being finite. The procedure ends having a
homomorphic image for each node in H.

In our case, we do not need to enumerate all paths but instead we
search the existence of paths satisfying (C)PRDF homomorphisms.

68 F. Alkhateeb et al. / Web Semantics: Science, Services and Agents on the World Wide Web 7 (2009) 57–73

F
(

E

t
c
n

ex :

r
c

c
w
P
s

?

a
s

?

N
a
a
i
w
a

P

w
A
b

7

p
u
g

a

itive label. The effects of this query is to find all instances of the
ig. 7. An RDF graph and a NDFA. (a) An RDF graph with cycles. (b) A NDFA of
?Trip)+.

xample 13. Consider the following PSPARQL query:

and the RDF graph of Fig. 7(a). As it is shown in this graph,
here are several cycles (going through Amman and Genève) that
an generate an infinite number of paths. For example, considering
on-simple paths, we can generate:

{〈ex : Paris,ex : plane, ex : Amman, ex : plane, ex : Paris〉}
{〈ex : Paris,ex : plane, ex : Amman, ex : plane, ex : Paris, ex : plane,
etc.

To overcome this problem, i.e., to cut cycles, our evaluation algo-
ithm calculates all possible finite maps (or homomorphisms in the
ase of (C)PRDF graphs).

To this end, we can go from Paris with a state 0 of the automata
orresponding to the regular expression (see Fig. 7(b)) to Amman
ith a state 1 and a map {〈?Trip,ex : plane〉}, then we can return to

aris since the state is different from the first visit to Paris (with a
tate 1). A possible answer therefore is:

Trip → {〈ex : plane〉}
A second answer is to go from Paris to Genève through Grenoble,

nd then Paris with a map {〈?Trip,ex : train〉} (we can take Paris
ince the map is different from the first answer):

Trip → {〈ex : train〉}
ow, we can also go from Paris to Genève, through Grenoble, Lyon
nd then Paris. However, this path is not explored since Paris is
lready visited with the same map and state (second answer). Sim-
larly, when we arrive at Genève or Amman for the second time,

e cut the cycles since they are already visited with the same map
nd/or state.

For illustrating non-simple paths, consider the following
SPARQL query:

In simple paths, nodes must not be visited more than once. If
e consider simple paths in this example, then we cannot retrieve
mman since we cannot go through the path Paris, Genève, Greno-
le, Paris, and then Amman (Paris has been visited twice).

. Implementation and experiments

We have implemented in Java a PSPARQL query evaluator.2 It is
rovided with two parsers: one for parsing PSPARQL queries based

pon the syntax of PSPARQL, and the second one for parsing RDF
raphs (documents) written in the Turtle language [17].

The algorithm follows the backtrack technique presented before
nd the evaluation of regular expression patterns generalizes those

2 http://psparql.inrialpes.fr/.
Amman, ex : plane, ex : Paris〉}

Fig. 8. A G+ query to find common ancestor.

of Ref. [46]. They are used for calculating the satisfiability set of a
given regular expression pattern, to take into account the multiple
appearances of a given variable in different places of the query, i.e.,
to take into account the current mappings.

This evaluator successfully passed all test cases designed by Data
Access Working Group (DAWG) for the SPARQL query language3

except the ones that concern the DESCRIBE query format. In addi-
tion, the evaluator can parse PRDF graphs and evaluate PSPARQL
queries. It is currently being thoroughly tested for performances
and practical hard problem detection [10] as well as for the test
suite.4

8. Related work

We divide related works in four areas: graph query languages
with path expressions, RDF structural query languages, extensions
of SPARQL and work on defining RDF query language semantics.

8.1. (Semi)-structured query languages

Semi-structured data models [20,1] deal with data whose struc-
ture is irregular, implicit, and partial, and with schema contained
in the data.

Query languages for structured graph data models can be used
for querying RDF viewing RDF data as a graph that may contain
transitive or repetitive patterns of relations. Among them, G [27]
and its extension G+ [28] are two languages for querying struc-
tured databases. A simple G+ query has two elements, a query graph
that specifies the pattern to be matched and a summary graph that
defines graphically how the answers are to be structured and then
presented to the user

Example 14. Given a graph that represents relations between peo-
ple, the G+ query of Fig. 8 finds pairs of people who share a common
ancestor.

The left hand side of the bold arrow is the pattern to be matched
in the knowledge base while the right hand side is the summary
graph.

Graphlog — a visual query language which has been proven
equivalent to linear Datalog [25]— extends G+ by combining it with
the Datalog notation. It has been designed for querying hypertext.
A Graphlog query is only a graph pattern containing a distinguished
edge or arc, i.e., it is a restructuring edge, which corresponds to the
summary graph in G+.

Example 15. Fig. 9 shows a Graphlog query: dashed lines repre-
sent edge labels with the positive closure, a crossed dashed line
represents a negated label, e.g., !descendant+ between ?person2
and ?person3, person is a unary predicate, and finally a bold line
represents a distinguished edge that must be labeled with a pos-
pattern that occur in the database, i.e., finding descendant of ?per-
son1 which are not descendant of ?person2. Then, for each one of
them, define a virtual link represented by the distinguished edge.

3 http://www.w3.org/2001/sw/DataAccess/tests/.
4 http://www.w3.org/2001/sw/DataAccess/tests/r2.

http://psparql.inrialpes.fr/
http://www.w3.org/2001/sw/DataAccess/tests/
http://www.w3.org/2001/sw/DataAccess/tests/r2

F. Alkhateeb et al. / Web Semantics: Science, Services an

o
t
p
i
p
E
t
e
d
o
t
b

d
t
t
c
i
t
p
1
s
[
f
a
b
c
a
t
t
s
p

f
T
e
t
p
l

8

o
R
t
t
s
t
q
p
f

Fig. 9. A Graphlog query.

These query languages (namely G, G+ and Graphlog) support
nly graphical queries similar to PRDF queries. In contrast to PRDF,
hey are limited to finding simple paths (cycle-free paths). The main
roblem with finding only simple paths, is that there are situations

n which answers to such queries are all non-simple, e.g., if the only
aths matching a regular expression pattern have cycles (see end of
xample 13 or the example of non-simple paths in Ref. [14]). In addi-
ion, the complexity of finding simple paths problem is NP-complete
ven without variables in regular expressions [61]. Moreover, they
o not provide complex functionalities, for example, for filtering,
rdering, projection, union of graph patterns, optional graph pat-
erns and other useful features (see SPARQL features and examples
elow).

Lorel [2] is an OEM-based language for querying semi-structured
ocuments. Object Exchange Model (OEM) [53] is based on objects
hat have unique identifiers, and property value that can be simple
ypes or references to objects. However, labels in the OEM model
annot occur in both nodes (objects) and edges (properties). Lorel
s a powerful query language which uses regular expression pat-
erns for traversing object hierarchy paths, restricted to simple
ath semantics (or acyclic paths; see why this matters in Example
3). UnQL [21] is a language closely related to Lorel for querying
emi-structured data. It is based on a data model similar to OEM
22]. A particular aspect of the language is that it allows some
orm of restructuring even for cyclic structures. A traverse construct
llows one to transform a database graph while traversing it, e.g.,
y replacing all labels A by the label A0. This powerful operation
ombines tree rewriting techniques with some control obtained by
guided traversal of the graph. For instance, one could specify that

he replacement occurs only if a particular edge is encountered on
he way from the root. STRUQL [32], a query language for a web-
ite management system, incorporates regular expressions and has
recisely the same expressive power as stratified linear Datalog.

As stated in Ref. [43], these query languages are not well suited
or RDF because they do not take into account its specific semantics.
his is not a real problem for RDF itself: the semantics being simple
nough this roughly manifests only in the lack of blank interpre-
ation and the enforcing of strict typing constraints. However, this
revents to extend further the query language towards ontology

anguages such as RDFS or OWL.

.2. RDF query languages

Several query languages have been proposed for RDF [37]. Most
f them use a query model based on relational algebra [24], where
DF graphs are viewed as a collection of triples and the queries are
riple-based formulas expressed over a single relation. In spite of
he benefits gained from the existing relational database systems

uch as indexing mechanisms, underlying storage of triples as rela-
ions [38], query optimization techniques, and others; relational
ueries cannot express recursive relations and even the most sim-
le form, the transitive closure of a relation [6], directly inherited
rom the graph nature of RDF triples.
d Agents on the World Wide Web 7 (2009) 57–73 69

There are many real-world applications, inside and outside the
domain of the semantic web, requiring data representation that
are inherently recursive. For that reason, there has been several
attempts to extend relational algebra to express complex query
modeling. Outside the domain of the semantic web, Ref. [3] extends
the relational algebra to represent transitive closure and [42] to
represent query hierarchies. In the domain of RDF, some query lan-
guages such as RQL [43] attempt to combine the relational algebra
with some special class hierarchies. It supports a form of transi-
tive expressions over RDFS transitive properties, i.e., subPropertyOf
and subClassOf, for navigating through class and property hierar-
chies. Versa [52], RxPath [58] and PRDF [11,9,47] are all path-based
query languages for RDF that are well suited for graph traver-
sal but do not support SQL-like functionalities. WILBUR [45] is a
toolkit that incorporates path expressions for navigation in RDF
graphs.

SQL-like query languages for RDF include SeRQL [19], RDQL [57]
and its current successor, the SPARQL recommendation [56].

In contrast to all the above mentioned languages, PSPARQL uses
regular expression patterns, i.e., regular expressions with variables,
and is not restricted to finding simple paths. This provides poly-
nomial classes of the satisfiability problem of regular expressions,
e.g., when they do not contain variables. The originality of our
proposal lies in our adaptation of RDF model-theoretic seman-
tics to take into account regular expression patterns, effectively
combining the expressiveness of these two languages. In addition,
the integration of this combination on top of SPARQL provides a
wider range of querying paradigms than the above mentioned lan-
guages.

8.3. SPARQL extensions

Two extensions of SPARQL, which are closely similar to PSPARQL,
have been recently defined after our initial proposal [11]: SPARQLeR
and SPARQ2L.

SPARQLeR [44] extends SPARQL by allowing query graph pat-
terns involving path variables. Each path variable is used to capture
simple, i.e., acyclic, paths in RDF graphs, and is matched against any
arbitrary composition of RDF triples between given two nodes. This
extension offers good functionalities like testing the length of paths
and testing if a given node is in the found paths. Since SPARQLeR is
not defined with a formal semantics, its use of path variables in the
subject position is unclear, in particular, when they are not bound.
Even when this is the case, multiple uses of the same path variable
is not fully defined: it is not specified which path is to be returned
or if the variable occurrences have to match the same path.

SPARQ2L [14] also allows using path variables in graph patterns
and offers good features like constraints in nodes and edges, i.e.,
testing the presence or absence of nodes and/or edges; constraints
in paths, e.g., simple or non-simple paths, presence of a pattern
in a path. This extension is also not described semantically. One
can only try to guess what is the intuitive semantics of the con-
structs. It seems that the algorithms are not complete with regard to
their intuitive semantics, since the set of answers can be infinite in
absence of constraints for using shortest or acyclic paths. Moreover,
this extension is quite restricted: it does not allow using more than
one triple pattern having a path variable. Relaxing this restriction
requires adapting radically the evaluation algorithm which other-
wise is inoperative. This occurs due to the compatibility function
that does not take into account the use of the same path variable in
multiple triple patterns.
In both cases, the proposal adds expressivity to PSPARQL, in
particular due to the use of path variables. However, the lack of a
clearly defined semantics raises questions about what should be the
returned answers and this does not allow to assess the correctness
and completeness of proposed procedures.

7 ces an

8

t
e
a
d
a
q
o
t
i
o
u
O
r
t
w
d
t
p
g
t
f

9

s
w
w
v
t
g
i
S
r
fi
a
a
t
e
r

S
b
t
q
l
n
b
c
t
p

a
f
e
w
a
i
[
b
c
j
t

state of M and u is a node of G; and there exists a transition on
0 F. Alkhateeb et al. / Web Semantics: Science, Servi

.4. Work on SPARQL

Ref. [29] presents a relational model of SPARQL, in which rela-
ional algebra operators (join, left outer join, projection, selection,
tc.) are used to model SPARQL SELECT clauses. The authors propose
translation system between SPARQL and SQL to make a correspon-
ence between SPARQL queries and relational algebra queries over
single relation. Ref. [38] presents an implementation of SPARQL
ueries in a relational database engine, in which relational algebra
perators similar to Ref. [3] are used. Ref. [30] addresses the defini-
ion of mapping for SPARQL from a logical point of view. Ref. [33],
n which we can find a preliminary formalization of the semantics
f SPARQL, defines an answer set to a basic graph pattern query
sing partial functions. The authors use high level operators (Join,
ptional, etc.) from sets of mappings to sets of mappings, but cur-

ently they do not have formal definitions for them, stating only
heir types. Ref. [55] provides translations from SPARQL to Datalog
ith negation as failure, some useful extensions of SPARQL, like set

ifference and nested queries, are proposed. Finally, Ref. [54] presents
he semantics of SPARQL using traditional algebra, and gives com-
lexity bounds for evaluating SPARQL queries. The authors use the
raph pattern facility to capture the core semantics and complexi-
ies of the language, and discussed their benefits. We followed their
ramework to define the answer set to PSPARQL queries.

. Conclusion and future work

In this paper, we have extended SPARQL with regular expres-
ions patterns allowing path queries. In order to achieve this goal,
e have provided an extension of RDF graphs, called PRDF, in
hich regular expression patterns are used as predicates. We pro-

ided the syntax and semantics of PRDF and proved the validity of
he homomorphism approach for finding entailment. Then PRDF
raphs have been used as graph patterns in SPARQL queries yield-
ng the PSPARQL query language. We have defined semantically
PARQL and shown that PSPARQL is an actual extension of SPARQL
eplacing RDF entailment by PRDF entailment. We have shown that
nding PRDF homomorphism is a sound and complete approach for
nswering PSPARQL queries over RDF graphs and we have provided
lgorithms for calculating these answers. Finally, we proved that
he problem of PRDF–GRDF entailment is NP-complete, as is RDF
ntailment, and thus answering PSPARQL queries over RDF graphs,
emains PSPACE-complete.

This work, because it is grounded on a semantic redefinition of
PARQL, is the first stone on which further extensions can be safely
uilt. Indeed, the semantic definition of the query language allows
o define simply new query languages either by changing data and
uery languages or by changing the entailment regime of the query
anguage. The query answering procedure can also change and is
ot restricted to simple homomorphisms. This approach is worth
ecause regular expression patterns are not the only extension that
ould be considered for SPARQL. We mention below some work
hat we have already done and other work that would be worth
ursuing.

We have shown here that using PRDF homomorphisms, which
re more complex than simple graph homomorphisms, works
or PSPARQL. We have also investigated various possible regular
xpression pattern generators [12] and considered PRDF ENTAILMENT

ith regard to these generators [8,10]. We have also been able to
dd constraints to PSPARQL in CPSPARQL [13]. However, for deal-
ng with queries against �df (a subset of RDFS introduced in Ref.

51]), we have found a procedure finding (C)PRDF homomorphisms
etween a transformed query and the queried graph [10]. But when
onsidering expressive ontology languages, allowing the use of dis-
unction and negation in class definitions, the procedure will have
o go beyond homomorphisms.
d Agents on the World Wide Web 7 (2009) 57–73

Finally, PSPARQL itself has been extended with path variables
following SPARQ2L and SPARQLeR but providing a clear semantics
for the path variables [13]. This extension is implemented in the
PSPARQL prototype.

Appendix A. Proofs

Proof of Theorem 1. Let G and H be two GRDF graphs, then G�RDF H
if and only if there is an RDF homomorphism from H into G. �

Proof. The proof of this theorem is an immediate consequence
of the proof of Theorem 3, since each GRDF graph is a PRDF
graph. Moreover, any PRDF homomorphism between GRDF graphs
is an RDF homomorphism and, by Proposition 3, PRDF entailment
applied to GRDF graphs is equivalent to RDF entailment. �

Proof of Consequence 1. Let P be a GRDF graph and G be an RDF
graph. The set S(P, G) of answers to P in G is

S(P, G) = {�|B(P)|� is an RDF homomorphism from P into G} �

Proof. We must show that to each RDF homomorphism � cor-
responds an assignment � such that G�RDF �(P) coinciding on B(P)
assignments and vice versa.

(⇒) Let G and P be two GRDF graphs and � be an RDF homo-
morphism from P into G. We want to show that there exists an
assignment � from X ⊆ B to T(G) such that G�RDF �(P) and �|B(P) =
�|B(P).

Assume an RDF homomorphism � from P into G. Since, �
preserves constants, its application is equivalent to that of the
assignment � = �|B(P). Then, there exists the identity RDF homo-
morphism from �(P) into G, then, by Theorem 1, G�RDF �(P).

(⇐) Let G and P be two GRDF graphs and � be an assignment from
X ⊆ B toT(G) such that G�RDF �(P). We want to show that there exists
an RDF homomorphism � from P to G such that �|B(P) = �|B(P).

Let � : X → T(G) be an assignment such that G�RDF �(P). Accord-
ing to Theorem 1, there exists an RDF homomorphism �1 from
�(P) into G. Consider the map �2 from P to �(P), such that if
x ∈ dom(�), then �2(x) = �(x), otherwise, �2(x) = x. It is clear that
�2 is an RDF homomorphism from P into �(P) since ∀〈s, p, o〉 ∈ P,
〈�2(s), �2(p), �2(o)〉 ∈ �(P). Now, the map defined by � = �1 ◦ �2 is
an RDF homomorphism from P into G. �

Proof of Proposition 1. PATH SATISFIABILITY in which X = ∅ (R ∈R is
a regular expression that does not contain variables) is in NLOGSPACE

in G and R. �

Proof. The labels of paths between x and y form a regular lan-
guage Px,y [62]. So, construct a non-deterministic finite automaton
AG accepting the regular language Px,y with initial state x and final
state y (G can be transformed to an equivalent NDFA in NLOGSPACE).
Constructing a NDFA M accepting L∗(R), the language generated by
R, can be done in NLOGSPACE. Constructing the product automaton
P, that is, the intersection of G and M, can be done in NLOGSPACE.
Checking if the pairs 〈x, y〉 satisfies L∗(R) is equivalent to checking
whether L∗(P) is not empty, and each of these operations can be
done in NLOGSPACE inP [48,7] (with the fact that the class of Logspace
transformations is closed under composition [16]). An automaton
for the intersection of L∗(R) with M is constructed by taking the
product of the automaton for the two languages. That is, the states
of the product automaton are of the form 〈s, u〉 such that s is a
letter a (respectively, letter b) from a state 〈s, u〉 to another state
〈t, v〉 if M has a transition on a (respectively, on letter !a 5) from s

5 !a is an atomic negation, i.e., a negated uriref.

ces an

t
s
n

n
d

P

P
e
p
n
m
i
i

m

P
i
V
m

P

e
〈
〈
I

e
p
e
o
(
i
(

P
P

P
l
d
t
e
B

N

v
l
o
i

P
t

f
i
p

t
i

(3) It remains to prove that for every triple 〈s, R, o〉 ∈ H, the pair of
resources 〈I′′(�(s)), I′′(�(o))〉 supports R in I′′ (by Definition 20):
(i) If the empty word 	 ∈ L∗(R) and �(s) = �(o) = y (y ∈ term(G),

Definition 22), then I′′(s) = (I′ ◦ �)(s) = I′(y), and I′′(o) = (I′ ◦
F. Alkhateeb et al. / Web Semantics: Science, Servi

o t and 〈u, a, v〉 ∈ G (respectively, 〈u, b, v〉 ∈ G and b /= a). The con-
truction is similar to the one presented in Ref. [62] without atomic
egation. �

When regular expressions do not contain variables, there is no
eed to guess a map and the problem is reduced to the following
ecision problem [48,7]:

REGULAR PATH[48]
Instance: a directed labeled graph G, two nodes x, y of G, a map �,
and a regular expression pattern R ∈R(U, B).
Question: Does the pair 〈x, y〉 satisfies L∗(�(R))?

roof of Proposition 2. PATH SATISFIABILITY is in NP. �

roof. PATH SATISFIABILITY is in NP, since each variable in the regular
xpression pattern R can be mapped (assigned) to p terms, where
denotes the number of terms appearing as predicates in G. If the
umber of variables in R is n, then there are (pn) possible assign-
ents (mappings) in all. Once an assignment of terms to variables

s fixed, the problem is reduced to Path satisfiability (� ⊆ U), which
s in NLOGSPACE.

It follows that a non-deterministic algorithm needs to guess a
ap � and check in NLOGSPACE if the pair 〈x, y〉 satisfies L∗(�(R)). �

roof of Proposition 3. If G is a PRDF graph with pred(G) ⊆ U ∪ B,
.e., G is a GRDF graph, and I be an interpretation of a vocabulary

⊇ V(G), then I is an RDF model of G (Definition 5) iff I is a PRDF
odel of G (Definition 21). �

roof. We prove both directions of the proposition.
(⇒) Assume that I is an RDF model of G, then there

xists an extension I′ of I to B(G) such that ∀〈s, p, o〉 ∈ G,
I′(s), I′(o)〉 ∈ IEXT (I′(p)) (Definition 5). Since pred(G) ⊆ U ∪ B,
I′(s), I′(o)〉 supports p in I′ (Definition 20) (with a word w = p), i.e.,
is also a PRDF model (Definition 21).

(⇐) Assume that I is a PRDF model of G, then there exists an
xtension I′ of I to B(G) such that ∀〈s, p, o〉 ∈ G, 〈I′(s), I′(o)〉 sup-
orts p in I′ (Definition 21). Since pred(G) ⊆ U ∪ B, 	 /∈ L∗(p). So there
xists a word of length = 1 where w ∈ L∗(p), w = p, and a sequence
f resources of IR I′(s) = r0, I′(o) = r1 such that 〈r0, r1〉 ∈ IEXT (I′(w))
Definition 20). So ∀〈s, p, o〉 ∈ G, 〈I′(s), I′(o)〉 ∈ IEXT (I′(p)) (by replac-
ng r0 with I′(s), r1 with I′(o), and w with p). So I is also an RDF model
Definition 5). �

roof of Theorem 2. Let G be a GRDF graph and H be a ground
RDF graph, then PRDF–GRDF ENTAILMENT is in NLOGSPACE. �

roof. We prove first that the PRDF–GRDF HOMOMORPHISM prob-
em is in NLOGSPACE. If H is ground, for each node x in H, �(x) is
etermined in G. Then it remains to verify independently, for each
riple 〈s, R, o〉 in H, if 〈�(s), �(o)〉= 〈s, o〉 satisfies �(R) = R. Since
ach of these operations corresponds to the case of PATH SATISFIA-

ILITY, in which � ⊆ U and X = ∅, the complexity of each of them is
LOGSPACE (see Proposition 1) (Since H is ground, R does not contain
ariables). So, the total time is also NLOGSPACE. Given the equiva-
ence between PRDG–GRDF ENTAILMENT and checking the existence
f PRDF homomorphism (Theorem 3), PRDF–GRDF ENTAILMENTis thus
n NLOGSPACE. �

roof of Theorem 3. Let G be a GRDF graph, and H be a PRDF graph,
hen there is a PRDF homomorphism from H into G iff G�PRDF H. �

We have proven Theorem 3 via a transformation to hypergraphs
ollowing the proof framework in Ref. [15]. Since this requires a long

ntroduction to hypergraphs, we prefer here to give a simple direct
roof to Theorem 3.

The following lemma (called satisfiability lemma) will be used
o prove the theorem. We prove it through the construction of the
somorphic model. A similar proof can be found in Ref. [40].
d Agents on the World Wide Web 7 (2009) 57–73 71

Lemma (Satisfiability lemma [40]). Each GRDF graph is satisfiable.

Proof. To each GRDF graph G we associate an interpretation of
V(G), noted ISO(G), called an isomorphic model of G. We prove that
ISO(G) is a model of G. It follows that every GRDF graph admits a
model, so it is satisfiable.

(1) Construction of ISO(G).
To each term x ∈ term(G), we associate a distinct resource �(x)

(if x ∈ Lp, �(x) = x) :
(i) IR = {�(x)|x ∈ term(G)}, note that � is a bijection between

term(G) and IR;
(ii) IP = {�(x)|x ∈ pred(G)};

(iii) ∀x ∈U(G) ∪ Lt(G), I(x) = �(x);
(iv) ∀p ∈ IP, IEXT (p) = {〈x, y〉 ∈ IR × IR|〈�−1(x), �−1(p), �−1(y)〉 ∈ G}.

(2) Let us prove that ISO(G) is a model of G.
(a) ISO(G) is an interpretation of V(G) (Definition 3).
(b) � is an extension of ISO to B(G) (Definition 4).
(c) It remains to prove (Definition 5), that for all 〈s, p, o〉 ∈ G,

〈�(s), �(o)〉 ∈ IEXT (�(p)). If 〈s, p, o〉 ∈ G, then �(p) ∈ IP (1.ii).
Then IEXT (�(p)) = {〈x, y〉 ∈ IR × IR|∃s, o ∈ term(G) with �(s) =
x, �(o) = y and 〈s, p, o〉 ∈ G} (1.iv), i.e., 〈�(s), �(o)〉 ∈ IEXT (�(p)).
�

Proof. We prove both directions of Theorem 1.
(⇒) Assume that there exists a PRDF homomorphism � from H

into G (� : term(H) → term(G)). We want to prove that G�PRDF H, i.e.,
that every model of G is a model of H. Consider the interpretation I
of a vocabulary V = U ∪ L.

If I is a model of G, then there exists an extension I′ of I to
B(G) such that ∀〈s, p, o〉 ∈ G, 〈I′(s), I′(o)〉 ∈ IEXT (I′(p)) (Definition 5).
We want to prove that I is also a model of H, i.e., that there exists an
extension I′′ of I toB(H) such that ∀〈s, R, o〉 ∈ H, 〈I′′(s), I′′(o)〉 supports
R in I′′.

Let I′′ be the map defined by:

∀x ∈ T, I′′(x) =
{

(I′ ◦ �)(x), if � is defined;
x, otherwise.

We show that I′′ verifies the following properties:

(1) I′′ is an interpretation of V(H) (in particular, I′′(x) = I(x),
∀x ∈ (V(H) ∩ nodes(H))).6

(2) I′′ is an extension to variables of H, i.e., ∀x ∈V(H), I′′(x) = I(x)
(Definition 4).

(3) I′′ satisfies the conditions of PRDF models (Definition 21), i.e.,
for every triple 〈s, R, o〉 ∈ H, the pair of resources 〈I′′(s), I′′(o)〉
supports R in I′′.

Now, we prove the satisfaction of these properties:

(1) From the definition of I′′, I′′ interprets all x ∈V(H). Moreover,
since each term x ∈ (V(H) ∩ nodes(H)) is mapped by � to a term
x ∈V(G) and �(x) = x, I′′(x) = I′(x) = I(x).

(2) ∀x ∈V(H), I′′(x) = (I′ ◦ �)(x) (definition of I′′). Now, if �(x) is
defined, I′′(x) = I′(x) (since �(x) = x by Definition 22). Since
I′(x) = I(x) (∀x ∈V(H), Definition 4), I′′(x) = I(x). Otherwise,
I′′(x) = I′(x) = I(x) (∀x ∈V(H), definition of I′′)
6 An interpretation can be a model of a PRDF graph H even if it does not interpret
all terms of H. This is due to the disjunction operator that occurs inside constrained
regular expressions.

7 ces an

h
o
o
t
t
a
∀
t
f

(
(
(

(

P
g

S

P
b
m

P
g
t

P
f
(
U

I
E

2 F. Alkhateeb et al. / Web Semantics: Science, Servi

�)(o) = I′(y). So I′′(s) = I′′(o) = I′(y). Hence, 〈I′′(s), I′′(o)〉 sup-
ports R in I′′ (Definition 21).

(ii) If ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = �(s),
nk = �(o), and p1 · · · · · pk ∈ L∗(�(R)) (cf. Definition
22). It follows that 〈I′(�(s)), I′(n1)〉 ∈ IEXT (I′(p1)),. . .,
〈I′(nk−1), I′(�(o))〉 ∈ IEXT (I′(pk)) (Definition 5). So the
two resources 〈I′(�(s)), I′(�(o))〉 supports �(R) in I′.
〈I′(�(s)), I′(�(o))〉 supports �(R) in I′′ (since I′′ = (I′ ◦ �),
we have ∀x ∈ term(H), I′′(x) = I′(�(x)) and �(x) ∈ term(G).
Moreover, we can choose every variable b appearing in H to
be interpreted by the resource of �(b)). Hence, 〈I′′(s), I′′(o)〉
supports R in I′′ (since for every word w ∈ �(R), w ∈ R).

(⇐) Assume that G�PRDF H. We need to prove that there is a PRDF
omomorphism from H into G. Every model of G is also a model
f H. In particular, the isomorphic model ISO = 〈IR, IP, IEXT , IS, IL〉
f G, where there exists a bijection � between term(G) and IR (cf.
he satisfiability lemma). � is an extension of ISO to B(G) such
hat ∀〈s, p, o〉 ∈ G, 〈�(s), �(o)〉 ∈ IEXT (�(p)) (Definition 5). Since ISO is
model of H, there exists an extension I′ of ISO to B(H) such that
〈s, R, o〉, 〈I′(s), I′(o)〉 supports R in I′ (Definition 21). Let us consider
he function � = (�−1 ◦ I′). To prove that � is a PRDF homomorphism
rom H into G, we must prove that:

1) � is a map from term(H) into term(G);
2) ∀x ∈V(H), �(x) = x;
3) ∀〈s, R, o〉 ∈ H, either

(i) the empty word 	 ∈ L∗(R) and �(s) = �(o); or
(ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = �(s), nk =

�(o), and p1 · · · · · pk ∈ L∗(�(R)).

(1) Since I′ is a map from term(H) into IR and �−1 is a map from IR
into term(G), � = (�−1 ◦ I′) is clearly a map from term(H) into

term(G) (term(H)
I′→IR

�−1
→term(G)).

(2) ∀x ∈V(H), I′(x) = �(x) (Definition 4 and the satisfiability lemma.
∀x ∈V(H), (�−1 ◦ I′)(x) = (�−1 ◦ �)(x) = x.

(3i) If 	 ∈ L∗(R) and I′(s) = I′(o) = r ∈ IR (Definition 20), then �(s) =
(�−1 ◦ I′)(s) = �−1(r), and �(o) = (�−1 ◦ I′)(o) = �−1(r). So �(s) =
�(o) = �−1(r).

3ii) If there exists a word of length n ≥ 1w = a1 · · · · · an where
w ∈ L∗(R) and ai ∈ U ∪ B(G) (1 ≤ i ≤ k), and there exists a
sequence of resources of IRI′(s) = r0, . . . , rk = I′(o) such that
〈ri−1, ri〉 ∈ IEXT (I′(ai)), 1 ≤ i ≤ k (Definition 20). It follows that
〈ni−1, pi, ni〉 ∈ G with ni = �−1(ri), and pi = (�−1 ◦ I′)(ai) (con-
struction of ISO(G), the satisfiability lemma). So (�−1 ◦
I′)(s) = �−1(r0) = n0, (�−1 ◦ I′)(o) = �−1(rk) = nk, and p1 · · · · ·
pk ∈ L∗((�−1 ◦ I′)(R)). �

roof of Consequence 2. Let P be a PRDF graph and G be an RDF
raph. The set S(P, G) of answers to P in G is

(P, G) = {�|B(P)|� is a PRDF homomorphism from P into G} �

roof. The proof is exactly the same as that of Consequence 3.1.1
y replacing �RDF by �PRDF , RDF homomorphisms by PRDF homo-
orphisms and Theorem 1 by Theorem 3. �

roof of Theorem 4. PSPARQL QUERY EVALUATIONis in NLOGSPACEfor
round basic graph patterns and NP-complete for basic graph pat-
erns. �

roof. The first assertion (NLOGSPACE for ground PRDF graphs)

ollows directly from Theorem 2. For the second assertion
NP-complete), when reduced to PRDF graphs, PSPARQL QUERY EVAL-

ATIONis equivalent to PRDF–GRDF HOMOMORPHISM(Definition 12).
ndeed, PRDF–GRDF HOMOMORPHISMcan be reduced to PSPARQL QUERY

VALUATION with the empty SELECT clause (B = ∅). In such a case,
d Agents on the World Wide Web 7 (2009) 57–73

PSPARQL QUERY EVALUATION is true when there exist a PRDF homomor-
phism between P and G. On the other way, PRDF–GRDF EVALUATION

is reduced to PRDF–GRDF HOMOMORPHISM between G and �(P). Since
PRDF–GRDF HOMOMORPHISM is NP-complete, then PSPARQL QUERY EVALU-

ATION is NP-complete for PRDF graphs. �

Appendix B. Reach algorithm

Algorithm 4 reuses the definition of matching two regular
expression patterns found in Ref. [46].

Matching. Let R1 and R2 be two regular expression patterns, then
R2 matches R1 under the mapping �, denoted by match(R2, R1, �),
if one of the following conditions holds: (1) R1 = �(R2); (2) R2 ∈B
and R2 /∈ dom(�); (3) R1, R2 ∈B and (�(R2) = R1 or R2 /∈ dom(�));
(4) R2 = #; (5) R2 =!R3, and recursively, R1 does not match R3; (6)
R1 = (e1, . . . , ek), R2 = (a1, . . . , ak), and recursively ei matches ai,
∀1 ≤ i ≤ k, where ei, ai are the atomic elements of R1, R2, respec-
tively. For example, the regular expression pattern (?z · ?y) matches
the regular expression pattern (ex : train · ex : plane) with the
mapping {〈?z, ex : train〉, 〈?y, ex : plane〉}.

Algorithm 4 uses a non deterministic finite automaton, denoted
by NDFA, that recognizes a language equivalent to a given regular
expression pattern. It can be constructed in the usual way (cf. [5]).

Algorithm 4. Reach(G, R, v0, �i)

ces an

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

puting STOC’82, 1982, pp. 137–146.
F. Alkhateeb et al. / Web Semantics: Science, Servi

eferences

[1] S. Abiteboul, Querying semi-structured data, in: Proceeding of the 6th
International Conference on Database Theory (ICDT), vol. 1186 of LNCS,
Springer-Verlag, 1997, pp. 1–18.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener, The Lorel query lan-
guage for semistructured data, Journal on Digital Libraries 1 (1) (1997) 68–88.

[3] R. Agrawal, Alpha: An extension of relational algebra to express a class of recur-
sive queries, IEEE Transactions on Software Engineering 14 (7) (1988) 879–885.

[4] A.V. Aho, Pattern matching in strings, in: R.V. Book (Ed.), Formal Language The-
ory: Perspectives and Open Problems, Academic Press, New York, NY, US, 1980,
pp. 325–347.

[5] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA, US, 1974.

[6] A.V. Aho, J.D. Ullman, Universality of data retrieval languages, in: Proceedings
of the 6th ACM SIGACT–SIGPLAN Symposium on Principles of Programming
Languages (POPL 1979), ACM, New York, NY, USA, 1979, pp. 110–119.

[7] N. Alechina, S. Demri, M. de Rijke, A modal perspective on path constraints,
Journal of Logic and Computation 13 (2003) 1–18.

[8] F. Alkhateeb, Graphes á chemins: Graphes RDF/RDFS étiquetés par des
expressions algébriques, Master’s thesis, Université de Joseph Fourier/INRIA
Rhône-Alpes, 2005.

[9] F. Alkhateeb, Une extension de RDF avec des expressions réguliéres, in: Actes
de 8e Rencontres Nationales des Jeunes Chercheurs en Inteligence Artificielle
(RJCIA), July 2007, pp. 1–14.

10] F. Alkhateeb, Querying RDF(S) with regular expressions, Ph.D. Thesis, Université
Joseph Fourier, Grenoble (FR), 2008.

11] F. Alkhateeb, J.-F. Baget, J. Euzenat, Complex path queries for RDF graphs,
in: Poster Proceedings of the 4th International Semantic Web Conference
(ISWC’05), Galway (IE), 2005.

12] F. Alkhateeb, J.-F. Baget, J. Euzenat, RDF with regular expressions, Research
report 6191, INRIA, Montbonnot, France, 2007.

13] F. Alkhateeb, J.-F. Baget, J. Euzenat, Constrained regular expressions in SPARQL,
in: Proceedings of the 2008 International Conference on Semantic Web and
Web Services (SWWS’08), Las Vegas, NV, US, 2008, pp. 91–99.

14] K. Anyanwu, A. Maduko, A.P. Sheth, SPARQ2L: towards support for subgraph
extraction queries in RDF databases, in: Proceedings of the 16th International
Conference on World Wide Web (WWW’07), 2007, pp. 797–806.

15] J.-F. Baget, RDF entailment as a graph homomorphism, in: Proceedings of the
4th International Semantic Web Conference (ISWC’05), Galway (IE), 2005, pp.
82–96.

16] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity, vol. 1, Springer-Verlag,
New York, NY, USA, 1988.

17] D. Beckett, Turtle—terse RDF triple language, Technical report, Hewlett-Packard,
Bristol, UK, 2006.

18] D. Brickley, R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation, 2004, http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/.

19] J. Broekstra, SeRQL: Sesame RDF query language, in: SWAP Deliverable 3.2
Method Design, 2003.

20] P. Buneman, Semistructured data, in: Tutorial in Proceedings of the 16th ACM
Symposium on Principles of Database Systems, 1997, pp. 117–121.

21] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query language and opti-
mization techniques for unstructured data, in: Proceedings of the ACM SIGMOD
International Conference on the Management of Data, 1996, pp. 505–516.

22] P. Buneman, S.B. Davidson, D. Suciu, Programming constructs for unstructured
data, in: Proceedings of the 1995 International Workshop on Database Pro-
gramming Languages, 1995, p. 12.

23] J.J. Carroll, G. Klyne, RDF Concepts and Abstract Syntax, W3C Recommendation,
W3C, February 2004.

24] E.F. Codd, A relational model of data for large shared data banks, Communica-
tions of the ACM 13 (6) (1970) 377–387.

25] M.P. Consens, A.O. Mendelzon, Graphlog: a visual formalism for real life recur-
sion, in: Proceedings of the 9th ACM SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems, 1990, pp. 404–416.

26] O. Corby, R. Dieng, C. Hébert, A conceptual graph model for W3C resource
description framework, in: Proceedings of the International Conference on Con-
ceptual Structures, 2000, pp. 468–482.

27] I.F. Cruz, A.O. Mendelzon, P.T. Wood, A graphical query language supporting
recursion, in: Proceedings of the 1987 ACM SIGMOD International Conference
on Management of Data, New York, NY, USA, 1987, pp. 323–330.

28] I.F. Cruz, A.O. Mendelzon, P.T. Wood, G+: recursive queries without recursion, in:
Proceedings of Second International Conference on Expert Database Systems,
1988, pp. 355–368.

29] R. Cyganiak, A relational algebra for SPARQL, Technical report HPL-2005-170,

HP Labs, 2005, http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

30] J. de Bruijn, E. Franconi, S. Tessaris, Logical reconstruction of normative RDF, in:
International Workshop on OWL: Experiences and Directions (OWLED 2005),
Galway, Ireland, 2005.

31] O. de Moor, E. David, Universal regular path queries, Higher-Order and Symbolic
Computation 16 (1–2) (2003) 15–35.

[

[

d Agents on the World Wide Web 7 (2009) 57–73 73

32] M.F. Fernandez, D. Florescu, A.Y. Levy, D. Suciu, A query language for a web-site
management system, ACM SIGMOD Record 26 (3) (1997) 4–11.

33] E. Franconi, S. Tessaris, The Semantics of SPARQL, W3C Working Draft, Novem-
ber 2005, http://www.inf.unibz.it/krdb/w3c/sparql/.

34] S.W. Golomb, L.D. Baumert, Backtrack programming, Journal of the ACM 12 (5)
(1965) 516–524.

35] G. Gottlob, N. Leone, F. Scarcello, A comparison of structural CSP decomposition
methods, in: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI’99), 1999, pp. 394–399.

36] C. Gutierrez, C. Hurtado, A.O. Mendelzon, Foundations of semantic web
databases, in: ACM Symposium on Principles of Database Systems (PODS),
2004, pp. 95–106.

37] P. Haase, J. Broekstra, A. Eberhart, R. Volz, A comparison of RDF query languages,
in: Proceedings 3rd International Semantic Web Conference, Hiroshima (JP),
2004, pp. 502–517.

38] S. Harris, N. Shadbolt, SPARQL query processing with conventional relational
database systems, in: Web Information Systems Engineering (WISE’05 Work-
shops), 2005, pp. 235–244.

39] P. Hayes, RDF Semantics, W3C Recommendation, February 2004.
40] H.J.t. Horst, Extending the RDFS entailment lemma, in: Proceedings of the Third

International Semantic web Conference (ISWC2004), 2004, pp. 77–91.
41] H.J.T. Horst, Completeness, decidability and complexity of entailment for RDF

schema and a semantic extension involving the OWL vocabulary, Journal of
Web Semantics 3 (2) (2005) 79–115.

42] H.V. Jagadish, Incorporating hierarchy in a relational model of data, in: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management
of Data, Portland, Oregon, May 31–June 2, 1989, ACM Press, 1989, pp. 78–
87.

43] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, RQL:
A declarative query language for RDF, in: Proceedings of the 11th International
Conference on the World Wide Web (WWW2002), 2002.

44] K. Kochut, M. Janik, SPARQLeR: extended SPARQL for semantic association dis-
covery, in: Proceedings of 4th European Semantic Web Conference (ESWC’07),
2007, pp. 145–159.

45] O. Lassila, Taking the RDF model theory out for a spin, in: Proceedings of the First
International Semantic Web Conference on The Semantic Web (ISWC 2002),
Springer-Verlag, London, UK, 2002, pp. 307–317.

46] Y.A. Liu, T. Rothamel, F. Yu, S. Stoller, N. Hu, Parametric regular path queries, in:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, 2004, pp. 219–230.

47] A. Matono, T. Amagasa, M. Yoshikawa, S. Uemura, A path-based relational
RDF database, in: Proceedings of the 16th Australasian Database Conference
(ADC’05), Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
2005, pp. 95–103.

48] A.O. Mendelzon, P.T. Wood, Finding regular simple paths in graph databases,
SIAM Journal on Computing 24 (6) (1995) 1235–1258.

49] E. Miller, R. Swick, D. Brickley, Resource Description Framework RDF, Recom-
mendation, W3C, 2004.

50] M.-L. Mugnier, M. Chein, Conceptual graphs: fundamental notions, Revue
d’intelligence artificielle 6 (4) (1992) 365–406.

51] S. Muñoz, J. Pérez, C. Gutierrez, Minimal deductive systems for RDF, in: Pro-
ceedings of the 4th European Semantic Web Conference (ESWC 2007), 2007,
pp. 53–67, http://www.springerlink.com/content/g8w64n1264874118/.

52] M. Olson, U. Ogbuji, Versa: Path-based RDF Query Language, 2002,
http://copia.ogbuji.net/files/Versa.html.

53] Y. Papakonstantinou, H. Garcia-Molina, J. Widom, Object exchange across het-
erogeneous information sources, in: P.S. Yu, A.L.P. Chen (Eds.), Proceedings of
the 11th Conference on Data Engineering, IEEE Computer Society, Taipei, Tai-
wan, 1995, pp. 251–260.

54] J. Perez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, in: Pro-
ceedings of the 5th International Semantic Web Conference, Athens, GA, US,
2006, pp. 30–43.

55] A. Polleres, From SPARQL to rules (and back), in: Proceedings of the 16th World
Wide Web Conference (WWW), 2007, pp. 787–796.

56] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C Rec-
ommendation, January 2008.

57] A. Seaborne, RDQL—A Query Language for RDF, Member Submission, W3C,
2004.

58] A. Souzis, RxPath Specification Proposal, 2004, http://rx4rdf.liminalzone.org/
RxPathSpec.

59] R.E. Tarjan, Fast algorithms for solving path problems, Journal of ACM 28 (3)
(1981) 594–614.

60] M.Y. Vardi, The complexity of relational query languages (extended abstract),
in: Proceedings of the fourteenth annual ACM symposium on Theory of Com-
61] P.T. Wood, Queries on Graphs, Ph.D. Thesis, Department of Computer Science,
University of Toronto, 1988.

62] M. Yannakakis, Graph-theoretic methods in database theory, in: Proceedings
of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 1990, pp. 230–242.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.hpl.hp.com/techreports/2005/HPL-2005--170.html
http://www.inf.unibz.it/krdb/w3c/sparql/
http://www.springerlink.com/content/g8w64n1264874118/
http://copia.ogbuji.net/files/Versa.html
http://rx4rdf.liminalzone.org/RxPathSpec
http://rx4rdf.liminalzone.org/RxPathSpec

	Extending SPARQL with regular expression patterns (for querying RDF)
	Introduction
	Paper outline

	Simple RDF
	RDF syntax
	Terminology
	Notations
	GRDF graphs as graphs

	Simple RDF semantics
	Simple RDF entailment as a graph homomorphism

	Querying RDF graphs
	The SPARQL query language
	Operations on maps
	SPARQL complexity

	Regular expression patterns for path queries
	Languages and regular expression patterns
	Introduction of variables

	Paths in graphs and languages
	Regular expression patterns as queries

	Discussion

	Path RDF graphs: syntax, semantics, and inference mechanism
	PRDF syntax
	Notations

	PRDF semantics: interpretations and models
	Complexity of PRDF-GRDF entailment

	PRDF homomorphisms

	The PSPARQL query language
	PSPARQL syntax
	PSPARQL query

	Evaluating PSPARQL queries
	PSPARQL complexity

	Answering PSPARQL queries: algorithms for PRDF homomorphism
	Triple-by-triple evaluation
	Algorithmic time complexity

	A backtrack algorithm for calculating PRDF homomorphisms

	Implementation and experiments
	Related work
	(Semi)-structured query languages
	RDF query languages
	SPARQL extensions
	Work on SPARQL

	Conclusion and future work
	Proofs
	Reach algorithm
	References

