
Constrained Regular Expressions in SPARQL
Faisal Alkhateeb (contact author)

INRIA Rhône-Alpes and LIG,
France, Faisal.Alkhateeb@inrialpes.fr

Submitted to SWWS’08

Jean-François Baget
INRIA Sophia-Antipolis and LIRMM,

France, Baget@lirmm.fr

Jérôme Euzenat
INRIA Rhône-Alpes and LIG,

France, Jerome.Euzenat@inrialpes.fr

Abstract—We have proposed an extension of SPARQL, called
PSPARQL, to characterize paths of variable lengths in an RDF
knowledge base (e.g., "does there exists a trip from town A to
town B?"). However, PSPARQL queries do not allow expressing
constraints on internal nodes (e.g., "Moreover, one of the stops
must provide a wireless connection."). This paper proposes
an extension of PSPARQL, called CPSPARQL, that allows
expressing constraints on paths. For this extension, we provide
an abstract syntax, semantics as well as a sound and complete
inference mechanism for answering CPSPARQL queries.

Keywords: RDF, SPARQL, constrained regular expressions,
graph homomorphisms, query languages.

I. INTRODUCTION

RDF (Resource Description Framework, [21]) is a knowl-
edge representation language dedicated to the annotation of
resources within the Semantic Web. In its abstract syntax,
an RDF document is a set of triples (subject, predicate,
object), that can be represented by a directed labeled graph
(hence the name RDF graph). The language is provided with
a model-theoretic semantics [18], that defines the notion of
consequence between two RDF graphs. Answers to an RDF
query (the knowledge base and the query are RDF graphs)
are determined by consequence, and can be computed using a
particular map, a graph homomorphism [16], [7].

SPARQL [23] is a W3C recommendation language devel-
oped in order to query an RDF knowledge base (see a survey
[17]). The heart of a SPARQL query, the graph pattern, is an
RDF graph with variables. The maps that are used to compute
answers to a query in an RDF knowledge base are exploited by
[22] to define answers to the more expressive SPARQL queries
(using, for example, disjunctions or functional constraints).

For added expressivity, we have proposed an extension of
SPARQL, called PSPARQL (for Path SPARQL), that allows
using regular expressions as predicates in an RDF triple [3],
[5]. As done before in databases [13], [14], [1], [8], each
regular expression can encode regular paths in an RDF graph
such that the concatenation of arcs labels in each path form
a word that belongs to the language generated by the regular
expression. Using PSPARQL queries, we can ask questions of
the form: "does there exists a trip from town A to town B?".

However, PSPARQL do not allow specifying properties on
the nodes that belong to a path defined by a regular expression.
It is thus impossible, for example, to enrich the previous query
by "One of the stops must provide a wireless access.".

This paper proposes an extension of PSPARQL, called
CPSPARQL. Our definition to CPSPARQL relying on two

main principles: the need to extend PSPARQL and thus
SPARQL to allow expressing constraints on nodes of traversed
paths, and the need to enhance the search process for finding
paths that satisfy graph patterns involving path expressions.

In order to achieve these goals, we first define a kind of con-
strained regular expressions that extends the usual ones with
constraints (constraints allowing to reduce the search space by
selecting while doing the matching process nodes satisfying
constraints). Then, we use constrained regular expressions to
extend RDF graphs (i.e., the basic graph patterns of SPARQL)
to have CPRDF graphs (for Constrained Paths RDF). Finally,
we use CPRDF graphs to generalize SPARQL graph patterns,
defining the CPSPARQL language.
Paper outline. The remainder of the paper is structured as
follows. Section II presents some motivating examples which
cannot be expressed by SPARQL and require to constrain
paths. Section III is devoted to the presentation of the RDF
language. The presentation framework of the CPRDF language
is as follows: we first define the abstract syntax of the language
in Section IV, then its semantics by extending the standard
RDF model-theoretic semantics in Section V. This is necessary
to define answers to CPRDF graphs: there exists a solution
S to a CPRDF graph P in an RDF graph G if G entails
S(P) with respect to this kind of entailment. This leads us to
define a kind of graph homomorphism for finding answers to
CPRDF graphs over RDF graphs in Section VI. CPRDF graphs
(respectively, the maps) are used in Section VII to extend
the SPARQL query language to CPSPARQL (respectively, to
answer CPSPARQL queries). After a review of related work
(Section VIII), we conclude in Section IX.

II. MOTIVATING EXAMPLES – INTRODUCING CPSPARQL
The following example queries attempt to give an insight

of CPSPARQL.

Example 1 Consider the RDF graph G of Fig. 1, that repre-
sents the transportation means between cities, the type of the
transportation mean, and the price of tickets. For example,
the existence of two triples like (flight, ex:from, C1) and
(flight, ex:to, C2) means that C2 is directly reachable from
C1 using flight.

Suppose someone wants to go from Roma to a city in one
of the Canary Islands. The following SPARQL query finds the
name of such city with only direct trips:
SELECT ?City
WHERE { ?Trip ex:from ex:Roma . ?Trip ex:to ?City .

?City ex:cityIn ex:CanaryIslands . }

Nonetheless, SPARQL cannot express indirect trips with
variable length paths. We can express that using regular
expressions with the following (C)PSPARQL query:
SELECT ?City
WHERE { ex:Roma (ex:from-.ex:to)+ ?City .

?City ex:cityIn ex:CanaryIslands . }

Where "-" is the inverse operator. For example, given the
RDF triple (ex:Roma, ex:from, ex:flight), we can deduce
(ex:flight, ex:from-, ex:Roma).

Suppose that he want to use only planes. To do that, we first
define a constraint that consists of a name, interval delimiters
to include or exclude path node extremities, a quantifier, and
a variable is used to be substituted by nodes, and a graph to
be matched. For example, the name of the constraint in the
following query is const1, it is open from left and universal
which ensures that all trips are of type plane.
SELECT ?City
WHERE { CONSTRAINT const1]ALL ?Trip]:

{?Trip rdf:type ex:Plane . }
ex:Roma (ex:from-%const1%.ex:to)+ ?City .
?City ex:cityIn ex:CanaryIslands . }

Moreover, if the user cannot go out the European union,
e.g., for the visa problem, then we will require all intermediate
stops to be cities in Europe.
SELECT ?City
WHERE { CONSTRAINT const1]ALL ?Trip]:

{?Trip rdf:type ex:Plane .}
CONSTRAINT const2]ALL ?Stop]:

{?Stop ex:cityIn ?Country .
?Country ex:partOf ex:Europe .}

ex:Roma (ex:from-%const1%.ex:to%const2%)+ ?City .
?City ex:cityIn ex:CanaryIslands . }

The price of the whole trip is no more than 1000, then we
can use the SUM function in the following query:
SELECT ?City
WHERE { CONSTRAINT const1 SUM(?Sum1,?Price)]ALL ?Trip]:

{?Trip rdf:type ex:Plane .
?Trip ex:price ?Price .
FILTER (SUM(?Sum1,?Price) < 1000)}

CONSTRAINT const2]ALL ?Stop]:
{?Stop ex:cityIn ?Country .
?Country ex:partOf ex:Europe . }

ex:Roma (ex:from-%const1%.ex:to%const2%)+ ?City .
?City ex:cityIn ex:CanaryIslands . }

As we can see, CPSPARQL is definitely a more expressive
language than SPARQL. We will now present it in details.

III. RDF

This section is dedicated to the presentation of the simple
RDF language. The decision to use simple RDF as the basic
building block for our extensions (and not RDF or RDFS)
is justified by the fact that RDF and RDFS entailments are
obtained from simple RDF entailments by applying rules to
the knowledge base (a polynomial procedure) [18]. The same
framework could easily be applied to CPRDF to extend, for
example, our languages to CPRDFS. For the sake of clarity
and brevity, we do not discuss these extensions in this paper.
Moreover, to simplify notations, and without loss of generality,
we do not distinguish here between simple and typed literals.

A. RDF syntax

RDF graphs are usually constructed over the set of urirefs,
blanks, and literals [9]. "Blanks" is a vocabulary specific to
RDF. Because we want to stress the compatibility of the
RDF structure with classical logic, we will use the term
variable instead. The specificity of a blank with regard to
variables is their quantification. Indeed, a blank in RDF is
an existentially quantified variable. We prefer to retain this
classical interpretation which is useful when an RDF graph is
put in a different context.
Terminology. An RDF terminology, noted T , is a union of 3
pairwise disjoint infinite sets of terms: the set U of urirefs, the
set L of literals and the set B of variables. We call vocabulary
and use V = U ∪ L to denote the set of names. From now
on, we use the following notations for the elements of these
sets: a variable will be prefixed by ? (like ?x1), a literal will
be between quotation marks (like "27"), remaining elements
will be urirefs (like ex:price).

Definition 1 (RDF graph) An RDF graph is a set of triples
of (U ∪ B)× U × T .

If G is an RDF graph, we use T (G), U(G), L(G), B(G),
V(G) to denote the set of terms, urirefs, literals, variables or
names that appeared at least in a triple of G(in Section VI,
these notations take into account the terms appearing in the
constrained regular expressions). In a triple (s, p, o), s is called
the subject, p the predicate and o the object. It is possible to
associate to a set of triples G a labeled directed graph, where
the set of nodes is the set of terms appearing as a subject
or object at least in a triple of G, the set of arcs is the set of
triples of G, (i.e., if (s, p, o) is a triple, then s

p−→ o is an arc).
By drawing these graphs, the nodes resulting from literals are
represented by rectangles while the others are represented by
rectangles with rounded corners. In what follows, we conflate
the two views of RDF syntax (as sets of triples or labeled
directed graphs). We will then speak interchangeably about
its nodes, its arcs, or the triples which make them up.

B. RDF semantics

By providing RDF with formal semantics, we express
the conditions under which an RDF graph truly describes
a particular world (i.e., an interpretation is a model for the
graph) [18]. The usual notions of validity, satisfiability and
consequence are entirely determined by these conditions.

Definition 2 (Interpretation of a vocabulary) Let V ⊆ U ∪
L be a vocabulary. An interpretation of V is a tuple I =
(IR, IP , IEXT , ι) where:
• IR is a set of resources that contains V ∩ L;
• IP ⊆ IR is a set of properties;
• IEXT : IP → 2IR×IR associates to each property a set

of pairs of resources called the extension of the property;
• the interpretation function ι : V → IR associates to each

name in V a resource of IR, if v ∈ L, then ι(v) = v.

Definition 3 (Model of an RDF graph) Let V ⊆ V be a
vocabulary, and G be an RDF graph such that V(G) ⊆ V .

ex:Train1000 ex:Train ex:CanaryIslands

ex:Switzerland ex:Genève ex:SantaCruz

ex:Zürich ex:Planeex:SwissAL70 ex:Iberia612

ex:Alitalia200 ex:Iberia311

ex:Italy ex:Roma ex:Madrid ex:Spain

?Mean ?Price

?Country1 ?City1 ?City2 ?Country2

"160"

"350"

"600" "500"

ex:price

ex:from
ex:to

rdf:type

ex:cityIn

ex:cityIn

ex:capital ex:cityIn

rdf:type

ex:from
ex:price

ex:to

rdf:type

ex:to

ex:price
ex:from

ex:price

ex:to

ex:from

rdf:type

ex:from

rdf:type

ex:to
ex:price

ex:capital

ex:cityIn

ex:capital

ex:cityIn

G

H
ex:from ex:to

ex:price

ex:capital ex:cityIn

Fig. 1. An RDF homomorphism.

An interpretation I = (IR, IP , IEXT , ι) of V is a model of
G iff there exists a mapping ι′ : T (G) → IR that extends ι
(i.e., t ∈ V ∩ T (G) ⇒ ι′(t) = ι(t)) such that for each triple
(s, p, o) of G, ι′(p) ∈ IP and (ι′(s), ι′(o)) ∈ IEXT (ι′(p)).
The mapping ι′ is called a proof of G in I .

The following definition is the standard model-theoretic
definition of consequence.

Definition 4 (Consequence) A graph G′ is a consequence of
a graph G, denoted by G |= G′, iff every model of G is also
a model of G′.

In what follows, we use |=RDF (respectively, |=CPRDF) to
denote RDF (respectively, CPRDF) consequences.

C. Inference mechanism for RDF

The consequence in RDF is of utmost importance, since
it is the basis for query answering. As done in [16], we use
homomorphisms to prove consequence and answer queries.

Definition 5 (Map) Let V1 ⊆ T , and V2 ⊆ T be two sets of
terms. A map from V1 to V2 is a mapping µ : V1 → V2 such
that ∀x ∈ (V1 ∩ V), µ(x) = x (i.e., that preserves names).

A map µ and an extension ι′ of an interpretation function ι
are two different mappings, i.e., µ is a mapping from terms to
terms that preserves urirefs and literals while ι′ is a mapping
from terms to resources that preserves the values of ι.

Definition 6 (RDF homomorphism) Let G and G′ be two
RDF graphs. An RDF homomorphism from G′ into G is a
map π : T (G′)→ T (G) that preserves triples, i.e., such that
∀(s, p, o) ∈ G′, (π(s), π(p), π(o)) ∈ G.

Theorem 1 ([16], [7]) Let G and G′ be two RDF graphs.
Then G |=RDF G

′ iff there exists an RDF homomorphism from
G′ into G.

Example 2 The map π defined by {(?Country1,ex:Italy),
(?Country2,ex:Spain), (?City1,ex:Roma), (?City2, ex:

Madrid), (?Mean,ex:Iberia311), (?Price,"500")} is an
RDF homomorphism from the RDF graph H into G of Fig. 1.

IV. CPRDF: SYNTAX

To be able to express properties on nodes that belong to a
regular path, we extend PRDF [5] by adding constraints to a
regular expression. For the sake of simplicity and without loss
of generality, we restrict the constraints in this section to be
RDF graphs. Then, we parametrize the CPRDF language in
the way that allows us to naturally extend it to include more
general constraints.

Definition 7 (RDF constraint) An RDF constraint is written
†1Qx†2 : C where C is an RDF graph, †1 and †2 are one of
the interval delimiters [and], Q is a quantifier either ALL or
EXISTS, and x is a variable that labels a node of C.

A constraint consists of interval delimiters which are used
to include or exclude the extremities of a path, a quantifier
either ALL or EXISTS, a variable, and an RDF graph that
must be satisfied by the internal nodes. For example, the
constraint defined by]ALL ?Stop]: {(?Stop, ex:cityIn,
?Country), (?Country, ex:partOf, ex:Europe)} when ap-
plied to a regular expression R ensures that all nodes except
the source extremity in a path satisfying R are cities in Europe.
Intuitively, a path p satisfies a regular expression R if the word
formed by concatenating the labels of the arcs along the path
belongs to the language generated by R.

In what follows, we use ΦRDF to denote the set of RDF
constraints. When this restriction is not necessary, we use Φ
to denote a constraint language.

Let Σ be an alphabet. A language over Σ is a subset of
Σ∗: its elements are sequences of elements of Σ called words.
A word (non empty) (a1, . . . , ak) is denoted a1 · . . . · ak. If
A = a1 ·. . .·ak and B = b1 ·. . .·bq are two words over Σ, then
A·B is the word over Σ defined by A·B = a1·. . .·ak·b1·. . .·bq .
A constrained regular expression over (U ,B,Φ) can be used
to define the language over (U ∪ B).

Definition 8 (Constrained regular expressions) The set of
constrained regular expressions over (U ,B,Φ) (denoted by
R(U ,B,Φ)) is defined inductively by:
• if u ∈ U , then u, and u− ∈ R(U ,B,Φ);
• if b ∈ B, then b ∈ R(U ,B,Φ);
• if R ∈ R(U ,B,Φ), then (R+) ∈ R(U ,B,Φ);
• if R1, R2 ∈ R(U ,B,Φ), then (R1 ·R2), and (R1|R2) are

elements of R(U ,B,Φ).
• if R ∈ R(U ,B,Φ) and ψ ∈ Φ is a constraint, then
R%ψ% ∈ R(U ,B,Φ).

The inverse operator − handles only atomic expressions.
It specifies the orientation of arcs in the paths retrieved (i.e.,
it inverses the matching of arcs). Moreover, the constraints
are not necessarily grouped together and we can have a
constrained regular expression of the form R%ψ1% . . .%ψk%.
This allows us to specify at each grouped block different con-
straint with(out) different variable(s), which is more flexible
and general than grouping all constraints in one block.

Informally, a CPRDF[Φ] graph is a graph whose arcs are
labeled with constrained regular expressions whose constraints
are elements of Φ.

Definition 9 (CPRDF graph) A CPRDF[Φ] triple is an ele-
ment of (T ×R(U ,B,Φ)× T). A CPRDF[Φ] graph is a set
of CPRDF[Φ] triples.
Example 3 The CPRDF[ΦRDF] graph H represented by the
following triples:
{(?City1 ex:cityIn ex:Italy),
(?City2 ex:cityIn ex:CanaryIslands),
(?City1 (ex:from-.ex:to%]ALL ?Stop]:

{?Stop ex:cityIn ?Country .
?Country ex:partOf ex:Europe }%)+ ?City2)}

when used as a query, finds pairs of cities (?City1,?City2),
one in Italy and the other in the Canary Islands, such that
?City2 is reachable from ?City1 by passing through only
cities in Europe.

V. CPRDF: SEMANTICS

To be able to express the semantics of CPRDF[Φ] graphs,
we have first to define the language generated by a regular
expression. The derivation trees used here are just a visual rep-
resentation of the more usual inductive definition of derivation
[5]. The internal nodes of these trees will be used to define
the semantics of constraints.

A. Generated language

aA =

(a)

+A =

. . .

A1 Ak

(b)

−A =

u

(c)

·A =

A1 A2

(d)

|A =

A′

(e)

ψA =

A′

(f)

Fig. 2. Constructing a derivation tree of a constrained regular expression.

Definition 10 (Derivation tree) Let R ∈ R(U ,B,Φ) be a
constrained regular expression. A rooted labeled tree with
ordered subtrees A is called a derivation tree of R (denoted
A ∈ DT (R)) iff A can be constructed inductively in the
following way:

1) if R = a ∈ (B ∪ U), then A is the tree of Fig. 2(a);
2) if R = (R′+) and A1, . . . , Ak are a set of derivation

trees of DT (R′), then A is the tree of Fig. 2(b);
3) if R = (u−), then A is the tree of Fig. 2(c);
4) if R = (R1·R2), A1 ∈ DT (R1) and A2 ∈ DT (R2), then

A is the tree of Fig. 2(d);
5) if R = (R1|R2) and A′ ∈ DT (R1) ∪ DT (R2), then A

is the tree of Fig. 2(e);

6) if R = (R′%ψ%) and A′ ∈ DT (R′), then A is the tree
of Fig. 2(f).

The elements of a derivation tree are quantified using path
labels in a given graph (see an example in the sequel).

Definition 11 (Word) To a derivation tree A we associate a
unique word w(A), obtained by concatenating the labels of
the leaves of A, totally ordered by the depth-first exploration
of A determined by the order of its subtrees. We use ρ(A, i)
to denote the ith leaf of A, according to that order.

The word associated to a derivation tree A of a constrained
regular expression R belongs to the language generated by
R, as usually defined by L∗(R) = {w ∈ (U ∪ B)+ | ∃A ∈
DT (R), w = w(A)}. Note that our definition ranges over
(U ∪B), which is necessary when extending our work to RDF
with variables as predicates (see [4]).

B. Interpretations and models of CPRDF graphs

A CPRDF interpretation of a vocabulary V ⊆ V , is an
RDF interpretation of V . However, an RDF interpretation
must meet specific conditions to be a model for a CPRDF[Φ]
graph (Definition 14). These conditions are the transposition
of the classical path semantics within the RDF semantics
(Definition 12); and the satisfaction of the constraints by the
resources of RDF interpretations (Definition 13).

Definition 12 (Proof of a constrained regular expression)
Let I = (IR, IP , IEXT , ι) be an interpretation of a vocabulary
V , and R ∈ R(U ,B,Φ) be a constrained regular expression
such that U(R) ⊆ V . Let ι′ be an extension of ι to B(R), and
w(A) = a1 · . . . · ak be a word of L∗(R). A tuple (r0, . . . , rk)
of resources of IR is called a proof of w in I according to ι′

iff ∀1 ≤ i ≤ k:

• 〈ri, ri−1〉 ∈ IEXT (ι′(ai)) if ρ(A, i) has an ancestor
labeled by −;

• 〈ri−1, ri〉 ∈ IEXT (ι′(ai)), otherwise.

The first item of this definition handles the inverse operator
(−): if the ancestor of ai is labeled by − (i.e., it is equivalent
to a−i), then we inverse the two resources that belong to
the extension of the property of ι′(ai). This definition is
used for defining CPRDF models in which it replaces the
direct correspondence that exists in RDF between a relation
and its interpretation (see first item of Definition 14), by a
correspondence between a constrained regular expression and
a sequence of relation interpretations. This allows to match
constrained regular expressions with variable length paths.

Definition 13 (Constraint satisfaction in an interpretation)
Let ψ = †1Qx†2 : C be a constraint of ΦRDF, and I = (IR,
IP , IEXT , ι) be an interpretation of a vocabulary V . A
resource r of IR satisfies ψ iff there exists a proof ι′ : T → IR
of C such that ι′(x) = r.

Now we are ready to define when an interpretation is a
model of a CPRDF[ΦRDF] graph.

ex:Roma ex:Iberia311 ex:Madrid ex:Iberia612 ex:SantaCruz

ex:from ex:to ex:from ex:to

− ψ − ψ

· ·

+

Fig. 3. A derivation tree.

Definition 14 (Model of a CPRDF graph) Let I = (IR, IP ,
IEXT , ι) be an interpretation of a vocabulary V , and G be a
CPRDF[ΦRDF] graph such that U(G) ⊆ V . We say that I is
a model of G iff there exists an extension ι′ of ι such that for
each triple (s,R, o) of G, there exists a tuple T = (r0, . . . , rk)
of resources of IR (ι′(s) = r0 and ι′(o) = rk) and a word
w(A) = a1 · . . . · ak ∈ L∗(R) such that:
• T is a proof of w in I according to ι′;
• for each node z labeled by a constraint ψ = †1Qx†2 : C

in A, rooting a subtree A′ with ap · . . . · ap+q = w(A′),
then Q r ∈ †1rp−1, . . . , rp+q†2, r satisfies ψ.

VI. INFERENCE MECHANISM FOR CPRDF

Two conditions must be satisfied for the notion of homo-
morphism to be able to find the answers to a CPRDF[Φ] query
in an RDF knowledge base (Definition 17): instead of proving
an arc (a triple) of the query by an arc in the knowledge base,
we prove it by a path in the knowledge base (Definition 15);
and the satisfaction of the corresponding node(s) in the path
of the knowledge base to the constraint(s) (Definition 16).

Definition 15 (Path word) Let G be an RDF graph of vocab-
ulary V ⊆ V , and R ∈ R(U ,B,Φ) be a constrained regular
expression such that U(R) ⊆ V . Let µ : B(R)→ V be a map
from the variables of R to V , and w(A) = a1 · . . . · ak be a
word of L∗(R). A tuple (n0, . . . , nk) of nodes of G is called
a path of w in G according to µ iff ∀1 ≤ i ≤ k:
• (ni, µ(ai), ni−1) ∈ G if ρ(A, i) has an ancestor labeled

by −;
• (ni−1, µ(ai), ni) ∈ G, otherwise.

As done for the interpretation (Definition 12), the first item
handles the inverse operator: if the ancestor of ai is labeled
by −, then we inverse the orientation of the arc.

Example 4 Fig. 3 shows a possible derivation tree of the
constrained regular expression R =(ex:from-·ex:to%ψ%)+

of the graph H in Example 3, where ψ =]ALL ?Stop]:
{(?Stop, ex:cityIn, ?Country), (?Country, ex:partOf,
ex:Europe)}. The nodes in white color, which correspond to
the path of nodes in the RDF graph G of Fig. 1, together
with the path labels are used to quantify the elements of
the tree. The tuple T=(ex:Roma, ex:Iberia311, ex:Madrid,
ex:Iberia612, ex:SantaCruz) of nodes in the RDF graph G

of Fig. 1 is a path of the word w=(ex:from-· ex:to·ex:from-
·ex:to) ∈ L∗(R) according to the empty map.

The following definition gives the condition(s) when a
constraint of ΦRDF is satisfied. This definition can be extended
based on the constraints (see notes in Section VII).

Definition 16 (Constraint satisfaction in RDF graphs) Let
G be an RDF graph, ψ = †1Qx†2 : C be a constraint of
ΦRDF, and s a term of G. Then s satisfies ψ in G if there
exists an RDF homomorphism π from C into G such that
π(x) = s.

Intuitively, in CPRDF[Φ] homomorphisms, each internal
node labeled by a constraint ψ of a derivation tree determines
the subtree (not necessary the whole tree, since a constraint
ψ may be applied to a partial part of a constrained regular
expression, Definition 8) whose corresponding nodes in the
knowledge base graph must satisfy ψ (see the second item of
the following definition).

Definition 17 (CPRDF homomorphism) Let G be an RDF
graph and H be a CPRDF[Φ] graph. A CPRDF[Φ] homo-
morphism from P into G is a map π : T (H) → T (G) such
that ∀(s,R, o) ∈ H , there exists a tuple T = (n0, . . . , nk)
of nodes of G (π(s) = n0 and π(o) = nk) and a word
w(A) = a1 · . . . · ak ∈ L∗(R) such that:
• T is a path of w in G according to π;
• for each node z labeled by a constraint ψ = †1Qx†2 : C

in A, rooting a subtree A′ with ap · . . . · ap+q = w(A′),
then Q n ∈ †1np−1, . . . , np+q†2, n satisfies ψ.

The existence of a CPRDF[Φ] homomorphism is exactly
what is needed for deciding entailment between RDF and
CPRDF[Φ] graphs.

Theorem 2 (CPRDF-RDF entailment [4]) Let G be a RDF
graph and H be a CPRDF[ΦRDF] graph, then G |=CPRDF H
iff there is a CPRDF[ΦRDF] homomorphism from H into G.

Example 5 Consider the CPRDF[ΦRDF] graph H of
Example 3, the RDF graph G of Fig. 1, and the map π
defined by {(?City1,ex:Roma), (?City2,ex:SantaCruz),
(ex:from,ex:from), (ex:to,ex:to), (ex:cityIn,ex:cityIn),
(ex:Italy,ex:Italy), (?Country,ex:CanaryIslands)}.
According to Definition 17, the tuple of nodes of Example 4
(such that the first node ex:Roma and the last node
ex:SantaCruz are the images of ?City1 and ?City2,
respectively) is a path of a word of the regular expression
of H according to π in G, and the stops along the path are
all cities in Europe (see Fig. 3). So, π is a CPRDF[ΦRDF]
homomorphism from H into G.

VII. CPSPARQL

[22] presents an alternate characterization of query answer-
ing with the SPARQL query language that relies upon opera-
tions on maps from the graph patterns of a query into an RDF
knowledge base. We use this framework to extend SPARQL to
CPSPARQL, by defining graph patterns as CPRDF[Φ] graphs.

Analogously, the set of answers to a CPSPARQL query is
defined inductively from the set of maps of the CPRDF[Φ]
graphs of the query into the RDF knowledge base.

A. Syntax

In CPSPARQL there are several functions that can be
used for capturing the values along the paths like SUM for
summation of values along paths, AVG for the average, COUNT
for counting nodes satisfying constraints. For the sake of
simplicity, we have not introduced these function, and illustrate
them with examples (cf. Section II). Moreover, since the graph
patterns in the SPARQL query language are shared by all
SPARQL query forms and that our proposal is based upon
extending these graph patterns, we illustrate our extension
using the SELECT . . . FROM . . . WHERE . . . query form1. Our
extension can then be applied to other query forms.

CPSPARQL graph patterns are built on top of CPRDF in
the same way that SPARQL is built on top of RDF.

Definition 18 (CPSPARQL graph patterns) A CPSPARQL
[Φ] graph pattern is defined inductively by:
• every CPRDF[Φ] graph is a CPSPARQL[Φ] graph pat-

tern;
• if P1 and P2 are two CPSPARQL[Φ] graph patterns

and R is a SPARQL constraint, then (P1 AND P2), (P1

UNION P2), (P1 OPT P2), and (P1 FILTER R) are
CPSPARQL[Φ] graph patterns.

Note: The parametrization of CPSPARQL[Φ] by Φ allows us
to extend naturally its graph patterns to more general
constraints. If ΦSPARQL denotes the set of all possi-
ble SPARQL graph patterns, then a CPRDF[ΦSPARQL]
graph could be a CPSPARQL[ΦSPARQL] graph pattern.

CPSPARQL query. A CPSPARQL[Φ] query for the select
form SELECT ~B FROM u WHERE P such that P is a
CPSPARQL[Φ] graph pattern.

B. Answers to CPSPARQL queries

We first need to introduce some notations and operations
in maps. If µ is a map, then the domain of µ, denoted by
dom(µ), is the subset of T where µ is defined. If P is a
graph pattern, then µ(P) is the graph pattern obtained by the
substitution of µ(b) to each variable b ∈ B(P). Two maps
µ1 and µ2 are compatible when ∀x ∈ dom(µ1) ∩ dom(µ2),
µ1(x) = µ2(x). If µ1 : T1 → T and µ2 : T2 → T are two
compatible maps, then we use µ = µ1 ⊕ µ2 : T1 ∪ T2 → T
to denote the map defined by: ∀x ∈ T1, µ(x) = µ1(x) and
∀x ∈ T2, µ(x) = µ2(x). Analogously to [22], we define the
join and difference of two sets of maps Ω1 and Ω2 as follows:
• (join) Ω1 on Ω2 = {µ1 ⊕ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are

compatible};

1SPARQL provides several result forms that can be used for formating the
query results. For example, CONSTRUCT that can be used for building an
RDF graph from the set of answers, ASK that returns TRUE if there is a
answer to a given query and FALSE otherwise, and DESCRIBE that can be
used for describing a resource RDF graph.

• (difference) Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 and µ2

are not compatible}.
As in the case of SPARQL, the answer to a query reduced

to a CPRDF[Φ] graph is also given by a map. The definition
of an answer to a CPSPARQL query will be thus identical to
the one given for SPARQL [22], but it will use CPRDF[Φ]
homomorphisms.

Definition 19 (Answer to a CPSPARQL graph pattern)
Let G be an RDF graph and P be a CPSPARQL[Φ] graph
pattern, then the set S(P,G) of answers of P in G is defined
inductively by:
• if P is a CPRDF[Φ] graph, S(P,G) = {µ | µ is a

CPRDF[Φ] homomorphism from P into G};
• if P = (P1 AND P2), S(P,G) = S(P1, G) on S(P2, G);
• if P = (P1 UNION P2), S(P,G) = S(P1, G)∪S(P2, G);
• if P = (P1 OPT P2), S(P,G) = (S(P1, G) on
S(P2, G)) ∪ (S(P1, G) \ S(P2, G));

• if P = (P1 FILTER R), S(P,G) = {µ ∈ S(P1, G) |
µ(R) = >}.

Note: If CPSPARQL graph patterns are constructed over
CPRDF[ΦSPARQL] graphs, then we need only to extend
Definition 16 in the following way: Let G be a graph,
P be a SPARQL graph pattern, ψ = †1Qx†2 : P be a
constraint, and s a term of G. We say that s satisfies
ψ in G if there exists a map µ ∈ S(P,G) such that
µ(x) = s. The definition of CPRDF[Φ] homomorphism
(Definition 17) and first item of Definition 19 remain
unchanged.

Answers to a CPSPARQL[Φ] query are the instantiations
of the set of maps from its graph patterns into the graph
representing the knowledge base(s).

Definition 20 (Answer to a CPSPARQL query) Let Q =
SELECT ~B FROM u WHERE P be a CPSPARQL[Φ] query.
Let G be the RDF graph identified by the URL u, and Ω the
set of answers of P in G. Then the answers to the query Q
are the projections of elements of Ω to ~B, i.e., for each map
π of Ω, the answer of Q associated to π is {(x, y) | x ∈ ~B
and y = π(x) if π(x) is defined, otherwise null}.

VIII. RELATED WORK

There are many query languages dealing with paths:
G+ [14], GraphLog [11], Lorel [1], UnQL [8], WebSQL
[20], Corese [12] including our own extension to SPARQL,
PSPARQL, [3], [5]. None of them deal with constraints.

Two extensions of SPARQL, which are closely similar to
PSPARQL, have been recently defined based on our initial pro-
posal [3]: SPARQLeR [19] and SPARQ2L [6]. Both languages
extend SPARQL by allowing query graph patterns involving
path variables. Each path variable is used to capture paths in
RDF graphs, and is matched against any arbitrary composition
of RDF triples between two given nodes. The constraints in
these extensions are simple, i.e., restricted to testing the length
of paths and testing if a given node is in the resulting path.
The queries in CPSPARQL are examples that can be emulated

by neither SPARQ2L nor SPARQLeR. Several problems are
shared by the two extensions when we evaluate such graph
patterns. In particular, the strategy of obtaining paths and then
filtering them is inefficient since it can generate a large number
of paths due to the use of path variables. Multiple uses of same
path variable is not fully defined: it is not specified which path
is to be returned or if is it enforced to be the same. Since
SPARQLeR is not defined with a formal semantics, its use of
path variables in the subject position is unclear, in particular,
when they are not bound. It seems that the algorithms used
in SPARQ2L are not complete with regard to their intuitive
semantics, since the set of answers can be infinite in absence
of constraints for using shortest or acyclic paths.

A kind of constrained regular expressions has been proposed
for XPath [15]. However, XPath operates on trees (not on
graphs), and only defines monadic queries [10]. Several works
attempt to adapt PDL-like or µ-calculus for querying graphs
with monadic queries, cf. [2]. We conjuncture that CPSPARQL
and even SPARQL queries are not reducible to µ-calculus
since the evaluation problem of basic SPARQL queries is
PSPACE-complete [22] and that for µ-calculus is P.

To our knowledge no other language for querying graphs
supports constraints on paths. The originality of our proposal,
CPSPARQL, lies in our adaptation of the RDF model-theoretic
semantics to take into account constrained regular expressions,
providing a wide range of querying paradigms. Moreover,
CPSPARQL allows filtering constraints on the fly (during path
search) and not a posteriori, and is not restricted to simple
paths. This relaxation is not only useful for many applications
(cf. [6] for some examples), but also provides polynomial
classes for the regular expression satisfiability problem (i.e.,
when they do not contain variables).

IX. CONCLUSION

Our initial proposal, PSPARQL, extends SPARQL to al-
low expressing variable length paths. Since PSPARQL and
SPARQL do not allow specifying characteristics of the nodes
traversed by a regular path, we have extended the PSPARQL
language syntax and semantics to handle constraints to have
the CPSPARQL language. We have also characterized answers
to a CPSPARQL query in an RDF knowledge base as maps.
This property was sufficient to extend the SPARQL query
language to have a sound and complete inference mechanism
for answering CPSPARQL queries over RDF graphs. Note that
the W3C SPARQL Working Group considered our proposal to
be one of the extensions in the second version of SPARQL 2.

The proposed language, CPSPARQL has several advan-
tages. First of all, it allows expressing variable length paths
which can be qualified through the use of constraints. It
enhances efficiency since the use of predefined constraints
inside regular expressions prunes irrelevant paths during the
evaluation process and not a posteriori3. The constraints in

2http://esw.w3.org/topic/SPARQL/Extensions/Paths
3We have recently experimented the implementation and we found an

enhancement of 0.3− 0.4 of the search time, and we can provide the results
if you allow us a little bit place.

CPSPARQL are extensible (i.e., it can be extended to include
constraints that can be more general, as shown in Section VII),
and partial (i.e., can be applied to a part of a regular ex-
pression, see examples in Section II). The use of regular
expressions supports a meaningful and natural use of inverse
paths through the use of inverse operator.

As it is shown along the paper, we go far beyond the
trivial constraints, i.e., testing simple paths and the existence
of a node along the path. Finally, we have implemented a
CPSPARQL query engine that is available for both download
and online test 4.

REFERENCES

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.Wiener. The
Lorel query language for semistructured data. Journal on Digital
Libraries, 1(1):68–88, 1997.

[2] N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path
constraints. Journal of Logic and Computation, 13:1–18, 2003.

[3] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Complex path queries for
RDF graphs. In ISWC, poster paper, 2005.

[4] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Constrained regular expres-
sions in SPARQL. Research Report 6360, INRIA, 2007.

[5] F. Alkhateeb, J.-F. Baget, and J. Euzenat. RDF with regular expressions.
Research report 6191, INRIA, 2007.

[6] K. Anyanwu, A. Maduko, and A. P. Sheth. SPARQ2L: towards support
for subgraph extraction queries in RDF databases. In Proceed. of the
16th international conference on WWW’07), pages 797–806, 2007.

[7] J.-F. Baget. RDF entailment as a graph homomorphism. In Proceed. of
the 4th ISWC, Galway (IE), pages 82–96, 2005.

[8] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query
language and optimization techniques for unstructured data. In Proceed.
of the ACM SIGMOD International Conference on the Management of
Data, pages 505–516, 1996.

[9] J. J. Carroll and G. Klyne. RDF concepts and abstract syntax. W3C
recommendation, 2004.

[10] J. Clark and S. DeRose. XML Path Language (XPath). W3C
Recommendation, 1999.

[11] M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for
real life recursion. In Proceed. of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 404–416, 1990.

[12] O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the semantic
web with corese search engine. In Proceed. of the 16th ECAI’2004, sub-
conference (PAIS’2004), Valencia (Spain), pages 705–709, 2004.

[13] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language
supporting recursion. In Proceed. of the ACM SIGMOD, pages 323–330,
1987.

[14] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive queries
without recursion. In Proceed. of the Expert Database Conference, pages
355–368, 1988.

[15] P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis of
XML paths and types. In Proceed. of PLDI’07, pages 342–351, 2007.

[16] C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of semantic
web databases. In ACM Symposium (PODS), pages 95–106, 2004.

[17] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF
query languages. In Proceed. of 3rd ISWC, pages 502–517, 2004.

[18] P. Hayes. RDF semantics. W3C Recommendation, February 2004.
[19] K. Kochut and M. Janik. SPARQLeR: Extended sparql for semantic

association discovery. In Proceed. of 4th ESWC, pages 145–159, 2007.
[20] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the world wide

web. Int. J. on Digital Libraries, 1(1):54–67, 1997.
[21] E. Miller, R. Swick, and D. Brickley. Resource description framework

RDF. W3C Recommendation, 2004.
[22] J. Perez, M. Arenas, and C. Gutierrez. Semantics and complexity of

SPARQL. In Proceed. of the 5th ISWC, pages 30–43, 2006.
[23] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.

W3C Working draft, 2007.

4http://psparql.inrialpes.fr/

http://esw.w3.org/topic/SPARQL/Extensions/Paths
http://psparql.inrialpes.fr/

	 Introduction
	Motivating Examples -- Introducing CPSPARQL
	RDF
	RDF syntax
	RDF semantics
	Inference mechanism for RDF

	CPRDF: syntax
	CPRDF: semantics
	Generated language
	Interpretations and models of CPRDF graphs

	Inference mechanism for CPRDF
	CPSPARQL
	Syntax
	Answers to CPSPARQL queries

	Related Work
	Conclusion
	References

