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Abstract
Constraint networks are known as a useful way to
formulate problems such as design, scene labeling,
temporal reasoning, and more recently natural
language parsing. The problem of the existence of
solutions in a constraint network is NP-complete.
Hence, consistency techniques have been widely
studied to simplify constraint networks before or
during the search of solutions. Arc-consistency is the
most used of them. Mohr and Henderson
[Moh&Hen86] have proposed AC-4, an algorithm
having an optimal worst-case time complexity. But it
has two drawbacks: its space complexity and its
average time complexity. In problems with many
solutions, where the size of the constraints is large,
these drawbacks become so important that users
often replace AC-4 by AC-3 [Mac&Fre85], a non-
optimal algorithm. In this paper, we propose a new
algorithm, AC-6, which keeps the optimal worst-case
time complexity of AC-4 while working out the
drawback of space complexity. More, the average
time complexity of AC-6 is optimal for constraint
networks where nothing is known about the semantic
of the constraints. At the end of the paper,
experimental results show how much AC-6
outperforms AC-3 and AC-4.

1. Introduction
There is no need to show the importance of arc-
consistency in Constraint Networks. Originating
from Waltz [Waltz72], who developed it for vision
problems, it has been studied by Mackworth and
Freuder [Mackworth77], [Mac&Fre85], by Mohr and
Henderson [Moh&Hen86] who have proposed
an algorithm having an optimal worst-case time
complexity: O(ed2) , where e  is the number of
constraints (or relations) and d the size of the largest
domain. In [Bessière91] its use has been extended to
Dynamic constraint networks. Recently, Van
Hentenryck, Deville and Teng [Dev&VanH91],
[VanH&al92], have proposed a generic algorithm
which can be implemented with all known
techniques, and have extracted classes of networks
on which there exist algorithms running arc-
consistency in O(ed). In 1992, Perlin [Perlin92] has

given properties of arc-consistency on factorable
relations.

Everybody now looks for arc-consistency
complexity in particular classes of constraint
networks because AC-4 [Moh&Hen86] has an
optimal worst-case complexity and it is supposed
that we cannot do better.

But AC-4 drawbacks are its average time
complexity which is too much near the worst-case
time complexity and more, its space complexity
which is O(ed2). In applications with a large number
of values in variables domains and with weak
constraints, AC-3 is often used instead of AC-4
because of its space complexity. Such situations
appear for example when domains encode discrete
intervals and constraints are defined as arithmetic
relations (≥, <, ≠,…). Constraint Logic Programming
(CLP) languages [Din&al88] which are big
consumers of arc-consistency (arc-consistency has
some good properties in CLP) are concerned by these
problems.

In problems with many solutions, where the
constraints are weak, AC-4 initialization step is very
long because it requires to consider the relations in
their whole to construct its data structure. In those
cases, AC-3 [Mac&Fre85] runs faster than AC-4 in
spite of its non-optimal time complexity.

In this paper we propose a new algorithm, AC-6,
which while keeping O(ed2) optimal worst-case time
complexity of AC-4, discards the problem of space
complexity (AC-6 space complexity is O(ed)) and
checks just enough data in the constraints to
compute the arc-consistent domain. AC-4 looks for
all the reasons for a value to be in the arc-consistent
domain: it checks, for each value, all the values
compatible with it (called its supports) to prove this
value is viable. AC-6 only looks for one reason per
constraint to prove that a value is viable: it checks,
for each value, one support per constraint, looking
for another one only when the current support is
removed from the domain.

The rest of the paper is organized as follows.
Section 2 gives some preliminaries on constraint
networks and arc-consistency. Section 3 presents the
algorithm AC-6. In section 4, experimental results



show how much AC-6 outperforms the algorithms
AC-3 and AC-41. A conclusion is given in section 5.

2. Background
A network of binary constraints (CN) is defined as a set
of n variables {i, j,…}, a domain D={Di, Dj,…} where
Di is the set of possible values for variable i, and a set
of binary constraints between variables. A binary
constraint (or relation) Rij between variables i and j is
a subset of the Cartesian product Di xDj that
specifies the allowed pairs of values for i and j.
Following from Montanari [Montanari74], a binary
relation Rij between variables i and j is usually
represented as a (0,1)-matrix (or a matrix of
booleans) with Di rows and Dj  columns by
imposing an ordering on the domains of the
variables. Value true at row a, column b, denoted
Rij(a, b), means that the pair consisting of the ath
element of Di and the bth element of Dj is permitted;
value false means the pair is not permitted. In all the
networks of interest here Rij(a, b)=Rji(b, a). In some
applications (constraint logic programming,
temporal reasoning,…), Rij is defined as an
arithmetic relation (=, ≠, <, ≥,…) without giving the
matrix of allowed and not allowed pairs of values.

A graph G  can be associated to a constraint
network, where nodes correspond to variables in the
CN and an edge links nodes i and j every time there
is a relation Rij on variables i and j in the CN. For the
purpose of this paper, we consider G as a symetric
directed graph with arcs (i, j) and ( j, i) in place of the
edge {i, j}.

A s o l u t i o n  of a constraint network is an
instanciation of the variables such that all the
constraints are satisfied.

Definition. Having the constraint Rij, value b in
Dj is called a support for value a in Di if the pair
(a, b) is allowed by Rij (i.e. Rij(a, b) is true).

A value a for a variable i is viable if for every
variable j such that Rij exists, a has a support
in Dj.

The domain D of a CN is arc-consistent if for
every variable i in the CN, all the values in Di
are viable.

3. Arc-consistency with unique support
3.1. Preamble
As Mohr and Henderson underlined in [Moh&-
Hen86], arc-consistency is based on the notion of
support. As long as a value a for a variable i (denoted

                                                
1AC-5 [VanH&al92] is not discussed here since it is not an
improvement but a generic framework in which all previous
algorithms can be written.

(i, a)) has supporting values on each of the other
variables j linked to i in the constraint graph, a is
considered a viable value for i. But once there exists a
variable on which no remaining value satisfies the
relation with (i, a ), then a must be eliminated
from Di.

The algorithm proposed in [Moh&Hen86] makes
this support explicit by assigning a counter
counter[(i, j), a] to each arc-value pair involving the
arc (i , j) and the value a  on the variable i . This
counter records the number of supports of (i, a) in Dj.
For each value (j, b), a set Sjb is constructed, where
Sjb={(i, a)/(j, b) supports (i, a)}. Then, if (j, b) is elimi-
nated from Dj, counter[(i, j), a] must be decremented
for each (i, a) in Sjb.

This data structure is at the origin of AC-4 optimal
worst-case time complexity. But computing the
number of supports for each value (i, a) on each
constraint Rij and recording all the values ( i, a)
supported by each value (j, b) implies an expensive
space complexity of O(ed2) (the size of the support
sets Sjb) and an average time complexity increasing
with the number of allowed pairs in the relations
since the number of supports is proportional to the
number of allowed pairs in the relations.

The purpose of AC-6 is then to avoid the
expensive checking of the relations to find all the
supports for all the values. AC-6 keeps the same
principle as AC-4, but instead of checking all the
supports for a value, it only checks one support (the
first one) for each value (i, a) on each constraint Rij to
prove that (i , a) is currently viable. When (j, b) is
found as the smallest support of (i, a) on Rij, (i, a) is
added to Sjb, the list of values currently having (j, b)
as smallest support. If (j, b) is removed from Dj then
AC-6 looks for the next support in Dj for each value
(i, a) in Sjb. The only requirement in the use of AC-6
is to have a total ordering in all domains Dj. But this
is not a restriction since in any implementation, a
total ordering is imposed on the domains. This
ordering is independent of any ordering computed
in a rearrangement strategy for searching solutions.

3.2. The algorithm
The algorithm proposed here works with the
following data structure:

• A table M  of booleans keeps track of which
values of the initial domain are in the current
domain or not (M(i, a)=true ⇔  a∈Di). In this table,
each initial Di is considered as the integer range
1..Di. But it can be a set of values of any type with
a total ordering on these values. We use the
following



constant time functions to handle Di sets that are
considered as lists:

- first(Di ) returns the smallest value in Di.
- last(Di ) returns the largest value in Di.
- next(a, Di ) returns the value a' in Di such

that every value a" larger than a and smaller than a'
is out of Di.

• Sjb={(i, a)/( j, b) is the smallest value in D j
supporting (i, a) on Rij} while in AC-4 it was
containing all the values supported by (j, b).

• Counters for each arc-value pair in AC-4 are not
used in AC-6.

• A list List contains values deleted from the
domain but for which the propagation of the deletion
has not been processed yet.

In AC-4, when a value (j, b ) was deleted, it was
added to List  waiting for the propagation of the
consequences of its deletion. These consequences
were to decrement counter[(i, j), a] for every (i, a) in
Sjb and to delete (i, a) when counter[(i, j), a] becomes
equal to zero. In AC-6, the use of List is not changed
but the consequence of (j, b) deletion is now to find
another support for every (i, a ) in Sjb. Having an
ordering on Dj we look after b (the old support) for
another value c  in D j supporting (i, a) on Rij (we
know there is no such value before b). When such a
value c is found, (i, a) is added to Sjc since (j, c) is the
new smallest support for (i, a) in Dj. If no such value
exists, (i, a) is removed and put in List.

AC-6 uses the following procedure to find the
smallest value in D j not smaller than b  and
supporting (i, a) on Rij:

procedure nextsupport(in i, j, a : integer; in out b : integer;
out emptysupport : boolean);

begin
{search of the smallest value as large as b that
belongs to Dj ; this part is not needed in the call of
the procedure done in the initialization step since b
already belongs to Dj }
while not M(j, b) and b < last(Dj ) do b ← b + 1 ;
emptysupport ← not M(j, b) ;

{search of the smallest support for (i, a) in Dj }
while not Rij(a, b) and not emptysupport do

if b < last(Dj ) then b ← next(b, Dj )
else emptysupport ← true

end;

The algorithm AC-6 has the same framework as
AC-4. In the initialization step, we look for a support
for every value (i, a) on each constraint Rij to prove
that (i, a) is viable. If there exists a constraint Rij on
which (i, a) has no support, it is removed from Di
and put in List.

In the propagation step, values (j, b ) are taken
from List to propagate the consequences of their
deletion: finding another support (j, c) for values (i,

a) they were supporting (values (i, a) in Sjb). When
such a value c in Dj is not found, (i, a) is removed
from Di and put in List at its turn.

{initialization}
for (i, a) ∈ D do Sia ← ∅ ; M(i, a) ← true ;
for (i, j) ∈ arcs(G) do

for a ∈ Di do
begin
if Dj = ∅
then emptysupport ← true
else b ← first(Dj ) ;

nextsupport(i, j, a, b, emptysupport ) ;
if emptysupport
then Di ← Di \ {a} ; M(i, a) ← false ;

Append(List, (i, a))
else Append(Sjb, (i, a))
end

{propagation}
while List ≠ ∅ do

begin
choose (j, b) from List and remove  (j, b) from List ;
for (i, a) ∈ Sjb do {before its deletion (j, b) was the
begin smallest support in Dj for (i, a) on Rij }
remove (i, a) from Sjb ;
if M(i, a) then

begin
c ← b ; nextsupport(i, j, a, c , emptysupport ) ;
if emptysupport
then Di ← Di \ {a} ; M(i, a) ← false ;

Append(List, (i, a))
else Append(Sjc, (i, a))
end

end
end

3.3. Correctness of AC-6
Here are the key steps for a complete proof of the
correctness of AC-6. In this section we denote maxAC
the maximal arc-consistent domain which is
expected to be computed by an arc-consistency
algorithm.

• In AC-6, value (i, a) is removed from D i only
when it has no support in Dj on a constraint Rij. If all
previously removed values are out of maxAC then
(i, a) is out of maxAC. maxAC was trivially included
in D when AC-6 started. Then, by induction, (i, a) is
out of maxAC . Thus, maxAC  ⁄D is an invariant
property of AC-6.

• Every time a value (j, b) is removed, it is put in
List until the values it was supporting are checked
for new supports. Every time a value (i, a) is found
without support on a constraint, it is removed from
D . Thus, every value (i, a) in D  has at least one
support in D∪List on each constraint R ij. AC-6
terminates with List empty. Hence, after AC-6, every



value in D  has a support in D  on each constraint.
Thus, D is arc-consistent.

• maxAC ⁄D and D arc-consistent at the end of AC-
6 imply that D is the maximal arc-consistent domain
at the end of AC-6. ❏

3.4. Time and space complexity
In both the initialization step and the propagation
step, the inner loop is a call to the procedure
nextsupport which compute a support for a value on a
constraint, starting at the current value. Hence, for
each arc-value pair [(i, j), a], each value in Dj will be
checked at most once. There are ed arc-value pairs,
thus O(ed2) is the worst-case time complexity for
AC-6, as for AC-4.

The matrix M  has a size proportional to the
number of values in D , O(nd) . Arc-value pairs
[(i, j), a] have at most one support (j, b ) with (i , a)
belonging to Sjb; hence the total size of the Sjb sets is
at most equal to the number of arc-value pairs: O(ed).
Therefore, the worst-case space complexity of AC-6
is O(ed). The problem of the space complexity of
AC-4 is worked out.

Having no information on the semantic of the
constraints this algorithm is the best in time we can
expect. It stops the processing of a value just when it
has the proof it is viable (i.e. the first support). If we
know something about the constraint (e.g.
functional) we can locally improve the search of the
support (e.g. for a functional constraint finding a
support for a value is in constant time) but this is not
in the topic of this paper.

4. Experimental results
Having produced an algorithm making just enough
processing to ensure that each value is viable, we
expect it to outperform AC-3 and AC-4 on all the
problems.

We have tested the performances of the three
algorithms on a large spectrum of problems. For each
problem, we have counted the number of atomic
operations and tests done by each algorithm.

The first comparison has been done on the zebra
problem (see Appendix) which has strong
similitudes with real-life problems. With the
representation of this problem given in [Dechter88],
we obtain the following results:

AC-3: 4008
AC-4: 3824
AC-6: 1998

Afterwards, in fig. 1, we have compared the three
algorithms on a problem often used for algorithms
comparisons: the n-queens (i.e. a nxn  chessboard on
which we want to put n queens, none of them being
attacked by any other). We can encode it in a CN by
representing each column by a variable which values
are the rows. The graph associated to the CN is

complete, each pair {i, j} of variables being linked by
a constraint that specifies the allowed positions for
the two queens in the columns i and j. This CN is
very particular since it is extremely symetrical and
all the constraints are weak (note that arc-consistency
does not discard any value in this CN). So, results
obtained here cannot be generalized to other kinds of
CNs. However, this CN is interesting to illustrate the
behavior of the algorithms on CNs with weak
constraints where arc-consistency discards few
values. On these CNs, AC-4 fails while AC-3 and
AC-4 have an O(ed) average time complexity.
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Figure 1. Comparison of AC-3, AC-4 and AC-6 on the
n-queens problem

Finally, we defined classes of randomly generated
constraint networks and we showed in fig. 2, 3 and 4
the behavior of the three algorithms on these
different types of constraint networks. Four
parameters were taken into account: n  the number of
variables, d the number of values per variable, pc the
probability that a constraint R ij between two
variables exists and pu the probability in existing
relations Rij that a pair of values Rij(a, b) be allowed.
The result given for each class is the average for ten
instances of problems in the class, to be more
representative of the class.
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constraint between two variables is 50 per cent
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Figure 4. AC-3, AC-4 and AC-6 on randomly
generated CNs with 16 variables having 8 possible
values

Let summarize roughly those results:
• AC-4 performances decrease when d or pu grow.

The larger the domains and the weaker the
constraints, the worse AC-4. When we take a look at
those figures, AC-4 seems to be not interesting. But,
being good when arc-consistency discards many
values, randomly generated CNs are not favourable
to it. In practical cases, constraints are less
homogeneous than in randomly generated CNs and
AC-4 is better. Many applications, like SYNTHIA
[Jan&al90] to design peptide synthesis plans, prefer
AC-4 to AC-3.

• AC-3 is never very bad but it can check several
times a pair of values because of its non-optimal time
complexity. So, when propagation of deletions is
long: in "middle" CNs (i.e. not too much constrained
and not under-constrained), AC-3 becomes
inefficient. However, CNs treated in practice are
often "middle" CNs since under-constrained CNs
and too much constrained CNs are easy to solve, a
solution or a contradiction being quickly found.

• AC-6 has kept the optimal worst-case time
complexity of AC-4 while working out the problem
of considering the relations in their whole. Hence, it
is very good on CNs with weak constraints contrary
to AC-4, and remains efficient on CNs where the

constraints are tighten or on "middle" CNs, contrary
to AC-3.

5. Conclusion
We have provided an algorithm, AC-6, to achieve
arc-consistency in binary constraint networks. It
keeps the O(ed2) optimal worst-case time complexity
of AC-4 while working out the two drawbacks of this
algorithm: its space complexity (O(ed2)), and its
average time complexity on constraint networks with
weak constraints. AC-6 has an O(ed)  space
complexity and its running-time decreases when the
weakness of the constraints grows. Experimental
results are given, showing that AC-6 outperforms
AC-3 and AC-4 (the two other best algorithms to
achieve arc-consistency) on all the problems tested.
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Appendix: The zebra problem
1. There are five houses, each of a different color and

inhabited by men of different nationalities, with
different pets, drinks, and cigarettes.

2. The Englishman lives in the red house.
3. The Spaniard owns a dog.
4. Coffee is drunk in the green house.
5. The Ukranian drinks tea.
6. The green house is immediatly to the right of the

ivory house.
7. The Old-Gold smoker owns snails.
8. Kools are being smoked in the yellow house.
9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house on the left.
11. The Chesterfield smoker lives next to the fox

owner.
12. Kools are smoked in the house next to the house

where the horse is kept.
13. The Lucky-Strike smoker drinks orange juice.
14. The Japanese smokes Parliament.
15. The Norwegian lives next to the blue house.

The query is: Who drinks water? and who owns the
Zebra?

This problem can be represented as a binary
constraint network involving 25 variables, one for
each of the five houses, five nationalities, five pets,
five drinks, and five cigarettes. Each of the variables
has domain values {1, 2, 3, 4, 5}, each number



corresponding to a house position (e.g. assigning the
value 2 to the variable horse means that the horse
owner lives in the second house) [Dechter88].
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