M1 Info, M1 Math-Info.

- Examen d'algorithmique géométrique -

- Corrigé rapide -

Barême:

Exercice 1 sur 8 points: 1) 0.5pts - 2) 1pt - 3) 1pt - 4) 1pt - 5) 0.5pts - 6) 1.5pts - 7) 2.5pts - Exercice 2 sur 4 points: 1) 0.5pts - 2) 1pt - 3) 0.5pts - 4) 0.5pts - 5) 1.5pts - Exercice 3 sur 8 points: 1) 1pt - 2) 1pt - 3) 1pt - 4) 1.5pts - 5) 2pts - 6) 1.5pts -

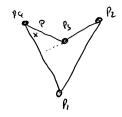
- Exercice 1 - Test d'appartenance à un polygone convexe -

- 1. Voir cours, ou CC...
- 2. L'algo suivant marche:

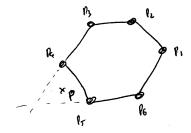
```
pour tous les i=1 à n faire

| si p est à droite de [p_ip_{i+1}] orienté de p_i à p_{i+1} alors
| retourner FAUX;
retourner VRAI;
```

3. Non, ce test ne fonctionne plus si \mathcal{P} n'est pas convexe. Par exemple, dans l'exemple ci-dessous, p est dans \mathcal{P} mais est à droite du segment $[p_2p_3]$ orienté de p_2 vers p_3 .



- 4. On peut lancer un algorithme de calcul d'enveloppe convexe sur l'ensemble de points $\{p_1,\ldots,p_n\}$. À partir du point p_1 , on déroule l'enveloppe convexe à partir de p_1 . \mathcal{P} est convexe si et seulement si on tombe sur la liste (p_1,p_2,\ldots,p_n) (en supposant que tous les p_i soient disjoints). Si on utilise l'algo de Graham, on obtient une complexité en $O(n \log n)$.
- 5. Voir exemple ci-dessous.



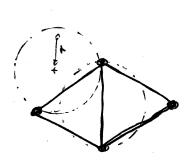
M1 Info, M1 Math-Info.

- 6. Soit p est à droite du segment $[p_i p_k]$ orienté de p_i vers p_k , soit il est à droite de $[p_k p_j]$ orienté de p_k vers p_j , soit il est à gauche de ces deux segments et il est dans le triangle $p_i p_j p_k$ et donc dans le polygone \mathcal{P} .
- 7. On peut alors construire un algo par dichotomie :

À chaque tour de boucle, j-i diminue de moitié. On fait donc au plus $O(\log n)$ tours de boucle. Chaque autre opération élémentaire s'effectue en O(1), donc globalement l'algo fonctionne en $O(\log n)$.

- Exercice 2 - α -shape -

- 1. Voir cours...
- 2. Voir exemple ci-dessous.

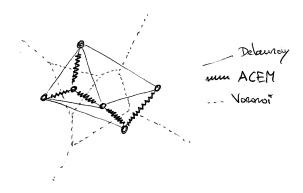


- 3. Si $\alpha < \frac{1}{2} \min\{pq : p \in \mathcal{P}, q \in \mathcal{P}, p \neq q\}$ alors un disque de rayon α est trop petit et ne peut avoir deux points de \mathcal{P} comme diamètre. Donc, l' α -shape de \mathcal{P} est vide.
- 4. Si pq est une arête de l' α -shape, alors par définition il existe un disque de rayon α contenant p et q sur son bord et aucun point de \mathcal{P} dans son intérieur. Par le Lemme 1, pq est une arête de la triangulation de Delaunay.
- 5. Dans ce cas l' α -shape est l'enveloppe convexe de \mathcal{P} . En effet, supposons que ce ne soit pas le cas, l' α -shape contiendrait une arête pq bordée par deux triangles T_1 et T_2 de la triangulation de Delaunay de \mathcal{P} . Comme pq est une arête de l' α -shape de \mathcal{P} , il existe un disque D de rayon α contenant p et q sur son bord et aucun point de \mathcal{P} dans son intérieur. Comme T_1 et T_2 sont de part et d'autre de pq, un de ces triangles, disons T_1 est du même côté que D par rapport à pq. Par hypothèse, le rayon de D (α) est strictement plus grand que le rayon du cercle circonscrit à T_1 . Donc D doit contenir

le troisième point (différent de p et q) du triangle T_1 , ce qui contredit la définition de D

- Exercice 3 - Arbre euclidien minimum -

1. L'exemple suivant répond à la question :



- 2. On constuit un graphe complet dont les sommets sont les points de \mathcal{P} . Chaque arête pq est valuée par la distance de p à q. On lance l'algorithme de Kruskal sur le graphe construit. L'arbre retourné est un ACEM de \mathcal{P} . Le graphe constuit possède n(n-1)/2 arêtes. L'algo proposé tourne donc en temps $O(n^2 \log n)$.
- 3. On a $AC \leq AO + OC$ (inégalité triangulaire, 'la ligne droite est le plus court chemin...'). De plus, on a AO = r, où r désigne le rayon de \mathcal{D} , et OC < r. Finalement, on obtient AC < 2r = AB.
- 4. Notons p et q les deux points les plus proches de \mathcal{P} . Soit \mathcal{D} le disque de rayon [pq]. Si \mathcal{D} contient dans son intérieur un sommet r de \mathcal{D} , par la question précédente, on aurait pr < pq, ce qui contredit le choix de p et de q. L'intérieur de \mathcal{D} ne contient ainsi pas de points de \mathcal{P} . Par le Lemme 1, pq est une arête de la triangulation de Delaunay.
- 5. On généralise la réponse de la question précédente. Soit pq une arête de T. Le graphe T-pq contient deux composantes connexes qui sont des arbres : T_p contenant p et T_q contenant q. Soit \mathcal{D} le disque de rayon [pq]. Si \mathcal{D} contient dans son intérieur un sommet r de \mathcal{D} . Supposons que $r \in T_q$. Par la question 3, on a pr < pq. Mais alors, (T-pq)+pr serait un arbre couvrant de \mathcal{P} (car pr est une arête reliant T_p et T_q et de longueur total strictement inférieure à celle de T, ce qui contredit la définition de T. Si $r \in T_p$, on raisonne de même pour aboutir à une contradiction. Ainsi D ne contient pass de point de \mathcal{P} dans son intérieur et pq est une arête de la triangulation de Delaunay de \mathcal{P} .
- 6. On calcule la triangulation de Delaunay de \mathcal{P} en temps $O(n \log n)$. Celle-ci contient moins de 3n arêtes $(3(n-1)-|EC(\mathcal{P})|$ pour être précis...). On applique alors l'algorithme de Kruskal en temps $O(n \log n)$ sur ce graphe dont on value les arêtes par les distances entre les points (comme à la question 1). Finalement, on obtient un ACEM de \mathcal{P} en temps $O(n \log n)$.