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We show that it is NP complete to determine whether it is possible to edge color a 
regular graph of degree k with k colors for any k 2 3. As a by-product of this result, 
we obtain a new way to generate k-regular graphs which are k-edge colorable. 

1. INTRODUCTION 

The chromatic index of a graph is the minimum number of colors 
required to color the edges of the graph in such a way that no two adjacent 
edges have the same color. Vizing [5] showed that the chromatic index is 
either k or k + 1, where k is the maximal degree of the vertices of the graph. 

The problem of finding the chromatic index of a given graph has been 
proved to be NP complete by Holyer [3], who proved that it is NP complete 
to decide whether the chromatic index of a cubic graph is 3 or 4. In his 
thesis [2] Holyer showed that it is NP complete to decide whether the 
chromatic index of a graph with maximal degree 4 is 4 or 5. He conjectured 
that the analogous problem for graphs with maximal degree k is NP 
complete. 

We follow the work of Holyer and prove his conjecture: 

THEOREM 1. For any fixed k, the problem of deciding whether the chro- 
matic index of a regular graph of degree k is k or k + 1 is NP complete. 

Usually in proving NP-completeness the proof becomes more difficult 
when some restriction is imposed on the problem. Here to the contrary it 
seems that the problem is well suited to the cubic case and proving the 
analogous result for regular graphs of degree k is not immediate, as we shall 
see. 

In our proof we show how to construct regular graphs of degree k from 
Boolean formulas. In particular the graphs generated from satisfiable for- 
mulas are k-colorable. We hope this method will be found useful elsewhere. 
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The terminology and results of NP-completeness are given [4]. It is clear 
that the chromatic index problem is in the class of NP. To prove that it is 
NP-complete, we give, like Holyer, a reduction from the 3-CNF problem, 
which is known to be NP complete and which is defined as follows. A set of 
clauses C = {c,, . . . , cn} in variables u,, . . . , U, is given. Each clause cj 
consists of three literals lj,, lj2, lj,, where a literal Ii, is either a variable ui or 
its complement Ui. A truth assignment to the variables assigns each variable 
one of two values “true” (T) or “false” (F). The value of i& is “true” iff the 
value of ui is “false.” Given a truth assignment, a clause is said to be 
satisfied if at least one of its literals is true. The problem is to determine 
whether there is a truth assignment to the variables which simultaneously 
satisfies all clauses. 

In the next sections we shall use the term coloring for edge-coloring. 

2. PROOF OF THEOREM 1 FOR k= 3 

In this section we give a sketch of Holyer’s proof of Theorem 1 for k = 3 
(i.e., for cubic graphs). First we define the graph H (Fig. 1): 

Notation. Let a, b be two edges, and let A - b denote the fact that they 
are colored in the same colors, a $b otherwise. 

LEMMA 1. A. In any 3 coloring of H, 1 and 2 hold: 

l.Eithera~borc~d. 

2.a~b(c~d)*c#dAc#eAdfe(a#bAa$eAb$e). 
B. Any coloring of a, b, c, d, e in 3 colors which satisfies 1 and 2 above can 

be completed to a 3-coloring of H. 

Holyer’s proof of Theorem 1 for cubic graphs is as follows. Given an 
instance C for the problem 3-CNF, we now construct a cubic graph G which 
is 3-colorable iff C is satisfiable. The graph G is put together from 
components. 

input output 

notation: =& 

FIG. I. An inverting component. 
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output 2 

FIG. 2. A variable-setting component with five outputs. 

Information is carried between components by pairs of edges. Such pairs 
are said to carry the value “true” if they are colored with equal colors, and 
“false” if they are colored with distinct colors. With such a definition the 
graph H may be called an “inverting component.” 

For each variable ui there is a variable setting component L$. This 
component has as many pairs of outputs as there are occurrences of the 
variable ui or iii in the clauses of C. (The number of occurrences is assumed 
to be greater than 1 without loss of generality.) The variable-setting compo- 
nent (see Fig. 2 for the instance of five outputs) has the following property: 

LEMMA 2. In a 3-coloring of a variable-setting component, all the outputs 
are either all “true ” or all “false.” Both settings are possible. 

The truth of each clause cj is tested by a satisfaction-testing component 
q, shown in Fig. 3. This component has the following property: 

LEMMA 3. 1. In any 3-coloring of a satisfaction-testing component at least 
one pair of inputs must be colored with the same color. 

input 1 input 3 

FIG. 3. A satisfaction-testing component. 
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2. Any 3-coloring of the inputs which satisfies 1 above may be completed to 
a 3-coloring of the component. 

The connection between a variable-setting component y and a satisfac- 
tion testing component Cj is done as follows. Suppose literal lj, in clause !j 
is ui and is the r th occurrence of ui or Iii in C, then the k th input of Cj is 
identified with the rth output of Q. If on the other hand lj, is zCi then an 
inverting component is inserted. 

To account for the remaining edges, two copies of the graph are taken 
and corresponding edges in the two graphs which have as yet unspecified 
endpoints are identified to give a cubic graph. This graph may be 3-colored 
iff C is satisfiable. Also it may be constructed from C in polynomial time 
which gives the required result. 

3. PROOF OF THEOREM 1 FOR GENERAL k 

The proof of Theorem 1 for general k is similar to the proof for k = 3. A 
set of inverting components is defined, as well as a variable-setting and a 
satisfaction-testing component. Generalizations of Lemmas 1, 2, and 3 are 
also proved. The main difference between the two constructions is in the 
connection between the variable-setting and the satisfaction-setting compo- 
nents. 

Notation. (a) (i) denotes an edge of multiplicity i; 

(b) i denotes an edge whose name is i. 

To deal with the multiple edges we use the following lemma. 

LEMMA 4. For any regular multigraph G of degrees k (2 3) there is a 
regular graph G’ of degree k such that G may be k-colored iff G’ may be 
k-colored. 

Proof: We show that it is possible to replace any multiple edge of 
multiplicity i in G by a subgraph Ii, with i inputs and i outputs such that Zi 
may be k-colored iff the inputs and outputs are colored with the same set of 
i distinct colors. In Ii different inputs (outputs) are connected to different 
vertices. Hence, the resulting graph contains no multiple edges. We use a 
construction by Izbicki [l] to define a graph D, = Dk(Vk, Ek) for (k L 3) 
(Dk is of degree k except for k vertices of degree 1) as follows: 

V, = {R,, Q,, P,ls = l,..., k - 3, t = l,..., k}. 

E,‘= {(R,,Q,),(Q,,Q,+,),(Q,,P,)Is= l,...,k--3,t= L...,k}, 

all indices are taken modulo k. 
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One k-coloring of D, such that edges (Q,, P,) t = 1,. . . ,k have distinct 
colors is: 

(R,, Q,) is colored with color t + s - 1 (mod k) 

for t = 1 ,..., k,s= l,..., k-3. 

(Q,, P,) is colored with color t + k - 1 (mod k) for t = 1,. . . ,k. 

(Q,,Q,+,)iscoloredwithcolort+k-2(modk)fort= l,...,k. 

By symmetry any coloring of the edges (Q,, P,) I = 1,. . . , k in k colors can 
be completed to a k-coloring of D,. 

Also in any k-coloring of D,, (Q,, P,), t = 1,. . . , k must be colored in k 
distinct colors. This is proved by contradiction. 

Suppose there is a color, say 1, which appears at least at two of the edges 
(4, Q,>, t = 1,. . . , k. Either this color also appears at an edge (Qi, Qi+ ,) for 
some i, or there is a color, say I’, which appears at least at two edges of type 
(Q, Q). In both cases there is a color (I or t’) which appears at least at four 
vertices of type Q on edges of type (Q, Q) or (P, Q). This color also appears 
at k - 3 vertices of type Q on edges of type (R, Q). But since there are only 
k vertices of type Q, this color must appear twice at one such vertex. This is 
a contradiction. 

Taking two copies of D, we define i edges of type P in one copy as inputs, 
i edges of type P in the second copy as outputs, and identify the remaining 
k - i edges of type P in both copies. This gives the required subgraph 1, (for 
any i). q 

We shall use the following lemma given in [l]: 

LEMMA 5. (Parity condition). Let G be a graph whose vertex degrees are 
either k or 1. Let the set of edges incident on vertices of degree 1 be E’. Then 
in any k coloring of G if the number of edges colored i in E’ is ri we have 
r, Er2E a- . E r,(mod 2). 

Proof. If Eij is the set of edges of G which are colored in colors i, j then 
Eli consists of either closed cycles of edges not in E’ or of open paths which 
contain exactly two edges in E’ (first and last). Therefore Eij meets E’ in an 
even number of edges so that r, + 5 = 0 (mod 2). q 

We define k - 2 inverting components Hi i = 1,. . . , k - 2 as in Fig. 4. 

LEMMA 6. If Hz (i = l,..., k - 2) is colored in k colors, then all colors 
must appear at a, b, c, d, e. k - 1 colors appear once and one color appears 
three times. 

Proof We first show that all colors must be present at a, b, c, d, e. So 
suppose color I is missing. Consider Fig. 5. 
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notation: A 
(i) (k-i-l) 

FIG. 4. Inverting component Hi (i = 1,. . , k - 2). 

Since the number of edges at o and p together is k - 1, and 1 does not 
appear at e then I must appear at either o orp. Without loss of generality we 
may assume that it appears at p and does not appear at O. By following the 
edges marked q, r, s, t, u, o in this order we note that 1 cannot appear at 
q, s, u and must appear at r, t, u. We get a contradiction since color I must 
appear both at p and at 0. 

Since all colors must appear with the same parity at edges ~1, b, c, d, e and 
since there are k + 2 such edges; we get that for k > 2 all colors must 
appear an odd number of tunes (2k > k + 2 and all k colors must appear). 
Since the number of edges is k + 2 the only possibility is that one color 
appears three tunes and all other colors appear once. 0 

NOTATION. Given two multiple edges a, b then a = b denotes that some 
color appears at both a and b. a $b denotes that all colors at a and b are 
distinct. 

LEMMA 7. (Generalization of Lemma 1). A. In any k coloring of the 
graphs Hi 1 and 2 hold: 

l.Eitherusborc-d. 

2.u~b(c~d)~cfdAc~eAd~e(u~bAu~eAb~e). 
B. Any k coloring of the edges at a, b, c, d, e which satisfies the conclusion 

of Lemma 6 and 1 and 2 above can be completed to a k-coloring of Hi. 

Proof: A-l. Suppose without loss of generality that color 1 appears three 
tunes and all other colors appear once. Also suppose that a #b A c fd 
and consider Fig. 5. There are four possible cases. 

FIGURE 5 
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Case 1: Color 1 appears at edges b, d, and e. Then edges t and 0 will be 
colored with an equal color, say 2. Therefore colors 1 and 2 are missing at o 
and p. Therefore the k - 1 adjacent edges at o and p are colored with at 
most k - 2 colors, a contradiction. 

Case 2: Color 1 appears at b, c, and e. Therefore color 1 is missing at 
s, t, and o. We get that k adjacent edges are colored with at most k - 1 
colors, a contradiction. 

Case 3: Color 1 appears at a, c, and e. Similar to case 1. 

Case 4: Color 1 appears at a, d, and e. Similar to case 2. 

A-2. Since one color appears three times and all others only once, then 

arb*c$dAc$eAd$e (orcrd*afbAa$eAb#e). 

B. We show a reduction to the case of k = 3. The graph Hi is a 
superposition of the graph H defined for k = 3, and the graph Bi which is a 
regular graph of degree k - 3 (see Fig. 6). 

Suppose we are given a k-coloring of the k + 2 edges at a, b, c, d, e which 
satisfies the assumptions of B. So one color, say 1, appears three times and 
all other colors appear once. We also may suppose that edges at c, d, and e 
are colored with distinct colors. Color 1 must therefore appear at a and b 
and also at one edge at one of c, d, or e. From each one of the two edges 
where 1 does not appear, we choose one more color, together two colors, say 
colors 2 and 3. By Lemma 1 we may color the graph H in colors 1,2,3 so 
that a’, b’ are colored with color 1 and colors 1,2,3 appear in edges c’, d’, e’ 
according to the order dictated by their appearance in c, d, and e. We now 
complete the k coloring of Hi by k - 3-coloring of Bi with colors 4 to k. Let 
A be the k - i - 2 colors at c with numbers greater than 3, and let B be the 
i - 1 colors at a with numbers greater than 3 (obviously A rl B = 0). Bi is 
colored so that (r, /?, y, S, E, h, p are colored in B, A, B, A, B, A, A U B, 
respectively. 

In a similar way to the cubic case we define the 
false if a #b. 

cl 

value true if a z b and 

Hi I Ii + Bi 

FIG. 6. Decomposition of Hi. 
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FIGURE 7 

The variable-setting component is defined by using H, (instead of H) in 
the same way as in k = 3. Consequently all outputs are pairs of edges. 

LEMMA 8. (Generalization of Lemma 2). In the variable-setting compo- 
nent defined by H, the outputs are either all true or all false. Both settings are 
possible in such a way that all ouptputs are colored with just three colors, say 
1,2, or 3. 

Proof. We first note that in the subgraph of Fig. 7 if a z b then g E h 
and since the colors at c, d, and e and also at c, d, and f must be distinct 
then e E f (c and d contain together k - 1 edges). By induction it follows 
that if one output pair is equal then all output pairs must be equal. 

Both settings are possible: To get one of them we first color the compo- 
nent in colors 1,2, and 3 ignoring multiple edges (considering each as one 
edge). Such a coloring is possible due to Lemma 2. It is easy to see that we 
can add k - 3 colors as in Lemma 7 to get the desired coloring. cl 

The satisfaction-testing component is defined as for k = 3 but using Hk-* 
instead of H as in Fig. 8. 

LEMMA 9. (Generalization of Lemma 3). 1. In any k-coloring of a 
satisfaction-testing component in at least one of the inputs one color must 
appear twice (must be true). 

2. Any k-coloring of the inputs which satisfies 1 above and in which each 
input is colored so that colors 4 to k appear once, each at the multiple edge, 
and that the remaining two edges are colored with colors 1,2, or 3 may be 
completed to a k-coloring of the component. 

input 1 input 3 

input 2 

FIG. 8. A satisfaction-testing component. 
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inPut +$!&tJ:: : g&&: : ;* output 
I  l 

HI H2 Hi Hi+1 I-I k-3 

FIG. 9. An edge-adding component. 

Proof 1. If all inputs are distinct, then 

a~bAc~dAe~f*g~h~i~j, a contradiction. 

2. To get the required coloring we first color the component ignoring 
multiple edges (considering each as one edge) with colors 1,2, and 3. This is 
possible due to Lemma 3. It is easy to see that we may add k - 3 colors as 
in Lemma 7 to get the required coloring. 0 

To connect the variable-setting components to the satisfaction-testing 
components, we define a new component which we call an “edge-adding 
component.” It is constructed from copies of H,, . . . ,HkPS, as shown in Fig. 
9. The new component is required since there is a multiple edge at each 
input to the satisfaction-testing components and no equivalent multiple 
edge at the outputs of the variable-setting components, so that we may not 
identify them as we did for k = 3 when a variable z.+ appeared in a clause. 

LEMMA 10. 1. Any k-coloring of an edge-adding component satisfies a z b 
iff c E d. 

2. Any coloring of a, b in colors from { 1,2,3} may be completed to a 
k-coloring of the component so that b E d A a E c and that colors 4 to k 
appear at c. 

Proof The proof follows by induction. For the induction step we 
consider Fig. 10 and note that p - 4 iff x fy iff x = z. 

Also assume p is colored in color 1 and 4 in colors {j 14 I j I i + 2) U 
{a}, a E { 1,2}. We color w  in color i + 3, x in color 1 and y in colors 
{ j 1 i + 4 5 j I k} U ({ 1,2,3} - {a}). By Lemma 7 this is possible. Conse- 
quently, x will be colored in color 1 and z in colors { j 14 5 j I i + 3) u {a}, 
a E {1,2}. 0 

The connection between a variable-setting component q and a satisfac- 
tion-testing component Cj is as follows. If literal $, of clause cj is ui and is 
the r th occurrence of ui or iii in C, then we add an edge-adding component 
between the k th input of C and the r th output of q. (The r th output of Q 

4s for i-1. .,. , k-3 

FIGURE 10 
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is identified with the input of the edge-adding component and the kth input 
to 5 is identified with the output of the edge-adding component.) If, on the 
other hand,ljk is Ui, then only an inverting component H, is added. 

To account for the remaining edges two copies of the graph are taken and 
corresponding edges are identified to give a regular graph of degree k. This 
graph may be k colored iff C is satisfiable. Also it may obviously be 
constructed from C in polynomial time which gives the required result. •i 
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