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Abstract. Motivated by frequency assignment in office blocks, we study the
chromatic number of the adjacency graph of a 3-dimensional parallelepiped
arrangement. In the case each parallelepiped is within one floor, a direct
application of the Four-Colour Theorem yields that the adjacency graph has
chromatic number at most 8. We provide an example of such an arrangement
needing exactly 8 colors. We also discuss bounds on the chromatic number of
the adjacency graph of general arrangements of 3-dimensional parallelepipeds
according to geometrical measures of the parallelepipeds (side length, total
surface area or volume).

1. Introduction

The Graph Colouring Problem for Office Blocks was raised by BAE Systems
at the 53rd European Study Group with Industry in 2005 [1]. Consider an office
complex with space rented by several independent organisations. It is likely that
each organisation uses its own wireless network (WLAN) and asks for a safe utili-
sation of it. A practical way to deal with this issue is to use a so-called “stealthy
wallpaper” in the walls and ceilings shared between different organisations, which
would attenuate the relevant frequencies. Yet, the degree of screening produced is
not sufficient if two distinct organisations have adjacent offices, that is, two offices
in face-to-face contact on opposite sides of just one wall or floor-ceiling. In this case,
the WLANs of the two organisations need to use two different channels (the reader
is referred to the report by Allwright et al. [1] for the precise technical motivations).

This problem can be modeled as a graph coloring problem by building a conflict

graph corresponding to the office complex: each organisation corresponds a vertex,
and two vertices are adjacent if the corresponding territories share a wall, floor, or
ceiling area. The goal is to assign a color (frequency) to each vertex (organisation)
such that adjacent vertices are assigned distinct colors. In addition, not every graph
may occur as the conflict graph of an existing office complex. However, the structure
of such conflict graphs is not clear and various fundamental questions related to the
problem at hands were asked. Arguably, one of the most natural questions concerns
the existence of bounds on the chromatic number of such conflict graphs. More
specifically, which additional constraints one should add to the model to ensure
“good” upper bounds on the chromatic number of conflict graphs? These additional
constraints should be meaningful regarding the practical problem, reflecting real-
world situations as much as is possible. Indeed, as noted by Tietze [7], complete
graphs of arbitrary sizes are conflict graphs, that is, for every integer n, there can
be n organisations whose territories all are in face-to-face contact with each other.
The reader is referred to the paper by Reed and Allwright [6] for a description of
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Tietze’s construction. Besicovitch [4] and Tietze [8] proved that this is still the case
if the territories are asked to be convex polyhedra.

An interesting condition is when the territories are required to be rectangular par-

allelepipeds (sometimes called cuboids), that is, a 3-dimensional solid figure bounded
by six rectangles aligned with a fixed set of Cartesian axes. For convenience, we
call a rectangular parallelepiped a box. When all territories are boxes, the clique

number of any conflict graph, that is, the maximum size of a complete subgraph, is
at most 4. However, Reed and Allwright [6] and also later Magnant and Martin [5]
designed arrangements of boxes that yield conflict graphs requiring an arbitrarily
high number of colors.
On the other hand, if the building is assumed to have floors (in the usual way)
and each box is 1-floor, i.e. restricted to be within one floor, then the chromatic
number is bounded by 8: on each floor, the obtained conflict graph is planar and
hence can be colored using 4 colors [2, 3]. It is natural to ask whether this bound
is tight. As noted during working sessions in Oxford (see the acknowledgments), it
can be shown that up to 6 colors can be needed, by using an arrangement of boxes
spanning three floors. Such a construction is shown in Figure 1.

Figure 1. An arrangement of 1-floor boxes spanning three floors
and requiring six colors. The solid, dotted, and dashed lines indi-
cate the middle, top, and bottom floors, respectively.

The purpose of this note is to show that the upper bound is actually tight. More
precisely, we shall build an arrangement of 1-floor boxes that spans two floors and
yields a conflict graph requiring 8 colors. From now on, we shall identify a box
arrangement with its conflict graph for convenience. In particular, we assign colors
directly to the boxes and define the chromatic number of an arrangement as that
of the associated conflict graph.

Theorem 1. There exists an arrangement of 1-floor boxes spanning two floors with

chromatic number 8.

The boxes considered in Theorem 1 have one of their geometrical measures
bounded: their heights are at most one floor. We also discuss bounds on the
chromatic number of box arrangements with respect to some other geometrical
measures: the side lengths, the surface area and the volume. More precisely, as-
suming that boxes have integer coordinates, we obtain the following.
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Theorem 2. We consider a box arrangement A with integer coordinates. We let ℓ,
s and v be non-negative real numbers.

(1) If there exists one fixed dimension such that every box in A has length at

most ℓ in this dimension, then A has chromatic number at most 4(ℓ + 1).
(2) If for each box, there is one dimension such that the length of the box in this

dimension is at most ℓ, then A has chromatic number at most 12(ℓ + 1).
(3) If the total surface area of each box in A is at most s, then A has chromatic

number at most 9 3
√

4s + 25.

(4) If the volume of each box in A is at most v, then A has chromatic number

at most 24 4
√

6v + 25.

In the next section, we give the proof of Theorem 1 and in the last section we
indicate how to obtain the bounds given in Theorem 2.

2. Proof of Theorem 1

We shall construct an arrangement of 1-floor boxes that is not 7-colorable. To
this end, we use the arrangement X of 1-floor boxes described in Figure 2 as a
building brick. The arrangement X has three specific regions, R1(X), R2(X) and
R3(X). We define Xi to be the subset of boxes of X intersecting the region Ri(X),
for each i ∈ {1, 2, 3} (note that some boxes may belong to several subsets). We start
by giving two straightforward but crucial properties of X with respect to proper
colorings.

R1(X)

R2(X)

R3(X)

Figure 2. The gadget X with the regions R1(X), R2(X) and R3(X).

Assertion 3. For every proper coloring c of X,

(1) |c(X)| > 4; and

(2) |c(X2)| 6 2 implies that |c(X3)| > 4.

The proof of this assertion does not need any insight, we thus omit it. (One can
note, though, that the conflict graph of the arrangement X contains the 5-wheel as
an induced subgraph.)

Next, we obtain arrangement Y from three copies X1, X2 and X3 of arrangement
X. We define three regions R1(Y ), R2(Y ) and R3(Y ) on Y as depicted in Figure 3.
As previously, we define Yi to be the subset of boxes of Y intersecting the region
Ri(Y ), for each i ∈ {1, 2, 3}. We also define Xj

i := Yi ∩ Xj for (i, j) ∈ {1, 2, 3}2.

Assertion 4. If c is a proper coloring of Y , then |c(Yi)| > 4 for some i ∈ {1, 2, 3},

that is, at least four colors are used in one of the three regions R1(Y ), R2(Y ) and

R3(Y ).
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R1(Y )

R2(Y )

R3(Y )

X1

X2

X3

Figure 3. The gadget Y with the three regions R1(Y ), R2(Y ) and R3(Y ).

Proof. Suppose on the contrary that there is a proper coloring c of Y with at
most three colors on the boxes in each of Y1, Y2 and Y3. For each i ∈ {1, 2, 3}, the
restriction of c to Xi is a proper coloring of Xi, which we identify to c. We consider
X1. Since X1

3 ⊂ Y3 and |c(Y3)| 6 3, Assertion 3(2) implies that
∣

∣c(X1
2 )

∣

∣ > 3.

Consequently,
∣

∣c(X1
2 )

∣

∣ = 3 and c(X1
2 ) = c(Y2). The same argument applied to X2

and to X3 yields that c(X2
2 ) = c(Y2) = c(X3

2 ). Since X2
2 = X2

1 , we infer that
c(X1

1 ) ⊆ c(X2
1 ) = c(Y2). Similarly, since X3

2 = X3
3 , we infer that c(X1

3 ) ⊆ c(X3
3 ) =

c(Y2). Therefore, c is a proper coloring of X1 using only 3 different colors, which
contradicts Assertion 3(1). �

To finish the construction, we need the following definition. Consider two copies
Y 1 and Y 2 of Y . For (i, j) ∈ {1, 2, 3}2, the regions Ri(Y

1) and Rj(Y 2) fully overlap

if every box in Ri(Y
1) is in face-to-face contact with every box in Rj(Y 2). Observe

that for every pair (i, j) ∈ {1, 2, 3}, there exists a 2-floor arrangement of Y 1 and
Y 2 such that Ri(Y

1) and Rj(Y 2) fully overlap: it is obtained by rotating Y 2 ninety
degrees, adequately scaling it (that is, stretching it horizontally) and placing it on
top of Y 1.

We are now in a position to build the desired arrangement Z spanning two floors.
To this end, we use several copies of Y . The first floor of Z is composed of seven
parallel copies Y 1, . . . , Y 7 of Y (drawn horizontally in Figure 4). The second floor
of Z is composed of fifteen parallel copies of Y (drawn vertically in Figure 4): for
each j ∈ {1, 2, 3} and each i ∈ {2, . . . , 6}, a copy Y (i, j) of Y is placed such that
the region R1(Y (i, j)) fully overlaps the regions Rj(Y 1), . . . , Rj(Y i−1), the region
R2(Y (i, j)) fully overlaps the region Rj(Y i), and finally the region R3(Y (i, j)) fully
overlaps the regions Rj(Y i+1), . . . , Rj(Y 7).

Consider a proper coloring of Z. Assertion 4 ensures that each copy of Y in Z has
a region in which at least four different colors are used. In particular, there exists
j ∈ {1, 2, 3} such that at least three regions among Rj(Y 1), . . . , Rj(Y 7) are colored
using four colors. Let three of these regions be Rj(Y i1), Rj(Y i2) and Rj(Y i3) with
1 6 i1 < i2 < i3 6 7. Now, consider the arrangement Y (i2, j). By Assertion 4,
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Y 1

Y 2

Y 3

Y 4

Y 5

Y 6

Y 7

Y (2, 1) Y (3, 1) Y (4, 1) Y (5, 1) Y (6, 1) Y (2, 2) Y (3, 2) Y (4, 2) Y (5, 2) Y (6, 2) Y (2, 3) Y (3, 3) Y (4, 3) Y (5, 3) Y (6, 3)

Figure 4. Schematic view of the arrangement Z.

there exists k ∈ {1, 2, 3} such that the region Rk(Y (i2, j)) is also colored using at
least four different colors. Consequently, as Rk(Y (i2, j)) and Rj(Y ik ) fully overlap,
they are colored using at least eight different colors. This concludes the proof.

We note that the arrangement Z consists of 396 boxes. At the expanse of some
technicalities, one can remove three boxes in Y (the two clearly useless boxes and
also a non-end vertical one) and obtain, in a similar way, a two-floor arrangement
Z that needs 8 colors and contains 330 boxes. We are not aware of a two-floor
arrangement needing eight colors and containing less boxes.

3. Bounds with respect to geometrical measures

In this part, we provide bounds on the chromatic number of boxes arrangements
provided that the boxes satisfy some geometrical constraints. Namely, we prove
Theorem 2, which is recalled here for the reader’s ease.

Theorem 2. We consider a box arrangement A with integer coordinates. We let ℓ,
s and v be non-negative real numbers.

(1) If there exists one fixed dimension such that every box in A has length at

most ℓ in this dimension, then A has chromatic number at most 4(ℓ + 1).
(2) If for each box, there is one dimension such that the length of the box in this

dimension is at most ℓ, then A has chromatic number at most 12(ℓ + 1).
(3) If the total surface area of each box in A is at most s, then A has chromatic

number at most 9 3
√

4s + 25.
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(4) If the volume of each box in A is at most v, then A has chromatic number

at most 24 4
√

6v + 25.

Proof.

(1) The conflict graph corresponding to an arrangement where the boxes have height
at most ℓ can be vertex partitioned into ℓ + 1 planar graphs P0, . . . , Pℓ. Indeed if
the distance between the levels of two boxes is at least ℓ + 1, then these two boxes
are not adjacent. So the planar graphs are obtained by assigning, for each x, all the
boxes that have their floor at level x to be in the graph Pk where k := x mod (ℓ+1).
Consequently, the whole conflict graph has chromatic number at most 4(ℓ + 1).

(2) The boxes can be partitioned into three sets according to the dimension in
which the length is bounded. In other words, A is partitioned into U1, U2 and U3

such that for each i ∈ {1, 2, 3}, all boxes in Ui have length at most ℓ in dimension
i. Consequently, (1) ensures that each of U1, U2 and U3 has chromatic number at
most 4(ℓ+1) and, therefore, A has chromatic number at most 3 ·4(ℓ+1) = 12(ℓ+1).

(3) For each box, the minimum length taken over all three dimensions is O(
√

s),
and thus (2) implies that the chromatic number of A is O(

√
s). However, one can

be more precise. Let us fix a positive real number ℓ, to be made precise later. The
set of boxes is partitioned as follows. Let U be the set of boxes with lengths in every
dimension at least ℓ and let R be the set all remaining boxes, that is, R := A \ U .
By (2), the arrangement R has chromatic number at most 12ℓ. Now consider a box
B in U with dimensions x, y and z, each being at least ℓ. We shall give an upper
bound on the number of boxes of U that can be adjacent to B. The surface area
of a face of a box in U is at least ℓ2. So in U there are at most s/ℓ2 boxes that
have a totally adjacent face to B. Some boxes of U could also be adjacent to B
without having a totally adjacent face to B. In this case, such a box is adjacent
to an edge of B. For an edge of length w, there are at most w/ℓ + 2 such boxes.
So the number of boxes of U adjacent to B but having no face totally adjacent
to a face of B is at most 4(x + y + z)/ℓ + 24. Since ℓ 6 min{x, y, z}, we deduce
that 2ℓ(x + y + z) 6 2xy + 2yz + 2xz 6 s. Hence the total number of boxes in U
that are adjacent to B is at most s/ℓ2 + 2s/ℓ2 + 24 = 3s/ℓ2 + 24. Consequently,
by degeneracy, U has chromatic number at most 3s/ℓ2 + 25. Therefore, A has

chromatic number at most 12ℓ + 3s/ℓ2 + 25. Thus setting ℓ := 3

√

s/2 yields the

upper bound 9 3
√

4 · s + 25.

(4) Once again, for a fixed parameter ℓ to be made precise later, the set of boxes
is partitioned into two parts: the part U , composed of all the boxes with lengths
in every dimension at least ℓ and the part R, composed of all the remaining boxes.
By (2), we know that R has chromatic number at most 12ℓ. Let B be a box in U
with dimensions x, y and z. Since ℓ 6 min{x, y, z}, the volume vB of B satisfies
6v > 6vB = 6xyz > 2(ℓxy + ℓxz + ℓyz) = ℓsB , where sB is the total surface area
of B. So every box in U has total surface area at most 6v/ℓ and thus (3) implies

that U has chromatic number at most 9 3

√

4.6v/ℓ + 25. Therefore, A has chromatic

number at most 9 3

√

24v/ℓ + 12ℓ + 25. Thus setting ℓ to be 4

√

3v/8 yields the upper

bound 24 4
√

6v + 25. �

In the previous theorem, we are mainly concerned with the order of magnitude
of the functions of the different parameters. However, even in this context, we do
not have any non trivial lower bound on the corresponding chromatic numbers.
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