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Abstract

A k-digraph is a digraph in which every vertex has outdegree at most k. A (k V I)-
digraph is a digraph in which a vertex has either outdegree at most k or indegree at most
l. Motivated by function theory, we study the maximum value ®(k) (resp. ®V(k,[)) of the
arc-chromatic number over the k-digraphs (resp. (k V [)-digraphs). El-Sahili [3] showed that
®V(k, k) < 2k+1. After giving a simple proof of this result, we show some better bounds. We
show max{log(2k+3),0(k+1)} < ®(k) < 6(2k) and max{log(2k+2{+4),0(k+1),0(1+1)} <

®V(k,l) < 6(2k + 21) where 6 is the function defined by (k) = min{s : |.f.| > k}. We
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then study in more details properties of ® and ®V. Finally, we give the exact values of ®(k)
and ®V(k,l) for I < k < 3.

1 Introduction

A directed graph or digraph D is a pair (V(D), E(D)) of disjoint sets (of wvertices and arcs)
together with two maps tail : E(D) — V(D) and head : E(D) — V(D) assigning to every arc
e a tail, tail(e), and a head, head(e). The tail and the head of an arc are its ends. An arc with
tail v and head v is denoted by wwv; we say that u dominates v and write u — v. We also say
that v and v are adjacent. The order of a digraph is its number of vertices. In this paper, all
the digraph we consider are loopless, that is that every arc has its tail distinct from its head.

Let D be a digraph. The line-digraph of D is the digraph L(D) such that V(L(D)) = E(D)
and an arc a € E(D) dominates an arc b € E(D) in L(D) if and only if head(a) = tail(b).



A wvertez-colouring or colouring of D is an application ¢ from the vertex-set V(D) into a set of
colours S such that for any arc uv, c(u) # c¢(v). The chromatic number of D, denoted x(D), is
the minimum number of colours of a colouring of D.
An arc-colouring of D is an application ¢ from the arc-set F(D) into a set of colours S such that
if the tail of an arc e is the head of an arc €’ then c(e) # c(e’). Trivially, there is a one-to-one
correspondence between arc-colourings of D and colourings of L(D). The arc-chromatic number
of D, denoted y,(D), is the minimum number of colours of an arc-colouring of D. Clearly
Ya(D) = X(L(D)).

A k-digraph is a digraph in which every vertex has outdegree at most k. A (k V l)-digraph is
a digraph in which a vertex has either outdegree at most k£ or indegree at most [.

For any digraph D and set of vertices V' C V(D), we denote by D[V’], the subdigraph of
D induced by the vertices of V'. For any subdigraph F of D, we denote by D — F the digraph
D[(V(D)\ V(F)]. For any arc-set E' C E, we denote by D — E’ the digraph (V (D), E(D)\ E’)
and for any vertex z € V(D), we denote by D — x the digraph induced by V(D) \ {z}.

Let D be a (k V [l)-digraph. We denote by V*(D), or V* if D is clearly understood, the
subset of the vertices of D with outdegree at most k, and by V(D) or V'~ the complementary
of VT(D) in V(D). Also DT (resp. D) denotes D[V ] (resp. D[V ]).

In this paper, we study the arc-chromatic number of k-digraphs and (k V [)-digraphs. This
is motivated by the following interpretation in function theory as shown by El-Sahili in [3].

Let f and g be two maps from a finite set A into a set B. Suppose that f and g are
nowhere coinciding, that is for all @ € A, f(a) # g(a). A subset A’ of A is (f,g)-independant if
f(A"YNg(A") = 0. We are interested by finding the largest (f,g)-independant subset of A and
the minimum number of (f, g)-independant subsets to partition A. As shown by El-Sahili [3],
this can be translated into an arc-colouring problem.

Let Dy, and Hy 4 be the digraphs defined as follows :

e V(Ds,) = Band (b,b') € E(Dy,g) if there exists an element a in A such that g(a) = b and
f(a) = b'. Note that if for all a, f(a) # g(a), then Dy, has no loop.

o V(Hfy) = Aand (a,d') € E(Hy,) if f(a) = g(d’).

We associate to each arc (b,b") in Dy, the vertex a of A such that g(a) = b and f(a) = V.
Then (a,a’) is an arc in Hy 4 if, and only if, head(a) = tail(a’) (as arcs in Dy4). Thus Hy gy =
L(Dy). Note that for every digraph D, there exists maps f and g such that D = Dy ,.

It is easy to see that an (f, g)-independant subset of A is an independant set in Hy 4. In [2]
El-Sahili proved the following :

Theorem 1 (El-Sahili [2]) Let f and g be two nowhere coinciding maps from a finite set A
into a set B. Then there exists an (f,g)-independant subset A" of cardinality at least |A|/4.

Let f and g be two nowhere coinciding maps from a finite set A into B. We define ¢(f, g)
as the minimum number of (f,g)-independant sets to partition A. Then ¢(f,g9) = x(Hy,q) =
Xa(Dy,g)-

Let ®(k) (resp. ®V(k,1)) be the maximum value of ¢(f,g) for two nowhere coinciding maps
f and g from A into B such that for every z in B, g7(z) < k (resp. either g7!(z) < k or



f~1(2) € 1). The condition f~!(z) (resp. g~ !(z)) has at most k elements means that each
vertex has indegree (resp. outdegree) at most k in Dy,. Hence ®(k) (resp. ®V(k,1)) is the
maximum value of y,(D) for D a k-digraph (resp. (k V [)-digraph).

Remark 2 Let f and g be two nowhere coinciding maps from A into B. Then A may be
partitionned into ®(|A| — 1) (f, ¢g)-independant sets.

The functions ®" and ® are very close to each other:

Proposition 3

O(k) < ®V(k,0) < -+ < BV(k, k) < B(k) + 2

Proof. The sole inequality that does not immediatly follow the definitions is ®V(k, k) <
®(k) + 2. Let us prove it.

Let D be a (k V k)-digraph. One can colour the arcs in DT U D~ with ®(k) colours. It remains
to colour the arcs with tail in V'~ and head in V' with one new colour and the arcs with tail in
V* and head in V~ with a second new colour. O

Moreover, we conjecture that ®V(k, k) is never equal to ®(k) + 2.

Conjecture 4

OV (k, k) < ®(k)+1
In [3], El-Sahili gave the following upper bound on &V (k, k):
Theorem 5 (El-Sahili [3]) ®V(k,k) <2k +1

In this paper, we first give simple proofs of Theorems 1 and 5. Then, in Section 3, we improve
the upper bounds on ®(k) and ®V(k,1). We show (Theorem 18) that ®(k) < #(2k) if k > 2, and
®V(k,1) < 62k +21) if k+1 > 3, where 6 is the function defined by (k) = min{s : ([372]) > k}.

Since 2°/s < ([3;21) < 2%/./s for s > 2, once can obtain the following equivalent for § as k — oc:
0(k) = log(k) + O(log(log(k)))

Lower bounds for ® and ®V are stated by Corollaries 14 and 15: max{log(2k+3),0(k+1)} <
(k) and max{log(2k + 20+ 4),0(k +1),6(l + 1)} < ®V(k,1).

We also establish (Corollary 21) that ®V(k,1) < 6(2k) if 0(2k) > 21 + 1.

In Section 4, we study in more details the relations between ®V(k,[) and ®(k). We conjecture
that if k is very large compared to [ then ®V(k,l) = ®(k). We prove that ®"(k,0) = &(k) and
conjecture that ®V(k,1) = ®(k) if k > 1. We prove that for a fixed k either this latter conjecture
holds or Conjecture 4 holds. This implies that ®V(k,1) < ®(k) + 1.

Finally, in Section 5, we give the exact values of ®(k) and ®V(k,!) for I < k < 3. They are
summarized in the following table :

3V(0,0)=1]@Y(L,0)=d(1) =3 | ®7(2,0) = D(2) =4 | ®"(3,0) = d(3) = 4
oV(1,1) =3 dV(2,1) =4 3V(3,1) =4
3V(2,2) =4 V(3,2) =5
V(3,3) =5




2 Simple proofs of Theorems 1 and 5

Proof of Theorem 1. Let D = Dy ,. Let (Vi,V3) be a partition of V(D) that maximizes the
number of arcs a with one end in V; and one end in V5. It is well-known that a > |E(D)|/2. Now
let A be the set of arcs with head in V7 and tail in V5 and A9 be the set of arcs with head in V5
and tail in V;. Then A; and A; corresponds to independant sets of L(D) and |A;| + |A2| = a.

Hence one of the A; has cardinality at least a/2 = @. O

Before giving a short proof of Theorem 5, we precise few standard definitions.
Definition 6 A path is a non-empty digraph P of the form
V(P) = {Uo, Viye-- ,’Uk} E(P) = {1}01]1, V1V2, ... ,Uk,ﬂ)k},

where the v; are all distinct. The vertices vg and vy are respectively called the origin and
terminus of P.
A circuit is a non-empty digraph C' of the form

V(C) = {Uo,vl, e ,Uk} E(P) = {vovl,vlvg, e ,vk_lvk,vkvo},

where the v; are all distinct.

A digraph is strongly connected or strong if for every two vertices u and v there is a path
with origin w and terminus v. A maximal strong subdigraph of a digraph D is called a strong
component of D. A component I of D is initial if there is no arc with tail in V(D) \ V(I) and
head in V(I). A component I of D is terminal if there is no arc with tail in V(I) and head in
V(D) \ V(I). A digraph is connected if its underlying graph is connected.

A digraph D is [-degenerate if every subdigraph H has a vertex of degree at most [.

The following lemma corresponding to the greedy colouring algorithm is a piece of folklore.
Lemma 7 Every l-degenerate digraph is (I + 1)-colourable.

Proof of Theorem 5. Let D be a (kV k)-digraph. Acording to Lemma 7, it suffices to
prove that L(D) is 2k-degenerate.

In every initial strong component C there is a vertex with indegree at most k. Indeed if
there is no such vertex then (k4 1)|C] < Y -d™(v) < Y - dt(v) < k[C|. Analogously, in
every terminal strong component there is a vertex with outdegree at most k.

Now, there is a path originating in a minimal component and terminating in a terminal one.
Hence there is a path whose origin has indegree at most £ and whose terminus has outdegree at
most k. Hence there is an arc e whose tail has indegree at most k£ and whose head has outdegree
at most k. Thus e has degree at most 2k in L(D). O

3 Lower and upper bounds for ® and ®V
We will now search for bounds on @ since they also give bounds on ®V.

Theorem 1 and an easy induction yields xq(D) < logy/3[D|. However there exists better
upper bounds stated by Poljak and R6dl [5]. For sake of completeness and in order to introduce
useful tools, we provide a proof of Theorem 11.



Definition 8 We denote by Hj the complementary of the hypercube of dimension k, that is
the digraph with vertex-set all the subsets of {1,...,k} and with arc-set {zy: z ¢ y}.

A homomorphism h : D — D' is a mapping h : V(D) — V(D') such that for every arc xy of
D, h(z)h(y) is an arc of D’.

Let ¢ be an arc-colouring of a digraph D into a set of colours S. For any vertex = of D, we
denote by Col}(z) or simply Col™(x) the set of colours assigned to the arcs with tail z. We
define Col (z) = S\ Col™(x). Note that Col (z) contains (but may be bigger than) the set of
colours assigned to the arcs with head z. The cardinality of C'ol™ () (resp. Col™(z)) is denoted
by colt(z) (resp. col™(z)).

Theorem 9 For every digraph D, Xo(D) = min{k : D — H}}.

Proof. Assume that D admits an arc-colouring with {1,...,k}. It is easy to check that Col™
is a homomorphism from D to Hy.

Conversely, suppose that there exists a homomorphism A from D to Hj. Assign to each arc zy
an element of h(y) \ h(z), which is not empty. This provides an arc-colouring of D. O

Definition 10 The complete digraph of order n, denoted I_(tn, is the digraph with vertex-set
{v1,v2,...,v,} and arc-set {v;v; : i # j}.

The transitive tournament of order n, denoted T'T},, is the digraph with vertex-set {v1,va, ..., v,}
and arc-set {v;vj :i < j}.

The following corollary of Theorem 9 provides bounds on the arc-chromatic number of a
digraph according to its chromatic number.

Theorem 11 (Poljak and Ro6dl [5]) For every digraph D,

[log(x(D))] < xa(D) < 0(x(D)).

Proof. By definition of the chromatic number, D — KX(D). As the subsets of {1,...,k} with

cardinality [g] induce a complete digraph on (|—l§-|) vertices in Hj, we obtain a homomorphism
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from D to HG()((D))- So x4(D) < 0(x(D)).
By Theorem 9, we have D — an(D)- As X(FXG(D)) = 2X=(D)  we obtain D — Kooy, O

These bounds are tight since the lower one is achieved by transitive tournaments and the
upper one by complete digraphs by Sperner’s Lemma (see [6]). However, the lower bound may
be increased if the digraph has no sink (vertex with outdegree 0) or/and no source (vertex with
indegree 0).

Theorem 12 Let D be a digraph.
(i) If D has no sink then log(x(D) + 1) < xa(D).

(i) If D has no source and no sink then log(x(D) + 2) < x.(D).



Proof. The proof is identical to the proof of Theorem 11. But if a digraph has no source (resp.
no sink) then for every v, Col™(v) # S (resp. Col™(v) # 0). O

Again, these two lower bounds are also tight. Let @, (resp. W,) be the tournament of
order n obtained from 7T, by reversing the arc viv, (resp. vav,). One can easily check that

Xa(Wn) = [log(n +1)] = [log(x(Wn) + 1)] and xa(@n) = [log(n + 2)] = [log(x(@n) + 2)]-
Proposition 13 Every k-digraph is 2k-degenerate.

Proof. Every subdigraph of a k-digraph is also a k-digraph. Hence it suffices to prove that
every k-digraph has a vertex with degree at most 2k. Since the sum of outdegrees equals the
sum of indegrees, there is a vertex with indegree at most k£ and thus with degree at most 2k. [

Corollary 14
max{log(2k + 3),0(k + 1)} < ®(k) < 0(2k + 1)

Proof. The upper bound follows from Proposition 13, Lemma 7 and Theorem 11. The lower
bound comes from a regular tournament on 2k + 1 vertices T5;41 and the complete digraph on
k+ 1 vertices I?k+1. Indeed x(Tok+1) = 2k + 1, 50 Xa(T2k+1) > log(2k + 3) by Theorem 12 and
Xa(Kkt1) = 0(k +1). O

Corollary 15
max{log(2k + 21 +4),0(k +1),0(1 + 1)} < ®Y(k,1) < 0(2k + 21 + 2)

Proof. The upper bound follows Proposition 13 and Theorem 11 since every (k V [)-digraph D
is 2k + 21 + 2-colourable (D is 2k-degenerate and so (2k + 1)-colourable and D~ is 2/-degnerate
and so (2] 4 1)-colourable). The lower bound comes from Kk+1, Kl+1 and a tournament T
composed of a regular tournament on 2/ + 1 vertices dominating a regular tournament on 2k + 1
vertices. Indeed, xq(Kpi1) = 0(k + 1), xa(Ki41) = 6(1+ 1) and T has no source, no sink and
chromatic number 2k + 21 + 2, so, by Theorem 12, xo(7T") > log(2k + 21 + 4). O

We can obtain a slightly better upper bound on ®. Bounds on ®" follow.

Definition 16 For any integer k > 1, let T,j (k > 1) be the complete digraph on t{,... 7t;—k+1
minus the arcs {tft;’,tf’tg’, ... ,tft;rl i

Lemma 17 Let k > 1 be an integer. If D is a k-digraph, then there exists a homomorphism
bt from D to T,;F such that if h*(z) = t{ then d*(z) = k.

Proof. For a fixed k, we prove it by induction on |V (D).

First, suppose that there exists in D a vertex x with d~(z) < k. Then, d*(z) +d™ (z) < 2k.
By induction on D — z, there is a homomorphism A from D — z to T, such that if b (v) = ¢
then dj,__(v) = k. Hence, h*(y) # t{ for every inneighbour y of z, because d},__(y) < k. As z
has at most 2k — 1 neighbours, we find ¢ € {2,...,2k+ 1} such that no neighbour y of x satisfies
ht(y) =t}. So, h™(z) =t extends A" to a homomorphism from D to T} .



Suppose now that every vertex v of D has indegree at least k. Since Y-, cy(p)d™ (v) =
2 vev(D) d*(v) < k|V(D)|, every vertex has indegree and outdegree k. Hence, by Brooks Theo-

rem (see [1]) either D is 2k-colourable and D — T,/ [{t7,... 2k+1}] or D is a regular tournament
on 2k + 1 vertices. In this latter case, label the vertices of D with v1,vy,..., 9,41 such that
N~ (v1) = {va,...,vks1}. Then h* defined by ht(v;) =t is the desired homomorphism. a

Theorem 18 Let k and [ be two positive integers.
(i) If k > 2, then ®(k) < 6(2k).
(i) If k+1> 3, then ®V(k,1) < 0(2k + 21).

Proof. (i) If k = 2, the result follows Corollary 14 since #(4) = 6(5) = 4. Suppose now that
k > 3. Let D be a k-digraph. By Lemma 17 there is a homomorphism from D to T,;". We will
provide a homomorphism g from T, to H (o).

Fix Si,...,S%, 2k subsets of {1,...,0(2k)} with cardinality [#(2k)/2] and S a subset of
{1,...,2k} with cardinality [6#(2k)/2] — 1. Without loss of generality, the S; containing S
are S1,...,S; with [ < |'0(2k)/2'| + 1 < k. (One can easily check that 6(2k)/2 + 1 < k provided
that £ > 3.) Now, set g(t{) = S and g(tf, ) = S; for 1 < < 2k. It is straightforward to check
that g is a homomorphlsm.

(ii) Let D be a (k V l)-digraph. By Lemma 17, there exists a homomorphism A" from D+
to T, such that if h*(z) = ¢] then d*(z) = k and, by symmetry , a homomorphism %~ from
D~ to T;, the complete digraph on {t],...,t5  ;} minus the arcs {t; ¢, ¢3¢ ,... ¢ ] }, such
that if A~ (z) =t; then d~(z) = I. We now provide a homomorphism from D to F9(2k+21).

Fix St and S, two subsets of {1,...,60(2k + 21)} with cardinality |#(2k +21)/2] —1 for ST and
|0(2k + 21)/2| + 1 for S~ such that ST ¢ S~. (This is possible since §(2k + 21) > 4, because
k+1>2) Set N={U C{1,...,02k+2l)} : |[U| = |0(2k +21)/2]}. We want a partition of N’
into two parts A and B with |A| 2 2k and |B| > 2l, such that ST is included in at most & sets of A
and S~ contains at most [ sets of B. Let Ng+ (resp. Ng-) be the set of elements of A containing
ST (resp. contained in S7). We have [Ng+| = [6(2k+20)/2]+1 and |[Ng-| = [0(2k+21)/2| +1;
because k + 1 > 3, it follows |Ng+| < k41 and |Ng-| < k + 1. Moreover, the sets Ng+ and Ng-
are disjoint. Let us sort the elements of AV beginning with those of Ng- and ending with those
of Ng+. Let A be the 2k first sets in this sorting and B what remains (|B| > 2[). We claim that

A contains at most k elements of Ng. If not, then |A| > (LG?Q(?—CFZ?I/QJ) |INg+|+ k. We obtain
2k > 2k + 21 — |[Ng+| + k which contradicts [Ng+| < k + I. With same argument, B contains at
most [ elements of Ng-.

Finally, set A = {A1,..., A} such that none of Agy1,...,As contains ST and {Bj,..., By}
21 sets of B such that none of Bj,q,..., By is contained in S~.

Let us define h : D — Hogyg. If z € V't and ht(z) = ¢ then h(z) = ST if i = 1 and
h(z) = A;—1 otherwise. If x € V™ and h™(x) = t; the h(x) = S~ if ¢ =1 and h(z) = B
otherwise. Let us check that A is a homomorphism. Let xy be an arc of D. T,:“ is a subdigraph
of Hokro[{A1,..., A2, S} and T, is a subdigraph of Hopo[{B1,-..,Bu, S™}]. So, h(z)h(y)
is an arc of Hoy g if x and y are both in VT or both in V. Suppose now that z € VT and
y € V7, then ht(z) # t] because dp+(v) < k and h(z) # ST. Similarly, h~(y) # S~. Thus
h(z) and h(y) are elements of N, so h(x)h(y) € E(Hag ). Finally, suppose that x € V™~ and



y € V*. Then h(z)h(y) € E(Hyky ) because no element of {By,..., By, S~} is a subset of an
element of {A,..., Ay, ST} O

Remark 19 Note that the homomorphism provided in (3) has for image subsets of {1,...,0(2k)}
with cardinality at most |#(2k)/2]. So, using the method developped in Theorem 9, we provide
an arc-colouring of a k-digraph D with 6(2k) colours which satisfies col™(x) < [0(2k)/2], so
col (z) > [0(2k)/2], for every vertex = of D.

We will now improve the bound (i) of Theorem 18 when [ is very small compared to k.

Lemma 20 Let D be a (kV1)-digraph and D" the subdigraph of D induced by the arcs with tail
in Vt. If there exists an arc-colouring of DY with m > 21 + 1 colours such that for every = in
V*t, col™(z) > 1+ 1 then xq(D) = m.

Proof. We will extend the colouring as stated into an arc-colouring of D.

First, we extend this colouring to the arcs of D~. Since }_ - d;_ (v) =2 pey-dp-(v) <
I[V7|, there is a vertex v1 € V'~ such that dj,_(v) < I. And so on, by induction, there is an
ordering (v1,vs,...,vp) of the vertices of D~ such that, for every 1 <7 < p, v; dominates at
most [ vertices in {v; : j > i}. Let us colour the arcs of D™ in decreasing order of their head;
that is first colour the arcs with head v, then those with head v,_1, and so on. This is possible
since at each stage i, an arc uv; has at most 2/ < m forbidden colours (I ingoing u and ! outgoing
v; to a vertex in {v; : j > i}).

It remains to colour the arcs with tail in V'~ and head in V*. Let v"v™ be such an arc.
Since col (vt) > 1+ 1 and d (v~) <, there is a colour a in Col™ (v") that is assigned to no
arc ingoing v~—. Hence, assigning o to v~v™, we extend the arc-colouring to v~ vt. O

Corollary 21 If 0(2k) > 21 + 1, then ¢V (k,1) < 6(2k).

Proof. The digraph D', as defined in Lemma 20, is a k-digraph. The result follows directly
from Remark 19 and Lemma, 20. [l

4 Relations between ®(k) and ¢V (k,I)

Conjecture 22 Let | be a positive integer. There exists an integer k; such that if & > k; then
OV(k,l) = ®(k).

We now prove Conjecture 22, for [ = 0, showing that kg = 1.

Theorem 23 Ifk > 1,
@Y (k,0) = ®(k).

Proof. Let D = (V,A) be a (kV 0) digraph. Let Vj be the set of vertices with indegree 0.
Let D' be the digraph obtained from D by splitting each vertex v of Vj into d* (v) vertices with
outdegree 1. Formally, for each vertex v € Vg incident to the arcs vwy,...,vwg+(,), replace v



by {vi,va,... ,vd+(v)} and vw; by v;w;, 1 <4 < d¥(v). By construction, D' is a k-digraph and
L(D) = L(D"). So xa(D) = xa(D') < ®(k). O

We conjecture that if [ = 1, Conjecture 22 holds with ky = 1.

Conjecture 24 Ifk > 1,
&Y (k,1) = ®(k)

Theorem 25 If ®(k) = ®(k — 1) or ®(k) = ®(k + 1) then ®V(k,1) = ®(k).

Proof. By Lemma 20, it suffices to prove that if ®(k) = ®(k — 1) or ®(k) = &(k + 1) every
k-digraph admits an arc-colouring with ®(k) colours such that for every vertex x, col™(z) > 2.

Suppose that ®(k) = &(k —1). Let D be a k-digraph and D’ be a (k — 1)-digraph such that
Xa(D') = ®(k). Let C be the digraph constructed as follows: for every vertex z € V(D) add
a copy D'(z) of D' such that every vertex of D'(x) dominates x. Then C is a k-digraph, so it
admits an arc-colouring ¢ with ®(k) colours. Note that c is also an arc-colouring of D which is
a subdigraph of C. Let us prove that for every vertex = € V(D), col ™ (z) > 2.

Suppose, reductio ad absurdum, that there is a vertex x € V(D) such that col™(z) < 1.
Since there are arcs ingoing x in C (those from V(D'(z))), then Col™(z) is a singleton {a}.
Now every arc vz with v € D'(x) is coloured « so any arc uv € E(D'(z)) is not coloured a.
Hence c is an arc-colouring with ®(k) — 1 colours which is a contradiction.

The proof is analogous if ®(k) = ®(k + 1) with D’ a k-digraph such that y,(D’) = ®(k).
Then C is a (k + 1)-digraph and we get the result in the same way. O

The next theorem shows that for a fixed integer k, one of the Conjectures 24 and 4 holds.
Theorem 26 Let k be an integer. Then ®V(k,1) = ®(k) or ®V(k, k) < ®(k) + 1.

Proof. Suppose that ®V(k,1) # ®(k). Let C be a (k V 1)-digraph such that x,(C) = ®(k)+1
and C! the subdigraph of C induced by the arcs with tail in V(C). By Lemma 20, for every
arc-colouring of C* with ®(k) colours there exists a vertex x of C* with col=(x) < 1.

Let D be a (k V k)-digraph. Let D! (resp. D?) be the subdigraph of D induced by the arcs
with tail in V(D) (resp. head in V~(D)). Let E’ be the set of arcs of D with tail in V'~ and
head in V*. Let F' be the digraph constructed from C* as follows : for every vertex z € V1(C),
add a copy Dt (z) of D and the arcs {u(z)z : uwv € E(D),u € V*(D), and v € V~(D)}. Then
F! is a k-digraph so it admits an arc-colouring ¢; with {1,...,®(k)}. Now there is a vertex
x € VT (C) such that col~(x) < 1. So all the arcs from DT (x) to = are coloured the same. Free
to permute the labels, we may assume they are coloured 1. Since F[V(D¥(x))Uz] has the same
line-digraph than D!, the arc-colourings of F[V (D (x)) U] is in one-to-one correspondence
with the arc-colourings of D'. So D' admits an arc-colouring ¢! with {1,...,®(k)} such that
every arc with head in V™ is coloured 1.

Analogously, D? admits an arc-colouring ¢? with {1,...,®(k)} such that every arc with head

in V'~ is coloured 1. The union of ¢; and ¢y is an arc-colouring of D — E' with {1,...,®(k)}.
Hence assigning ®(k) + 1 to every arc of E’, we obtain an arc-colouring of D with ®(k) + 1
colours. N

Corollary 27 ®V(k,1) < ®(k) + 1.



Note that since ®(k) is bounded by 6(2k), the condition ®V(k,1) = ®(k) or ®V(k, k) <
®(k) + 1 is very often true. Indeed, we conjecture that it it always true and that ® behaves
“smoothly”.

Conjecture 28 (i) Ifk>1, ®(k+1) < P(k) + 1.
(i) If k> 1, ®(k +2) < &(k) + 1.
(’Ll’t) @(kle) < (I)(kl) + (I>(k2).

Note that (i) implies (i) and Conjecture 24.

The arc-set of a (k1 +k2)-digraph D may trivially be partionned into two sets Eq and F3 such
that (V(D), Ey) is a k1-digraph and (V(D), E) is a ke-digraph. So ®(k1+k2) < ®(k1)+P(k2). In
particular, ®(k+1) < &(k)+ P(1) = ®(k)+3. Despite we were not able to prove Conjecture 28-
(i), we now improve the above trivial result.

Theorem 29 If k > 1 then, ®(k+1) < ®(k) + 2.

Proof. Let D be a (k+ 1)-digraph. Free to add arcs, we may assume that d*(v) = k + 1 for
every v € V(D). Let T1,...,T), be the terminal components of D. Each T; contains a circuit C;
which has a chord. Indeed consider a maximal path P in T; and two arcs with tail its terminus
and head in P, by maximality. One can extend | JC; into a subdigraph F spanning D such that
di(v) > 1 for every v € V(D) and the sole circuits are the C;, 1 < i < p. In fact, F is the
union of p connected components Fi, ..., F},, each F; being the union of C; and inarborescences
Al ... A% with roots r}, ..., 7% in C; such that (V(C;), V(AD) \ {r}},....V(AD)\ {r'}) is a
partition of V(D).

Now D — F' is a k-digraph. So we colour the arcs of D — F with ®(k) colours. Let « and £
be two new colours. Let us colour the arcs of F'. Let 1 < ¢ < p. If C; is an even circuit then F; is
bipartite and its arcs may be coloured by « and (. If C; is an odd circuit, consider its chord xy
in E(D — F). In the colouring of D — F, Col™*(z) ¢ Col*(y) thus there is an arc z'y’ of E(C;)
such that Col*(z') ¢ Col*(y'). Hence we may assign to z'y’ a colour of Colt(z') \ Col™(y').
Now F; — x'y’ is bipartite and its arcs may be coloured by a and 3. O

5 & and ®V for small value of k£ or [.

5.1 ®(1), ®(1,0) and ®V(1,1).

Theorem 30
®V(1,1) = ®Y(1,0) = ®(1) = 3

Proof. By Theorem 5, ®V(1,1) < 3. The 3-circuit is its own line-digraph and is not 2-
colourable. g
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5.2 ®&(2) and 9Y(2,1), for | < 2.

The aim of this subsection is to prove Theorem 35, that is ®(2) = ®V(2,0) = ®V(2,1) =
®V(2,2) = 4. Therefore, we first exhibit a 2-digraph which is not 3-arc-colourable. Then we
show that ®V(2,2) < 4.

Definition 31 For any integer k£ > 1, the rotative tournament on 2k+1 vertices, denoted Rog1,
is the tournament with vertex-set {vi,...,vor41} and arc-set {v;v; : j —i (modulo 2k +1) €

{1,...,k}}.
Proposition 32 The tournament Rs is not 3-arc-colourable. So ®(2) > 4.

Proof. Suppose that Rs admits a 3-arc-colouring ¢ in {1,2,3}. Then, for any two vertices
x and y, Col™(x) # Col™(y) and 1 < col*(x) < 2. Hence there is a vertex, say vi, such that
colt(v1) = 1, say Col™(v1) = {1}. Then Col*(vy) and Col*(v3) are subsets of {2,3} and
Colt(v9) ¢ Coltws. Tt follows that col™(v3) = 1. Repeating the argument for v3, we obtain
col™(vs) = 1 and then col™(v;) = 1, for every 1 < i < 5, which is a contradiction. a

In order to prove that ®V(2,2) < 4, we need to show that every (2 V 2)-digraph admits
homomorphism % into H4. In order to exhibit such a homorphism, we first show that there is
a homomorphism A* from D7 into a subdigraph S, of H, and a homomorphism A~ from D~
into a subdigraph S5 of H, with specific properties allowing us to extend 2T and k™ into a
homomorphism & from D into Hy.

Definition 33 Let Sy be the digraph with vertex-set {s],...,s¢} with arc-set {8+ T4

F\A{s3s7, 5159, 5855}

Lemma 34 Let D be a 2—digmph There exists a homomorphism h* from D to Sy such that
the vertices x with h*(x) € {s§,sf,sd} have outdegree 2.

Proof. Let us prove it by induction on |V(D)|. If d*(z) < 1 for every vertex z of D then
D is 3-colourable and D — Sy [{s],s3,s3}]. So, we assume that there exists a vertex z with
outdegree 2. By induction hypothesis, there is a homomorphism At : D — 2 — S;’ with the
required condition. Note that every inneighbour of x has outdegree at most 1 in D — z and
thus can not have image 3;, s;f or sg' by hT. Denote by y and z the outneighbours of z. The
set {h*(y),hT(2)} does not intersect one set of {si,s3}, {s§,s/} and {sd,sd}, say {si,s5}.
Then, setting At (z) = s5, we extend At into a homomorphism from D to S with the required
condition. O

Theorem 35
®(2) = Y(2,0) = 9Y(2,1) = 9Y(2,2) =4

Proof.

By Proposition 32, 4 < ®(2) < ®V(2,0) < ®V(2,1) < ®V(2,2).

Let us prove that ®V(2,2) < 4. Let D be a (2V2)-digraph. We will provide a homomorphism
from D to Hy.
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Let S, be the dual of Sy, that is the digraph on {s;,...,ss } with arc-set {sis; i #
71\ {81 55,83 51,85 86 }- By Lemma 34, there is a homomorphism h™ : DT — Sy such that
if ht(z) € {s§,sf,s¢} then df,(z) = 2. Symmetrically, there exists a homomorphism h~ :
D~ — S, such that if b~ (z) € {s,,5,,5¢ } then d,_(z) = 2.

Let Sy be the digraph obtained from the disjoint union of Sy and S; by adding the arcs
of {s;s]:1<4i<6,1<j<6}U{ss;:i=1,3,5 j=1,3,5}. The mapping h: D — S,
defined by h(z) = h™(z) if € VT and h(z) = h~(z) if x € V™ is a homomorphism. Indeed if
xy is an arc of D with x € VT and y € V™, conditions on h™ and A~ imply that h(z) = h*(z) €
{s7{,s5,s3} and h(y) = h=(y) € {s7, 53,55 }. To conclude, Figure 1 provides a homomorphism
g from S5 to H4. The non-oriented arcs on the figure corresponds to circuits of length 2 and all
the arcs from S; to S are not represented. O

8(s)={2} as7)={1.2} gGs7)={2.3} g(s7)={1.2.3}

2(sp)={3} g(sp)={1.3.4,

g(s5)={4} g(5)={1.4} g(s5)={2.4} g(s5)={1.24}

Figure 1: The homomorphism g from Sy to Hy.

5.3 ®(3) and 9Y(3,1), for | < 3.

Theorem 36
®(3) = ®Y(3,0) = ®Y(3,1) =4

Proof. 4<®(2) < ®(3) < 9Y(3,0) < dY(3,1) < 6(6) = 4 by Corollary 21. O

In the remaining of this subsection, we shall prove Theorem 42, that is ®V(3,2) = ®V(3,3) =
5. Therefore, we first exhibit a (3V 2)-digraph which is not 4-arc-colourable. Then we show that
Vv (3,3) <5.

Definition 37 Let G~ be the digraph obtained from the rotative tournament on five vertices
Rs, with vertex set {v;,...,v5 } and arc-set {v; v; :j —i (modulo 5) € {1,2}} and five copies
of the 3-circuits R}, ..., R3 by adding, for 1 <i < 5, the arcs vv;, for v € R}.

Let G be the digraph obtained from the rotative tournament on seven vertices Ry, with
vertex set {v;,..., v} and arc-set {U:_U;— :j —i (modulo 7) € {1,2,3}} and seven copies of
the rotative tournament of, R}, ..., RY by adding, for 1 <i < 7, the arcs Uvj', for v € RL.

Finally, let G be the (3 V 2)-digraph obtained from the disjoint union of G~ and G* by
adding all the arcs of the form v~ vt with v~ € V(G™) and vt € V(G*). See Figure 2.

12






Proposition 38 The digraph G is not 4-arc-colourable. So ®(3,2) > 5.

Proof. Suppose for a contradiction that G admits an arc-colouring c in {1, 2, 3,4}.
Let v* be a vertex of G* and v~ a vertex of G~. Then since v~ v™ is an arc, Col™(v") #
Col*(v™). We will show:

(1) there are at least two 2-subsets S of {1,2,3,4} such that a vertex v~ € G~ satisfies
Colt(v™) = S;

(2) there are at least five 2-subsets S of {1,2,3,4} such that a vertex v* € G* satisfies
Colt(vt) = 8.

This gives a contradiction since there are only six 2-subsets in {1,2,3,4}.

Let us first show (1). Every vertex of G~ satisfies colt > 2 otherwise all the arcs of Ry
in GT must be coloured with three colours, a contradiction to Theorem 12. Hence, since in
R; all the Col™ are distinct and not {1,2,3,4}, a vertex of Rj, say vy, has colt = 2, say
Col™(v;) = {1,2}. Consider now the vertices of R}. None of them has Col™ = {1,2,3} nor
Col™ = {1,2,4} since they are dominated by v;. Moreover they all have different Col™ since
R} is a tournament. Hence one of them, say v, satisfies col*(v) = 2. Now Col*(v) # Col™ (v])
since v; — v.

Let us now prove (2). Let & = {2-subsets S such that 3 vt € GT,Col™(v") = S} and
suppose that |S| < 4. Every vertex of G* has col™ < 2 otherwise all the arcs of R in G~ must
be coloured with three colours, a contradiction to Proposition 32. Now, all the vertices of Ry
have distinct and non-empty Col™. So at least three vertices of Ry have col™ =2 and |S| > 3.
Thus, without loss of generality, we are in one these three following cases:

(a) S C {{1,2},{2,3},{3,4}, {1,4}} and Col*(v]) = {1,2};
(b) S C {{1,2},{2,3},{1,3},{1,4}} and Col*(v]") = {2,3};
(e) S € {{1,2},{2,3},{1,3},{1,4}} and Col™(v{) = {1,4}.

Let 1, ...,x5 be the vertices of R} such that x;xj is an arc if and only if j =i+ 1 mod 5 or
j=1i+2mod5and F = {Col™(z;) : 1 <i < 5}. Recall that |F| =5 since R} is a tournament
and that every element S of F is not included in Col™ (v]") since z; — v]" for every 1 < i <'5.

Case (a): We have F = {{3}, {4}, {2,3},{3,4},{1,4}}. So we may assume that Col*(z1) =
{3}. Now because 1 — 3, £1 — x3 and x5 — x3, Colt(z1) ¢ Col™(z3), Col*(z1) ¢ Col™(x3)
and Col™*(z2) ¢ Col™ (x3). It follows that Col™(z3) = {1,4} and Col™(z3) = {4}. Hence, none
of Col*(z4) and Col™(x5) is {3,4} since x3 — x4 and x3 — x5, a contradiction.

Case (b): We have F = {{1}, {4},{1,2},{1,3},{1,4}}. So we may assume that Col™*(x1) =
{1}. Since 1 — x2, Colt(x1) ¢ Col™t(x3), so Colt(xy) = {4}. Similarly, Col™ (z3) = {4} which
is a contradiction.

Case (c): We have F = {{2},{3},{1,2},{1,3},{2,3}}. So we may assume that Col™(z1) =
{2}. Tt follows that Col™(zy) = {1,3} and Col*(x3) = {3}. Hence, none of Col™(z4) and
Col™(w5) is {2, 3} since x3 — x4 and x3 — x5, a contradiction. O
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We will now prove that ®V(3,3) < 5. As in the proof of Theorem 35, in order to exhibit a
homomorphism from a (3V3)-digraph D to Hj, we first show that there are two homomorphisms,
h* from DT into a subdigraph S;' of Hs and h~ from D~ into another subdigraph S3 of s,
with specific properties.

Definition 39 Let Si be the complete digraph with vertex-set {s],...,sI}.
Let S; be the digraph with vertex-set {s;,...,sy } and arc-set {s; s; 19 # j}\ {sy5;,555; }.

Lemma 40 Let D be a 3-digraph. There exists a homomorphism ht from D to S;' such that
the vertices x with h¥(z) € {s{, s} have outdegree 3.

Proof. Let us prove it by induction on n = |V(D)|. If there exists a vertex z with d*(z) +
d~(z) < 4 then we obtain the desired homomorphism A+ from D — z to S5 and extend it with
a suitable choice of AT (z) in {sf,...,sJ}.

Assume now that d*(z)+d~(x) > 5 for every x. Let n; be the number of vertices with outdegree
1. Clearly, n = ng + n1 + n2 + ng. Moreover, we have:

3n> S dt@) =Y d (2) Z @)+ Y d( Z (@) + Y, d (@)

zeV zeV dt(z)= d+(m):1 d+(a: d+(m):3

Then, by assumption:
3n > 5ng + 4n; + 3ng + Z d(x)
d+(z)=3

If there is no vertex with outdegree 3, then D is 5-colourable and there is an homomorphism A*
from D to Sf[{s],...,ss }]. Suppose now that there exists a vertex with outdegree 3. Then,
there exists a vertex with outdegree 3 and indegree at most 3. If not, d~(z) > 4 for every x
with d¥(z) = 3 and the previous inequality implies 3n > 5ng + 4n1 + 3ny + 4ng with nz # 0,
what contradicts n = ng + n1 + no + ngs.

Finally, let = be a vertex with outdegree 3 and indegree at most 3. By induction hypothesis,
there is a homomorphism AT from D — x to Sg)" with the required property. As x has at most 6
neighbours, we extend A% with a suitable choice for A (z) in {s{,...,sT}. O

Lemma 41 Let D be a digraph with mazimal indegree at most 3. There exists a homomorphism
h= from D to Sy such that the vertices x with h™(x) € {sg,..., g } have indegree 3.

Proof. We prove the result by induction on |V(D)|.

If every vertex have indegree at most 2 then, by the dual form of the Lemma 17, there exists a
homomorphism from D to S5 [{s{,...,s5 }]-

Now, let x be a vertex with indegree 3. Let y1, y2 and y3 be the outneighbours of . By induction,
there is a homomorphism h~ from D — x to S; with the required property. In particular, as

the vertex y;, 1 <14 < 3, has indegree at most 2 in D — x, we have h™ (y;) € {s],...,s5 }. So, as
x has 3 inneighbours, we can extend h~ with a suitable choice for 2~ (z) in {sg,...,sg }- O
Theorem 42

®V(3,2) = ®Y(3,3) =5
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Proof. By Proposition 38, 5 < V(3,2) < ®V(3,3). We will prove that ®V(3,3) < 5. Let D
be a (3 V 3)-digraph, we will provide a homomorphism from D to H.

By Lemma 40, there is a homomorphism AT : DT — S;' such that if bt (z) € {sg', s;'} then
df . (x) = 3. Moreover by Lemma 41, there is a homomorphism k= : D~ — Sy such that if
h=(x) € {s5,---,59 }, then dj,_(z) = 3.

Let S3 be the digraph obtained from the disjoint union of S;' and S5 by adding the arcs
of {sys] : 1 <i<91<j<TU{sfs; :i=1..,5 j=1,...,5}. The mapping
h: D — S3 defined by h(z) = ht(z) if z € V* and h(z) = h~(z) if z € V™ is a homomorphism.
Indeed if zy is an arc of D with z € V* and y € V™, conditions on A" and A~ imply that
h(z) = ht(xz) € {s],...,s5 } and h(y) = h (y) € {s],-..,s5 }. To conclude, Figure 3 provides
a homomorphism ¢ from S; to Hs. Inside S3 and S;' , only the arcs which are not in a circuit
of length 2 are represented, every pair of not adjacent vertices are, in fact, linked by two arcs,

one in each way. O
g(s))={1,2,5} 2(55)=12,3,4} 2(57)={2,3,5} g(55)={2.4,5) g(sy)={3.4.5}
° ° ° °
S3
° °
g(5)={12) g(s3)=(1,5) gs=(1.3} g(s)=(1.4}
A y
° ° ° ° ° °
e6)=(23}) g$h)=(24) 2(5=(34) o)=(3,5) e5)=(45) | e(5})=(2.5}
83
°
as)={1)
Figure 3: The homomorphism g from S3 to Hs.
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