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Abstract

We prove that every tournament with minimum out-degree at least 2k− 1 contains k disjoint
3-cycles. This provides additional support for the conjecture by Bermond and Thomassen that
every digraph D of minimum out-degree 2k − 1 contains k vertex disjoint cycles. We also prove
that for every ε > 0, when k is large enough, every tournament with minimum out-degree at least
(1.5+ ε)k contains k disjoint cycles. The linear factor 1.5 is best possible as shown by the regular
tournaments.
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1 Introduction

Notation not given below is consistent with [3]. Paths and cycles are always directed unless otherwise
specified. In a digraph D = (V,A), a k-cycle is a cycle of length k, and for k ≥ 3, we denote by
x1x2 . . . xk the k-cycle on {x1, . . . , xk} with arc set {x1x2, x2x3, . . . , xk−1xk, xkx1}. The minimum
length of a cycle in D is called the girth of D. The underlying graph of a digraph D, denoted
UG(D), is obtained from D by suppressing the orientation of each arc and deleting multiple edges.
For a set X ⊆ V , we use the notation D〈X〉 to denote the subdigraph of D induced by the vertices
in X. For two disjoint sets X and Y of vertices of D, we say that X dominates Y if xy is an arc of D
for every x ∈ X and every y ∈ Y . In the digraph D, if X and Y are two disjoint subsets of vertices of
D or subdigraphs of D, we say that there is a k-matching from X to Y if the set of arcs from X to
Y contains a matching (in UG(D)) of size at least k. A tournament is an orientation of a complete
graph, that is a digraph D such that for every pair {x, y} of distinct vertices of D either xy ∈ A(D)
or yx ∈ A(D), but not both. Finally, an out-neighbour (resp. in-neighbour) of a vertex x of D
is a vertex y with xy ∈ A(D) (resp. yx ∈ A(D)). The out-degree (resp. in-degree) d+D(x) (resp.
d−D(x)) of a vertex x ∈ V is the number of out-neighbours (resp. in-neighbours) of x. We denote by
δ+(D) the minimum out-degree of a vertex in D.
The following conjecture, due to J.C. Bermond and C. Thomassen, gives a relationship between δ+

and the maximum number of vertex disjoint cycles in a digraph.

Conjecture 1.1 (Bermond and Thomassen, 1981) [4] If δ+(D) ≥ 2k − 1 then D contains k
vertex disjoint cycles.

Remark that the complete digraph (with all the possible arcs) shows that this statement is best
possible. The conjecture is trivial for k = 1 and it has been verified for general digraphs when k = 2
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‡AlGCo, LIRMM, Université Montpellier 2, France (email: bessy@lirmm.fr). Financial support: ANR GRATOS

NANR-09-JCJC-0041-01
§Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), Lyon, France (email: stephan.thomasse@ens-lyon.fr)

1



in [8] and for k = 3 in [7]. N. Alon proved in [1] that a lower bound of 64k on the minimum outdegree
gives k disjoint cycles.

It was shown in [5] that every tournament with both minimum out-degree and minimum in-degree
at least 2k − 1 has k disjoint cycles each of which have length 3. Very recently Lichiardopol [6]
obtained a generalization of this result to the existence of k disjoint cycles of prescribed length q in a
tournament with sufficiently high minimum degree.

In this paper we will prove Conjecture 1.1 for tournaments. Recall that by Moon’s Theorem [3,
Theorem 1.5.1], a tournament has k disjoint cycles if and only if it has k disjoint 3-cycles.

Theorem 1.2 Every tournament T with δ+(T ) ≥ 2k − 1 has k disjoint cycles each of which have
length 3.

We also show how to improve this result for tournaments with large minimum out-degree.

Theorem 1.3 For every value α > 1.5, there exists a constant kα, such that for every k ≥ kα, every
tournament T with δ+(T ) ≥ αk has k disjoint 3-cycles.

Remark that the constant 1.5 is best possible in the previous statement. Indeed, a family of sharp
examples is provided by the rotative tournaments TR2p+1 on 2p+ 1 vertices {x1, . . . , x2p+1} with arc
set {xixj : j − i mod 2p+ 1 ∈ {1, . . . , p}}. For 2p+ 1 = 0 mod 3, we denote 2p+ 1/3 by k. Then,
we have δ+(TR2p+1) = b1.5kc and TR2p+1 admits a partition into k vertex disjoint 3-cycles and no
more.
Theorem 1.3 does not give any result both for small values of k and for tournaments with δ+ ≥
1.5k, even asymptotically. We conjecture that we could still have k disjoint 3-cycles in these cases.
Furthermore, in the light of the sharp examples to Conjecture 1.1 and Theorem 1.3, we extend these
questions to digraphs with no short cycles. Namely, we conjecture the following.

Conjecture 1.4 For every integer g > 1, every digraph D with girth at least g and with δ+(D) ≥ g
g−1k

contains k disjoint cycles.

Once again, the constant g
g−1 is best possible. Indeed, for every integers p and g, we define the

digraph Dg,p on n = p(g − 1) + 1 vertices with vertex set {x1, . . . , xn} and arc set {xixj : j − i
mod n ∈ {1, . . . , p}}. The digraph Dg,p has girth g and we have δ+(Dg,p) = p = b g

g−1kc. Moreover,
for n = 0 mod g, the digraph Dg,p admits a partition into k vertex disjoint 3-cycles and no more.
Even a proof of Conjecture 1.4 for large values of k or g (or both) would be of interest by itself. On
the other hand, for g = 3, the first case of our conjecture which differs from Conjecture 1.1 and which
is not already known corresponds to the following question: does every digraph D without 2-cycles
and δ+(D) ≥ 6 admit four vertex disjoint cycles?

In Section 2 and Section 3, we respectively prove Theorem 1.2 and Theorem 1.3. Before starting
these, we precise notations that will be used in both next sections. Let T be a tournament and F a
maximal collection of 3-cycles of T . The 3-cycles of F are denoted by C1, . . . , Cp and their ground set
V (C1)∪· · ·∪V (Cp) is denoted by W . The remaining part of T , T \W is denoted by U . By the choice
of F , U induces an acyclic tournament on T , and we denote its vertices by {up, up−1, . . . , u2, u1}, such
that the arc uiuj exists if and only if i > j.

2 Proof of Conjecture 1.1 for tournaments

In this section, we prove Conjecture 1.1 for tournaments. In fact, we strengthen a little bit the
statement and prove the following:

Theorem 2.1 For every tournament T with δ+(T ) ≥ 2k−1 and every collection F = {C1, . . . , Ck−1}
of k − 1 disjoint 3-cycles of T , there exists a collection of k disjoint 3-cycles of T which intersects
T − V (C1) ∪ · · · ∪ V (Ck−1) on at most 4 vertices.
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This result implies Theorem 1.2. Indeed, for a tournament T with δ+(T ) ≥ 2k0 − 1, we apply
Theorem 2.1 k0 times, with k = 1 to obtain a family F of one 3-cycle, and then with this family F
and k = 2 to obtain a new family F of two 3-cycles, and so on.

To prove Theorem 2.1, we consider a counter-example T and a family F of k − 1 disjoint 3-cycles
with k minimum. The chosen family F is then maximal. So, from now on we use the notation stated
in the first Section.

We will say that i 3-cycles of F , with i = 1 or i = 2 can be extended if we can make i+1 3-cycles
using the vertices of the initial i 3-cycles and at most four vertices of U . If there one or two 3-cycles in
F can be extended, we say that we could extend F . If this happens, it would contradict the choice of
T and F . The following definition will be very useful in all this section. For an arc xy with x, y ∈W ,
we say that a vertex z of U is a breaker of xy if xyz forms a 3-cycle. By extension, a vertex z of U
is a breaker of a 3-cycle Ci of F if it is a breaker of one of the arcs of Ci.

The following claim is fundamental, and we will use it later several times without explicit mention.

Claim 1 Every 3-cycle C of F has breakers for at most two of its three arcs, and every arc of C has
at most three breakers. As a consequence, C has at most six breakers.

Proof: Consider a 3-cycle Ci = xyz of F . Assume that Ci has a breaker for each of its arcs.
We denote by ve a breaker of the arc e, for e ∈ {xy, yz, zx}. If vyz dominates vzx then we form the
3-cycles xyvxy and zvyzvzx, which intersect U on three vertices and we extend F . So, by symmetry,
we obtain that vzxvyzvxy forms a 3-cycle. This contradicts that T 〈U〉 is acyclic.
Now, if an arc xy of Ci has four breakers v1, v2, v3, v4 in U , then in T \ {x, y} every vertex has out-
degree at least 2(k − 1) − 1, and F \ Ci forms a collection of k − 2 3-cycles. So, by the choice of T ,
there exists a collection F ′ of k−1 3-cycles of T \{x, y} which intersect U ∪ z in at most four vertices.
Then F ′ does not contain one of the vertices v1, v2, v3, v4, z. If z /∈ V (F ′), we complete F ′ with the
3-cycle xyz, and obtain a collection of k 3-cycles which has the same intersection with U than F ′. If
z ∈ V (F ′), then one of the vi, say v1 does not belong to V (F ′) and F ′ intersect U on at most three
vertices. Then, we complete F ′ with the 3-cycle xyv1, and obtain a collection of k 3-cycles which
intersect U on at most four vertices. �

Observe that if a 3-cycle xyz of F has a breaker for two of its arcs, then these breakers are disjoint.
Indeed, if x′ and y′ are respectively breaker of xy and yz then yx′ and y′y are arcs of T . As T has no
2-cycle, x′ and y′ have to be distinct.

Informally, Claim 1 gives that every 3-cycle C of F can be extended or can be inserted in the
transitive tournament T 〈U〉, that is, there exists a partition (U2, U1) of U such that there is no arc
from U1 to U2, there is few arcs from U1 to C and few from C to U2 (otherwise, too roughly many
breakers appear). This will be settled at Claim 2. The condition on the minimum out-degree of T
will then allow one or two 3-cycles of F to be extended. Fixing precisely the computation will show,
in the following subsection, that k cannot be too large (k ≤ 6). Then, we treat the small cases in the
last subsection.

2.1 A bound on k

For any partition (U1, U2) of U with no arc from U1 to U2, we have the following.

Claim 2 For every 3-cycle C = xyz of F , we have:

1. If C receives at least four arcs from U1 then there exists a 2-matching from U1 to C.

2. If C receives at least eight arcs from U1 then either there exists a 3-matching from U1 to C
or, up to permutation on x, y, z, yz has three breakers, xy has at least two breakers and x has
in-degree at least five in U1. Furthermore, x is dominated by U2 and both y and z have each at
most one out-neighbour in U2.
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3. Consequently, if C receives at least eight arcs from U1 then, there is no 2-matching from C to
U2 and, in particular, C sends at most three arcs to U2.

Symmetrically, the same statements hold if we exchange the role of U1 and U2, and the bounds on in-
and out-neighbours for every vertex.

Proof: 1. Assume that there is no 2-matching from U1 to C then one vertex x of U1 ∪C belongs
to all the arcs from U1 to C. It is clear that x ∈ C. Hence if y is the successor of x in C, then four
in-neighbours of x in U1 form four breakers for the arc xy, which is not possible.

2. If there is no 3-matching from U1 to C, then two vertices {x, y} in U1 ∪ C belongs to all arcs
from U1 to C. If x ∈ U1 and y ∈ C, then there exists at least four in-neighbours of y different of x
which form four breakers for the arc yz, where z is the successor of y in C, which is forbidden. As
the case {x, y} ⊂ U1 is not possible, we have {x, y} ⊂ C. Assume that x dominates y and call z the
third vertex of C. If d−U1

(y) ≤ 2, then d−U1
(x) ≥ 6 and xy has four breakers, which is not possible.

If d−U1
(y) ≥ 4, yz has four breakers. So d−U1

(y) = 3 and d−U1
(x) ≥ 5 which means that yz has three

breakers and that x has at least two in-neighbours in U1 which are not in-neighbours of y, and so, are
breakers of xy. If x has an out-neighbour x′ in U2, we extend C using the 3-cycles xx′x1 and yzy1
where x1 and y1 are breakers of respectively xy and yz. So U2⇒x must hold (that is, there is no arc
from x to U2). Now, if y has two out-neighbours in U2, they form two more breakers for xy, and xy
would have four breakers. Finally, if z has two out-neighbours in U2, one of these is in-neighbour of
y and would form a new breaker for yz, which had already three.

3. Assume that C receives at least eight arcs from U1 and that there is a 2-matching from C to
U2. If there exists a 3-matching from U1 to C, then we can extend C using at most four vertices of U .
If not, then we are in the case described in the point 2, and C has at least five breakers in U1, three
for yz and at least two for xy. We can conclude except if the 2-matching from C to U2 starts from y
and z. We denote it by {yy′, zz′}. If z′y is an arc of T , then yz would have four breakers. Then yz′

is an arc of T , but then, as U2 dominates x, the vertices y′ and z′ would be two breakers of xy, which
already has two. �

The two following claims are useful to extend two 3-cycles of F in order to form three new 3-cycles.

Claim 3 There are no two 3-cycles C and C ′ of F with a 3-matching from U1 to C, a 3-matching
from C to C ′ and a 3-matching from C ′ to U2.

Proof: If this happens, we respectively denote these matchings by {x1x, y1y, z1z}, {xx′, yy′, zz′}
and {x′x2, y′y2, z′z2}, where V (C) = {x, y, z}, V (C ′) = {x′, y′, z′}, x1, y1, z1 ∈ U1 and x2, y2, z2 ∈ U2.
If all three of {x2x, y2y, z2z} are arcs of T , then we can extend C and C ′ by x2xx

′, y2yy
′ and z2zz

′.
So, we can assume that xx2 is an arc of T . If one of the arcs yy2 or zz2 exists then, we can extend
C. So, xx2, y2y and z2z are arcs of T and we extend C and C ′ using the 3-cycles xx2x1, y2yy

′ and
z2zz

′. �

Claim 4 There are no two 3-cycles C, C ′ such that |E(U1, C)| ≥ 8, |E(C,C ′)| ≥ 7 and |E(C ′, U2)| ≥
8.

Proof: Assume that C and C ′ satisfy the hypothesis of the claim. We denote V (C) = {x, y, z}
and V (C ′) = {x′, y′, z′}. As |E(C,C ′)| ≥ 7 there is a 3-matching between C and C ′. By the Claim 3,
one cannot both find a 3-matching from U1 to C and a 3-matching from C ′ to U2. By symmetry, two
cases arise:

Case 1 : there are no 3-matching from U1 to C and from C ′ to U2. We fix the orientations of
C and C ′: C = xyz and C ′ = x′y′z′. By Claim 2, up to permutation, we can assume that yz has
three breakers in U1 and xy at least two, and that x′y′ has three breakers in U2 and y′z′ at least
two. Furthermore we know, by Claim 2 that U2 dominates x, z has at most one out-neighbour in
U2, z′ dominates U1 and x′ has at most one in-neighbour in U1. We denote then by x1 a breaker of
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Figure 1: The case 2 of the proof of Claim 4

xy in U1 which is an out-neighbour of x′, and by z2 a breaker of y′z′ in U2 which is an in-neighbour
of z. We denote also by y2 and y1 a breaker of respectively x′y′ and yz. Now, if xz′ is an arc
of T , then, we form the 3-cycles xz′z2, y1yz and x′y′y2. If xx′ is an arc of T , then, we form the
3-cycles xx′x1, y′z′z2 and yzy1. And, if zz′ is an arc of T , then, we form the 3-cycles zz′z2, x′y′y2
and xyx1. As |E(C,C ′)| ≥ 7, one of the three arcs xz′, xx′ and zz′ exists and we can extend C and C ′.

Case 2 : there is no 3-matching from U1 to C and there is a 3-matching from C ′ to U2. We fix the
orientation of C, C = xyz, but we do not fix the orientation of C ′. We just assume that {xx′, yy′, zz′}
is a 3-matching between C and C ′. We denote by {x′x2, y′y2, z′z2} a 3-matching from C ′ to U2. By
Claim 2, up to permutation, we can assume that yz has three breakers in U1, we denote by y1 one of
them, and that xy has at least two. Furthermore we know, that d−U1

(x) ≥ 5, that U2 dominates x and
that y and z have at most one out-neighbour in U2. The situation is depicted in Figure 1.

To obtain a contradiction, we follow the next implications:

- zz2 is an arc of T , otherwise we form the three circuits zz′z2, xx′x2 and yy′y2y1, which contain
three 3-cycles intersecting U on at most four vertices.

- yz2 is an arc of T , otherwise z2 is a fourth breaker of yz.

- x2 and y2 dominate y and z. Indeed, the only out-neighbour of y and z in U2 is z2.

- {y′, y2, z, z′} form an acyclic tournament. Indeed if {y′, y2, z, z′} contains a circuit, we pick this
circuit, xx′x2 and yz2y1 to extend C and C ′. In particular, the orientation of C ′ is x′y′z′ and
y′z ∈ A(T ).

- xy′ is an arc of T . Otherwise, y′z and y′x are the only arcs from C ′ to C and we form the
3-cycles xz′z2, zx′x2 and yy′y2 to extend C and C ′.

- z′x2 is an arc of T . Otherwise, we form the 3-cycles z′x′x2, xy′y2 and yzy1.

Finally, we extend C and C ′ using the 3-cycles zz′x2, xy′y2 and yz2y1. �

Now, we will show that k ≤ 6. For this, we consider the partition (U2, U1) of U with |U1| = 5 (as
W contains 3k− 3 vertices, and T has at least 4k− 1 vertices, U contains at least k+ 2 vertices, and
provided that k ≥ 3, it is possible to consider such a U1). So, we denote by I the set of 3-cycles which
receive at least 8 arcs each from U1 (the in 3-cycles), by O the set of 3-cycles which send at least 8
arcs each to U2 (the out 3-cycles) and by R the remaining 3-cycles of F \ (I ∪ O). Furthermore, i,
o and r respectively denote the size of I, O and R (with i+ o+ r = k − 1 as I ∩O = ∅ by Claim 2).
First, we bound below and above the number of arcs leaving U1, and obtain:

5(2k − 1)− 10 ≤ 15i+ 7(k − 1− i− o) + 3o

In the right part, we bound the number of arcs from U1 to I, to R and to O (using Claim 2). Finally,
we have:
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3k + 4o− 8 ≤ 8i (1)

Now, we bound below and above the number of arcs leaving F \ O and obtain

3(k−1−o)(2k−1)− 1

2
3(k−1−o)(3(k−1−o)−1) ≤ 9ro+6io+7r+3i+(15(i+r)− (10k−15−3o))

In the right part, we bound the number of arcs from R to O, from I to O (using Claim 4), from R
to U2, from I to U2 (using Claim 2) and from I ∪ R to U1. For the last bound, we know that at
least 5(2k − 1)− 10 = 10k − 15 arcs leave U1 and that at most 3o of these arcs go to O. So, at least
10k − 15− 3o arcs go from U1 to I ∪R on the 15(i+ r) possible arcs between these two parts. Now,
we replace r by k − 1− i− o and obtain:

9 o2 − 12 k o+ 6 i o+ 41 o+ 3 k2 − 21 k + 8 i+ 8 ≤ 0

We bound i from below using (1) to get (after adjusting to get integral coefficients):

16 o2 − 13 k o+ 52 o+ 4 k2 − 24 k ≤ 0

This inequality admits solution for o only if

(52− 13k)2 − 4 · 16 · (4 k2 − 24 k) = −87k2 + 184k + 2704

is positive, that is, if k ≤ 6.

2.2 Small cases

Below we handle the cases k ≤ 6. The partition (U1, U2) is no more fixed by |U1| = 5, we will specify
its size later.

2.2.1 Some remarks

We need some more general statements to solve the cases k ≤ 6. For the following Claim 5 and
Claim 6, symmetric statements hold if we exchange the roles of U1 and U2, and the bounds on in- and
out-neighbours for every vertex.

Claim 5 If |E(U1, C)| ≥ 10, then there exists a 3-matching from U1 to C.

Proof: Otherwise, two vertices, {x, y}, belong to all arcs from U1 to C. As {x, y} ⊂ U1 is not
possible (otherwise only at most 6 arcs go from U1 to C), either x ∈ U1 and y ∈ C or {x, y} ⊂ C. In
the first case, y has at least seven in-neighbours in U1 distinct of x, and if z is the out-neighbour of
y in C, these seven vertices would be breakers of yz, contradicting Claim 1. So, we have {x, y} ⊂ C.
We assume that x dominates y and that the orientation of C is C = xyz. Then y has at most three
in-neighbours in U1, otherwise yz would have four breakers, and x has at most three in-neighbours in
U1 which are not also in-neighbours of y, otherwise xy would have four breakers. But then there are
at most nine arcs from U1 to C, contradicting the hypothesis. �

As for Claim 2, it is possible to obtain the same result by exchanging U1 and U2 and the role of
in- and out-neighbours for every vertex.

We say that a 3-cycle C has a 3-cover from U1 if there is a 3-matching from U1 to C or two
2-matchings from U1 to C which cover all the vertices of C.

Claim 6 For every 3-cycle C of F , if there is a 3-cover from U1 to C, then there is no 2-matching
from C to U2. In particular, |E(C,U2)| ≤ 3.
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Proof: Assume that C = xyz and that there is a 2-matching {zz′, xx′} from C to U2 and a
3-cover from U1 to C. If there is a 2-matching from U1 to {z, x}, we are done. The remaining case
occurs when the 3-cover from U1 to C is formed by a 2-matching {ax, by} to {x, y} and a 2-matching
{cy, dz} to {y, z} with a = d. In this case, we form the circuits axx′ and byzz′, which contain two
3-cycles extending C. The bound on |E(C,U2)| follows from Claim 2. �

For a fixed U1, we say that a 3-cycle C of F is of type 2-m, 3-m or 3-c if there respectively is a
2-matching, a 3-matching or a 3-cover from U1 to C. A 3-cover is useful to extend a 3-cycle, using
Claim 6, but not very convenient in the general case, because the number of arcs that forces a 3-cover
from U1 to some 3-cycle C of F is the same than the number of arcs that forces a 3-matching (which
is seven). However, to prove the existence of a 3-cover, we have the following statement.

Claim 7 If there are three vertices a, b, c of U1 such that d+Y (a) ≥ 2p, d+Y (b) ≥ 2p − 1 and d+Y (c) ≥
2p− 2, where Y is the set of vertices of a set of p 3-cycles F ′ ⊂ F , then F ′ contains a 3-c 3-cycle or
all the 3-cycles of F ′ are 2-m.

Proof: We prove it by induction on p. If p = 1 then there is a 2-matching from {a, b} to the
3-cycle of F ′. Thus we may assume that p ≥ 2. There is 6p− 3 arcs from {a, b, c} to the p 3-cycles of
F ′. Thus there is a 3-cycle C of F ′ such that there are at least four arcs from {a, b, c} to C and so
there is a 2-matching from {a, b, c} to C. If C is 3-c, we are done, otherwise each vertex of {a, b, c}
sends at most two arcs to C. We apply induction on F ′ \ C. �

Now we are ready to prove the remaining cases (k ≤ 6). As mentioned in the beginning of the
paper, Conjecture 1.1 is known to hold for all digraphs when k ≤ 3, so we only have to deal with the
cases k ∈ {4, 5, 6}.

We will use several times, without referring explicitly, that a 3-cycle of type respectively 2-m and
3-c or 3-m sends respectively at most 7 and 3 arcs to U2, by Claim 6 and 2. For each of the three
cases below, we will use the three first vertices of U for U1, that is, U1 = {u1, u2, u3}.

2.2.2 Case k = 4

For k = 4, we have δ+(T ) ≥ 7 and three 3-cycles in F . There are:

• at least 21-3=18 arcs from U1 to W and then at most 9 arcs from W to U1.

• at least 9 · 7− 1
29 · 8 = 27 arcs from W to U and then, at least 18 arcs from W to U2.

So it is not possible to have types 3-c, 2-m and 2-m for the three 3-cycles of F , otherwise, they send
at most 3 + 7 + 7 = 17 arcs to U2. Now we prove that there are at least two 3-cycles of type 3-c. As
u1 sends seven arcs to W , one of the 3-cycle, say C1 receives 3 arcs. If u2 or u3 sends one arc to C1,
then C1 is of type 3-c, if not, then C2 and C3 are of type 3-c. So, at least one of the three 3-cycle is
of type 3-c, we assume that it is C1. Note that u1, u2 and u3 send respectively at least 4,3 and 2 arcs
to C2 ∪C3. Using Claim 7, we find a second 3-cycle which is of type 3-c. We assume that this second
one is C2. Now, we have:

• there is no 2-matching from U1 to C3, then C3 receives at most 3 arcs from U1, and then C1∪C2

receive at least 15 arcs from U1, what means that there is a 3-matching from U1 to C1 for
instance.

• C1 ∪ C2 sends at least 6 · 7 − 1
26 · 5 = 27 arcs to U ∪ C3, at most 3 to U1 and 6 to U2, what

means that there all the arcs from C1 ∪ C2 to C3

• C3 sends at least 18 − 3 − 3 = 12 arcs to U2, then, by Claim 5, there is a 3-matching from C3

to U2.

Finally, using 3-matchings from U1 to C1, from C1 to C3 and from C3 to U2 and Claim 3, we can
extend C1, C2 and C3.
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2.2.3 Case k = 5

For k = 5, we have δ+(T ) ≥ 9 and four 3-cycles in F . There is:

• at least 24 arcs from U1 to W and then at most 12 arcs from W to U1.

• at least 12 · 9− 1
212 · 11 = 42 arcs from W to U and then, at least 30 arcs from W to U2.

So, it is not possible to have types 2-m, 2-m, 2-m and 2-m for the four 3-cycles of F , otherwise, they
send at most 7 + 7 + 7 + 7 = 28 arcs to U2. There are no three type 3-c among the four 3-cycles of F .
Otherwise, assume that C1, C2 and C3 are of type 3-c, then, C4 can not be of type 2-m, and there
are at most 3 arcs from U1 to C4 and at least 21 arcs from U1 to C1 ∪ C2 ∪ C3. Then, C1 ∪ C2 ∪ C3

sends at most 3 arcs to U1, at most 9 arcs to U2 and at most 27 arcs to C4. However, there is at least
9 · 9− 1

29 · 8 = 45 arcs going out of C1 ∪ C2 ∪ C3, what gives a contradiction.
Using Claim 7 twice, we find two 3-cycles, C1 and C2 for instance, in F that are of type 3-c. Now, u1,
u2 and u3 respectively send at least 3, 2 and 1 arc to C3 and C4 and it is easy to find a 2-matching
from U1 to C3 or C4.
Now, we assume that C1 and C2 have a 3-cover from U1 and that C3 have a 2-matching from U1. We
obtain:

• C4 receives at most three arcs from U1 (otherwise C4 would be a fourth 3-cycle of type 2-m).

• U1 sends at least 21 arcs to C1 ∪ C2 ∪ C3, then there is a 3-matching from U1 to one of these
3-cycle, say C1 and there is at most 6 arcs from C1 ∪ C2 ∪ C3 to U1.

• there is at most 3 + 3 + 7 = 13 arcs from C1 ∪ C2 ∪ C3 to U2, and then as there is at least
9 · 9− 1

29 · 8 = 45 arcs going out of C1 ∪C2 ∪C3, there is 45− 6− 13 = 26 arcs from C1 ∪C2 ∪C3

to C4. In particular, there is a 3-matching from C1 to C4.

• there are at most 13 arcs from C1 ∪ C2 ∪ C3 to U2, so, there are at least 17 arcs from C4 to U2

and then a 3-matching from C4 to U2.

Finally, we extend C1 and C4 using 3-matchings from U1 to C1, from C1 to C4 and from C4 to U2.

2.2.4 Case k = 6

For k = 6, we have δ+(T ) ≥ 11 and five 3-cycles in F . There is:

• at least 30 arcs from U1 to W and then at most 15 arcs from W to U1.

• at least 15 · 11− 1
215 · 14 = 60 arcs from W to U and then, at least 45 arcs from W to U2.

Finding five 3-cycles of type 2-m in F is not possible then, because we would have at most 7 · 5 = 35
arcs from W to U2. We will see that there are either at least three 3-cycles which are of type 3-c or
there are two 3-cycles of type 3-c and two 3-cycles of type 2-m. Using Claim 7 twice, we find two
3-cycles which are of type 3-c, say C1 and C2. There remains at least 5, 4 and 3 arcs from respectively
u1, u2 and u3 to C3 ∪C4 ∪C5. One of the 3-cycles C3, C4 or C5, say C3, receives at least 4 arcs from
{u1, u2, u3} and then is of type 2-m. If C3 is of type 3-c, we are done, otherwise, it receives at most 2
arcs from each of u1, u2, u3, and u1, u2 and u3 respectively send at least 3, 2 and 1 arcs to C4 ∪ C5.
We then find another 3-cycle of type 2-m.

First, we consider the case where there are two 3-cycles of type 3-c, C1 and C2 and two 3-cycles
of type 2-m, C3 and C4. Then, we have:

• C5 receives at most 3 arcs from U1 (otherwise there is a fifth 3-cycle of type 2-m).

• U1 sends at least 27 arcs to C1∪C2∪C3∪C4, thus there is at most 9 arcs from C1∪C2∪C3∪C4

to U1.

• there are at most 3 + 3 + 7 + 7 = 20 arcs from C1 ∪ C2 ∪ C3 ∪ C4 to U2.

8



U0 = U U1 Up−1 Up

step 1

add F0

step 2

add F1

step p− 1

add Fp−2

step p

add Fp−1

Figure 2: The p steps in the procedure to define free vertices.

• as there are at least 11 · 12− 1
212 · 11 = 66 arcs going out of C1 ∪C2 ∪C3 ∪C4, there are at least

66− 9− 20 = 37 arcs from C1 ∪ C2 ∪ C3 ∪ C4 to C5, which is not possible.

Now, we treat the case where there are three 3-cycles of type 3-c in F , C1, C2 and C3. Then, we
obtain:

• C4 and C5 receive each at most 3 arcs from U1 (otherwise we are in one of the previous situations).

• U1 sends at least 24 arcs to C1 ∪ C2 ∪ C3. Thus there is a 3-matching from U1 to two of these
3-cycles, say C1 and C2 and there are at most 3 arcs from C1 ∪ C2 ∪ C3 to U1.

• there are at most 3 + 3 + 3 = 9 arcs from C1 ∪ C2 ∪ C3 to U2, and then as there are at least
9 ·11− 1

29 ·8 = 63 arcs going out of C1∪C2∪C3, there are 63−3−9 = 51 arcs from C1∪C2∪C3

to C4 ∪ C5. In particular, there is, a 3-matching from any of 3-cycle of {C1, C2, C3} to any of
the 3-cycle of {C4, C5}, excepted possibly for one pair, say C2 to C4, to be in the worst case.

• there are at least 45-9=36 arcs from C4 ∪C5 to U2, so, there are at least 18 arcs from one of the
3-cycle C4 or C5 to U2, say from C4, and then there is a 3-matching from C4 to U2.

Finally, we extend C1 and C4 using 3-matchings from U1 to C1, from C1 to C4 and from C4 to U2.

3 Proof of Theorem 1.3: An asymptotic better constant

In this part, we will asymptotically ameliorate the result of Theorem 1.2 by proving Theorem 1.3.

Let α be a real number with α > 1.5, and T be a tournament with δ+(T ) ≥ αk. We assume that
α < 2, otherwise Theorem 1.2 gives

We consider a family F of less than k disjoint 3-cycles in T . We will see that if k is great enough,
then we can extend F . As usual, we denote by W the set of vertices of all the 3-cycles of F , and by
U the other vertices that form an acyclic part (otherwise, we directly extend F). As δ+(T ) ≥ αk,
remark that T has at least 2αk vertices and then, as |W | ≤ 3k− 3, the size of U is at least (2α− 3)k.
The main idea of the proof is to obtain (almost) a partition of W into two parts X1 and X2 such that,
as previously, X1 receives many arcs from U and X2 sends many arcs to U , with the requirement that
the 3-cycles of F behave well with respect to the partition. The 3-cycles (or parts of the 3-cycles) of
X1 will act as in-3-cycles and the 3-cycles of X2 as out-3-cycles. If we assume that F is maximum, a
contradiction will result by computing the number of arcs leaving X1.

We chose a positive real number ε such that ε < (α− 1.5)/4. This value corresponds to the room
that we have to ignore some vertices, which we will do several times during the proof. Then we fix an
integer p with (3 − α)/p < ε/3 , and we will repeat p times the procedure described below to define
free vertices. We define three families of sets:

• (Fi)0≤i≤p−1 the free vertices produced at step i,

• (Ui)0≤i≤p the free vertices produced since the beginning (they will form an acyclic part), and

• (Wi)0≤i≤p the remaining vertices, see Figure 2.
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We initialize by setting U0 = U , and W0 = W . For 0 ≤ i ≤ p − 1, a vertex x of Wi (resp. an
arc xy of Wi) is good at step i if there exists at least 3p+1 disjoint pairs of vertices {y, z} (resp.
distinct vertices z) of Ui such that {x, y, z} induces a 3-cycle. In other words, an element (vertex or
arc) is good if it is contained in at least 3p+1 3-cycles which are disjoint on Ui. When we find good
elements, we will split the 3-cycles they are involved in into the good vertices (or vertices belonging
to a good arc), that we will keep in Wi+1, and the others, called later free vertices and that we put
with the transitive part Ui+1. For a 3-cycle C of F , the vertices of C which we keep in Wi+1 form
the remainder of C. The remainder of C can contain one or two vertices. We use the name a
1-remainder for a remainder of a 3-cycle with one vertex and a 2-remainder for a remainder with
2 vertices.

Then, for i = 0, . . . , p− 1, we initialise Fi = ∅ and perform the step i of the procedure below, that
is, we apply the first of the following rules as long as possible and then we consider the second rule,
apply it as long as possible and proceed similarly for the third and fourth rule. When it is no more
possible to apply the fourth rule, the step i is over, and we deal with the step i+ 1.

Rule 3.1 If a 3-cycle or a 2-remainder C belonging to Wi contains a vertex x which is good at step
i, then we add V (C) \ {x} to Fi.

Rule 3.2 If C, C ′ and C ′′ are 3-cycles or 2-remainders belonging to Wi and T < V (C) ∪ V (C ′) ∪
V (C ′′) > contains three disjoint arcs, say xy, x′y′ and x′′y′′, which are good at step i, then we add
V (C) ∪ V (C ′) ∪ V (C ′′) \ {x, x′, x′′, y, y′, y′′} to Fi.

Rule 3.3 If C and C ′ are 3-cycles or 2-remainders belonging to Wi and T < V (C)∪V (C ′) > contains
two disjoint arcs, say xy and x′y′, which are good at step i, then we add V (C) ∪ V (C ′) \ {x, x′, y, y′}
to Fi.

Rule 3.4 If a 3-cycle C of F belonging to Wi contains a good arc xy at step i, then we add V (C) \
{x, y} to Fi.

Now, we fix the sets Ui+1 to Ui∪Fi and Wi+1 to Wi\Fi. Furthermore, we call Ui the free vertices
at step i. The next claim shows that these vertices are ’free to form a 3-cycle’.

Claim 8 If the final set of free vertices, Up, contains a 3-cycle, then, we can extend the family F .

Proof: Assume that Up contains a 3-cycle xyz, we will build a family F ′ of 3-cycles with
|F ′| = |F| + 1. The family F ′ initially contains xyz and all the 3-cycles of F that still exist in
Wp. We will inductively complete F ′ with 3-cycles formed from remainings of 3-cycles of F that
are in Wp by going step by step backward from the step p to the initial configuration. A vertex of

Up \ U0 = ∪p−1i=0Fi is called busy if it is currently contained in a 3-cycle of F ′. At the end of step
p, only x, y, z are possibly busy (and only if they do not belong to U0), and, for i = 1, . . . , p we will
prove the following (where stage i corresponds to the ith level of undoing the steps performed above,
starting with stage 1 where we undo step p):

At stage i, every remainder created at step p − i + 1 is contained in a 3-cycle of F ′
or in a 2-remainder previously created and Up−i contains at most 3i+1 busy vertices.

(?)

Let us see what happens when i = 1. If, {x, y, z} ∩ Fp−1 = ∅, then using the vertices of Fp−1
and the corresponding remainders we undo step p − 1 to re-create original 3-cycles, which we add
to F ′ or 2-remainders previously created (if Rule 3.1 has been used on a 2-remainder at step p− 1).
So, in this case, the only possible busy vertices of Up−1 are x, y and z and the property (?) holds
for i = 1. Otherwise, consider a busy vertex in {x, y, z} which is contained in Fp−1. It became free
through the application of one of the Rules 3.1, 3.2, 3.3 or 3.4. In each of these cases, it has been
separated from good elements (vertex or arc(s)), and these good elements can be re-completed into
3-cycles by adding at most three vertices (two for Rule 3.1, three for Rule 3.2, two for Rule 3.3 and
one for Rule 3.4). Each of these good elements can be completed into at least 3p+1 disjoint (on Up−1)
3-cycles. Hence, it is always possible to complete them disjointly with vertices of Up−1. In the worst
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case, 3 vertices were busy in the beginning (x, y and z) and each of the corresponding good element
needs 3 vertices in Up−1 to be completed, producing 9 busy elements in Up−1. Finally, the vertices of
Fp−1 that are not busy are used to re-create 3-cycles or 2-remainders destroyed at step p.
For i = 2, . . . , p − 1, we apply exactly same arguments to pass from stage i to stage i + 1, provided
that at each stage i at most 3i+1 ≤ 3p+1 busy vertices are present in Up−i. For the last stage, that
is to undo step 1, everything is similar, except that, by definition, U0 contains no busy vertices and
hence the corresponding vertices can be directly taken to form the last 3-cycles of F ′.
Finally, F ′ contains one 3-cycle for each remainder in Wp and xyz, so |F ′| = |F|+ 1. �

An immediate consequence of Claim 8 is that the size of set Wp can not be less than α ·k, because
the first vertex of Up has its out-neighbour-hood contained in Wp. So, the number of free vertices

added to U0 = U , that is ∪p−1i=0Fi, is at most (3−α)k, and thus there is a step i0+1 with 0 ≤ i0 ≤ p−1,
with |Fi0 | < (3 − α)k/p < εk/3. We stop just before this step i0 + 1, and denote by R the set of
3-cycles or 2-remainders with at least one vertex in Fi0 . So, the size of R = V (R), is at most εk. We
symbolically remove the small set R and go on working on the other 3-cycles and remainders. Remark
that, now, in Wi0 \R there are no more free elements.

For any q ≤ p, we say that a set of vertices (or abusively a sub-digraph) S of Wq is insertable in
Uq up to l vertices, if there exists a partition of Uq into three sets Z1, Z2 and Z such that: there is
no arc from Z1 to Z2, |Z| ≤ l and there is no arc from Z1 to S and no arc from S to Z2 .

Claim 9 Every vertex x ∈ Wi0 \R belonging to a 3-cycle of F or a 2-remainder is insertable in Ui0
up to 3p+1 vertices. Furthermore, every 3-cycle of F contained in Wi0 \ R is insertable in Ui0 up to
5 · 3p+1 vertices.

Proof: Consider C a 3-cycle of F or a 2-remainder which is contained in Wi0 \ R and let x
be a vertex of C. As Ui0 is an acyclic tournament by Claim 8, we denote by {u1, u2, . . . , ur} its
vertices in such way that Ui0 contains no arc uiuj with i < j. Among all the r + 1 cuts of type
(Z1 = {u1, . . . , ui}, Z2 = {ui+1, . . . , ur}), we choose one for which d+(x, Z2) + d+(Z1, x) is minimum1

and abusively denote it by (Z1, Z2) with Z1 = {u1, . . . , ui}. If d+(Z1, x) = l then it is possible to
build l 3-cycles containing x and some vertices of Z1 which are all disjoint on Z1. Indeed, we denote
by (uin(j))1≤j≤l (resp. (uout(j))1≤j≤i−l) the in-neighbours of x in Z1 (resp. the out-neighbours of x
in Z1) sorted according to the order (ui, ui−1, . . . , u1). Then, assume that for some j, xuout(j)uin(j)
is not a 3-cycle (because uout(j) is after uin(j), or because uout(j) does not exist), it means that x has
more in-neighbours than out-neighbours in the set {ui, ui−1, . . . uin(j)}, which contradicts the choice
of the partition (Z1, Z2). So, it is possible to form all the 3-cycles (xuout(j)uin(j))1≤j≤l. Similarly, the
same statement holds with Z2, and globally it is possible to provide d+(x, Z2) + d+(Z1, x) 3-cycles
containing x and all disjoint on Ui0 . Then, as x ∈Wi0 \R we have d+(x, Z2) + d+(Z1, x) ≤ 3p+1 and
hence x is insertable in Ui0 up to 3p+1 vertices.

For the second part of the claim, consider a 3-cycle C = xyz which is contained in Wi0 \ R. By
the first part of the claim, we know that there exist three sets of vertices Zx, Zy and Zz in Ui0 of size
at most 3p+1 such that (Ui0 \ {Zx ∪Zy ∪Zz})−{xy, yz, zx} forms an acyclic digraph. We consider an
acyclic ordering of this digraph. If one of three arcs xy, yz or zx, say xy, is backward in this ordering
and ’jumps’ across more than 3p+1 vertices of Ui0 , then the arc xy is good and C should have been
put in R. So, as C can have one or two backward arcs with respect to this order, it is possible to
remove from Ui0 \ {Zx ∪ Zy ∪ Zz} two further sets of vertices of size at most 3p+1 to insert C. �

Now, using Claim 9, we give to every vertex x of a 2-remainder which is contained in Wi0 \ R a
position p(x) in the ordering of Ui0 . More precisely, there exists a set Z of at most 3p+1 vertices of
Ui0 such that there is no arc from {u1, . . . , up(x)} \Z to x and no arc from x to {up(x)+1, . . . , ur} \Z.
If there is several possibilities to choose p(x), we pick one arbitrarily. Similarly, for a 3-cycle C = xyz
which lies in Wi0 \R, we assign to each of its vertices a position p(x) = p(y) = p(z), such that up to
5 · 3p+1 vertices, C is insertable between {u1, . . . , up(x)} and {up(x)+1, . . . , ur}.

1Here for two disjoint sets of vertices R,S d+(R,S) denotes the number of arcs from R to S.
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Figure 3: The situation in the proof of Theorem 1.3.

Then, we fix an integer l such that (α−1.5)l > 2·3p+2 and l > 3·3p+1 and we consider a partition of
the first vertices of Ui0 into d9/εe blocks of l vertices, provided that Ui0 is large enough. This is insured
if U , of size at least (2α− 3)k, is large enough, that is if (2α− 3)k > ld9/εe, what is possible as l and
ε only depend on α. Exactly, for j = 1, . . . , d9/εe, the block Bj is Bj = {u(j−1)l+1, u(j−1)l+2, ..., ujl}.
As Wi0 \R contains at most 3k vertices, there is at most 3k different values p(x) for x ∈Wi0 \R. So,
one of the d9/εe blocks Bj , say Bj0 , contains at most 3k/d9/εe ≤ εk/3 values p(x) for x being a vertex
of a 2-remainder or of a 3-cycle of Wi0 \R. We call R′ these 2-remainders and 3-cycles of Wi0 \R and
denote by R′ the set V (R′). Remark that R′ has size at most εk.

So, we partition the remaining vertices of Wi0 \ (R ∪ R′) into two parts: X1 = {x ∈ Wi0 : p(x) ≤
(j0 − 1)l} and X2 = {x ∈ Wi0 : p(x) > j0l}. By the definition of p, a 3-cycle C of F which lies in
Wi0 \ (R ∪ R′) satisfies V (C) ⊆ X1 or V (C) ⊆ X1. Whereas the 2-remainders of Wi0 \ (R ∪ R′) can
intersect both parts of the partition (X1, x2) of Wi0 \ (R ∪R′). The situation is depicted in Figure 3.

We have the following property on the partition ((X1, x2) of Wi0 \ (R ∪R′).

Claim 10 Every arc from X1 to X2 is a good arc.

Proof: Let xy be an arc from X1 to X2. By definition, we know that p(x) ≤ (j0 − 1)l and that
p(y) > j0l. That means that all the vertices of Bj0 dominate x except for at most 3p+1 of them, and
that all the vertices of Bj0 are dominated by y except for at most 3p+1 of them. As |Bj0 | > 3 · 3p+1,
we can find 3p+1 vertices of Bj0 that are dominated by y and that dominate x, implying that xy is a
good arc. �

Now, according to their behaviour, we classify the 2-remainders and 3-cycles which are in Wi0 \
(R ∪R′):

• A 2-remainders which have one vertex in X1 and the other in X2 is of type (a).

• We consider a maximal collection of disjoint pairs of 3-cycles {C,C ′} where C is in X1, C ′ is in
X2 and there is at least one arc from C to C ′. All the 3-cycles involved in this collection are of
type (b).

• A 3-remainder included in X1 is of type (c) if it is not of type (b).

• A 3-remainder included in X2 is of type (d) if it is not of type (b).
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• A 2-remainder included in X1 is of type (e).

• A 2-remainder included in X2 is of type (f).

We abusively denote by a (resp. c, d, e and f) the number of remainders of type (a) (resp. (c),
(d), (e) and (f)). We denote by b the number of pairs of 3-remainders of type (b). Finally, we denote
by g the number of 1-remainders. At this point of the proof, any of this value is an integer between
0 and k − 1 and X1 or X2 could be empty. This will be settled by the computation at the end of the
proof. For the moment, we have the following properties.

Claim 11 We have the following bounds on the number of arcs from X1 to X2:

- The number of arcs from X1 to X2 linking a 3-cycle with another 3-cycle or a 2-remainder is at
most 3.

- The number of arcs going from X1 to X2 and linking a vertex of an element of type (a) and a
vertex of an element of type (b) is at most 4ab.

- There is no arc from a 3-cycle of type (c) to a 3-cycle of type (d).

Proof: To prove the first point, consider C a 3-cycle of X1 and C ′ a 3-cycle or a 2-remainder of
X2. If there are more than three arcs from C to C ′, then we find a 2-matching from C to C ′. By
Claim 10, this 2-matching is made of good arcs and the Rule 3.3 could apply to find a free vertex in
C, contradicting that Wi0 \R has no free elements.

For the second point, consider a 2-remainder of type (a) on vertices v1 and v2 with v1 ∈ X1 and
v2 ∈ X2 and a pair (C1, C2) of 3-cycles of type (b) with C1 = x1y1z1 contained in X1 and C2 = x2y2z2
contained in X2 and x1x2 being an arc of T . To find a contradiction, assume that the number of arcs
from v1 to C2 plus the number of arcs from C1 to v2 is at least 5. It means that either v1 dominates
C2 or C1 dominates v2, say that v1 dominates C2. Now, v2 is dominated by at least two vertices of
C1, and one of these two is not x1, say that it is y1. But, the arcs x1x2, y1v2 and v1y2 are good by
Claim 10, and z1 and z2 should be free by Rule 3.2, contradicting that Wi0 \R has no free elements.

The third point follows from the definition of 3-cycles of type (c) and (d). �

Now, we can derive a number of in-equalities from the structure derived so far, in order to obtain
a contradiction, knowing that it has not been possible to increase the size of F above.

The first in-equality comes from the fact that there is a most k−1 remainders and 3-cycles in Wi0 .

a+ 2b+ c+ d+ e+ f + g < k (2)

For the second one, we compute the number of arcs going outside of Bj0 , which has size l. There

are at least αkl − l(l − 1)/2 such arcs. The number of arcs from Bj0 to ∪j0−1j=1 Bj is at most l2d9/εe.
There is no arc from Bj0 to Ui0 \ (∪j0j=1Bj). The number of arcs from Bj0 to X2 is at most |X2|3p+1,

because every vertex of X2 is insertable into Ui0 before Bj0 up to 3p+1 vertices. As X2 ⊆ W we
can bound this number by 3k3p+1. Finally, the remaining arcs going outside of Bj0 are at most
l(a+ 3b+ 3c+ 2e+ g + |R|+ |R′|), and we obtain:

αkl − l(l − 1)

2
≤ d9

ε
el2 + k3p+2 + l(a+ 3b+ 3c+ 2e+ g + 2εk, )

which we rewrite as

(α− 1.5)kl − l(l − 1)

2
− d9

ε
el2 − k3p+2 − 2lεk ≤ l(a+ 3b+ 3c+ 2e+ g − 1.5k)

And finally arrange in:

(
(α− 1.5)l

2
− 3p+2

)
k +

(
(
(α− 1.5)

2
− 2ε)k − l − 1

2
− d9

ε
el
)
l ≤ l(a+ 3b+ 3c+ 2e+ g − 1.5k)
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By choice of l, the first term is positive, and as ε < (α− 1.5)/4, if k is large enough, the second term
is strictly positive too, implying that:

a+ 3(b+ c) + 2e+ g > 1.5k (3)

For the last in-equality, we compute the number of arcs going outside of X1. As previously, we
first show that, if k is large enough, we have αk|X1| − d+(X1, Ui0) − d+(X1, R ∪ R′) − 1.5k|X1| is
positive. Indeed, this term is greater than (α− 1.5)k|X1| − d 9ε el|X1| − 2εk|X1| which is

|X1|
(

((α− 1.5)− 2ε)k − d9
ε
el
)

and this is positive if k is large enough. Now, we have to take in account the arcs inside X1 and those
from X1 to X2 and to the 1-remainders. By the calculation above we still have at least 1.5k|X1| arcs
incident with vertices of X1 to account for. Using Claim 11 we obtain

1.5k(a+ 3(b+ c) + 2e)− 1

2
(a+ 3(b+ c) + 2e)2 <

a(a+ 4b+ 3d+ 2f + g) + b(3b+ 3d+ 3f + 3g) + c(3a+ 3b+ 3f + 3g) + e(2a+ 3b+ 3d+ 4f + 2g) =

a(a+ 4b+ 3c+ 3d+ 2e+ 2f + g) + b(3b+ 3c+ 3d+ 3e+ 3f + 3g) + c(3f + 3g) + e(3d+ 4f + 2g)
(4)

Considering (2), (3) and (4), an equation solver leads to a contradiction. We just indicate how
to manage the computation ’by hand’. Suppose that there exists a solution X = (a, b, c, d, e, f, g) to
these three in-equalities, we will show that then X ′ = (a+ b+ f + g, 0, b+ c+ d+ e, 0, 0, 0, 0) is also a
solution to these equations. It is easy to check that X ′ is a solution to (2) and (3). For (4), we denote
by φ(a, b, c, d, e, f, g) the value

2a(a+ 4b+ 3c+ 3d+ 2e+ 2f + g) + 2b(3b+ 3c+ 3d+ 3e+ 3f + 3g) + 2c(3f + 3g) + 2e(3d+ 4f + 2g)

+(a+ 3(b+ c) + 2e)2 − 3k(a+ 3(b+ c) + 2e)

Then, we compute φ(a+ b+ f + g, 0, b+ c+ d+ e, 0, 0, 0, 0)− φ(a, b, c, d, e, f, g) and obtain:

2a(2b+ 3d+ 2e+ f + 2g) + 3b(3b+ 2c+ 8d+ 4e+ 4f + 4g) + 6c(3d+ e+ f + g) + 3d(3d+ 4e+ 4f + 4g)

+e(5e+ 4f + 8g+) + 3f(f + 2g) + 3g2 − 3k(b+ 3d+ e+ f + g)

Using the fact that X is a solution of (3), we have −3k > −2(a+ 3(b+ c) + 2e+ g) and so φ(a+ b+
f + g, 0, b+ c+ d+ e, 0, 0, 0, 0)− φ(a, b, c, d, e, f, g) is greater than

2a(b+ e+ g) + b(3b+ 6d+ 2e+ 6f + 4g) + 3d(3d+ 4f + 2g) + e(e+ 2g) + f(3f + 4g) + g2

which is positive. So, φ(a+ b+ f + g, 0, b+ c+ d+ e, 0, 0, 0, 0) is strictly positive and X ′ is a solution
of (4).
Now, there is a solution to the in-equations (2), (3) and (4) of type (a′, 0, c′, 0, 0, 0, 0), what is impos-
sible: (2) gives a′ + c′ < 1 and (4) gives 3(a′ + 3c′)(a′ + c′ − 1) > 0.

This concludes the proof of Theorem 1.3. As a last remark, note that kα is larger than a polynomial
function in l, which is larger than an exponential in p, itself larger than a linear function in the inverse
of α− 1.5. So, kα is an exponential function in the inverse of α− 1.5.
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4 Some Remarks

It is perhaps worth pointing out that the following obvious idea does not lead to a proof of Conjecture
1.1 for tournaments: find a 3-cycle C which is not dominated by any vertex of V (T )− V (C), remove
C and apply induction. This approach does not work because of the following2.

Proposition 4.1 For infinitely many k ≥ 3 there exists a tournament T with δ+(T ) = 2k − 1 such
that every 3-cycle C is dominated by at least one vertex of minimum out-degree.

Proof: Consider the quadratic residue tournament T on 11 vertices V (T ) = {1, 2, . . . , 11} and
arcs A(T ) = {i→i+ p mod 11 : i ∈ V (T ), p ∈ {1, 3, 4, 5, 9}}. The possible types of 3-cycles in T are
i→i+ 1→i+ 10→i, i→i+ 1→i+ 6→i, i→i+ 3→i+ 6→i, i→i+ 3→i+ 7→i, where indices are taken
modulo 11. These are dominated by the vertices i− 3, i− 3, i+ 2, i+ 2 respectively. By substituting
an arbitrary tournament for each vertex of T , we can obtain a tournament with the property that
every 3-cycle is dominated by some vertex of minimum out-degree. �

On the other hand, removing a 2-cycle from a digraph D with δ+(D) ≥ 2k − 1 clearly results in
a new digraph D′ with δ+(D′) ≥ 2(k − 1) − 1 and hence, when trying to prove Conjecture 1.1, we
may always assume that the digraph in question has no 2-cycles. In particular the following follows
directly from Theorem 1.23.

Corollary 4.2 Every semicomplete digraph D with δ+(D) ≥ 2k − 1 contains k disjoint cycles. �

A chordal bipartite digraph is a bipartite digraph with no induced cycle of length greater than
4. Note that in particular semicomplete bipartite digraphs [3, page 35] are chordal bipartite. It is
easy to see that Conjecture 1.1 holds for chordal bipartite digraphs.

Proposition 4.3 Every chordal bipartite digraph D with δ+(D) ≥ 2k − 1 contains k disjoint cycles.

Proof: This follows from the fact that such a digraph contains a directed cycle C of length 2 or 4 as
long as k ≥ 1. As D is bipartite, no vertex dominates more than half of the vertices on C and so we
have δ+(D − C) ≥ 2(k − 1)− 1 and the result follows by induction on k. �

An extension of a digraph D = (V,A) is any digraph which can be obtained by substituting
an independent set Iv for each vertex v ∈ V . More precisely we replace each vertex v of V by an
independent set Iv and then add all arcs from Iu to Iv precisely if uv ∈ A.

Proposition 4.4 Let D = T [In1
, In2

, . . . , In|V (T )| ] be an extension of a tournament T such that Ini

is an independent set on ni vertices for i ∈ {1, 2, . . . , |V (T )|}. If δ+(D) ≥ 2k − 1, then D contains k
disjoint 3-cycles.

Proof: Let T ′ be the tournament that we obtain from D by replacing each Ini by a transitive
tournament on ni vertices. Then δ+(T ′) ≥ 2k−1 and hence, by theorem 1.2, T ′ contains k disjoint 3-
cycles C1, C2, . . . , Ck. By the definition of an extension and the fact that we replaced independent sets
by acyclic digraphs, no Ci can contain more than one vertex from any Ini

, implying that C1, C2, . . . , Ck
are also cycles in D. �
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