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The goal of this work is to study the portfolio problem which consists in finding a

good combination of multiple heuristics given a set of a problem instances to solve.
We are interested in a parallel context where the resources are assumed to be discrete
and homogeneous, and where it is not possible to allocate a given resource (processor)
to more than one heuristic. The objective is to minimize the average completion time

over the whole set of instances. We extend in this paper some existing analysis on the
problem. More precisely, we provide a new complexity result for the restricted version of
the problem, then, we generalize previous approximation schemes. In particular, they are
improved using a guess approximation technique. Experimental results are also provided

using a benchmark of instances on SAT solvers.
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1. Introduction

1.1. Description of the Portfolio problem

We are interested in this work in solving hard computational problems like the

satisfiability problem SAT [11]. It is well-established that a single algorithm cannot

solve efficiently all the instances of such problems. In most cases, the algorithms

are characterized by the great variability of their execution time depending on the

considered instances. Thus, a good effective solution is to consider several heuristics

and combine them in such a way to improve the mean execution time when solving

a large set of instances. In this paper, we are interested in designing adequate

combination schemes.

The suggested solution is based on the portfolio problem, introduced in the field

of finance many years ago [14]. This problem can be informally recalled as follows:

given a set of opportunities, an amount of possible investments on the set of oppor-

tunities and the payoff obtained when investing an amount on each opportunity,
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what is the best amount of investment to make on each opportunity in order to

maximize the sum of the payoffs? Using the vocabulary of Computer Science, we

assume that there exists a benchmark composed of a finite set of instances and some

heuristics which solve these instances. The expected execution times of heuristics on

all the instances is known. The objective is to determine the best possible resource

allocation for the heuristics in order to minimize the mean execution time of the set

of instances. The execution time of an instance given a resource allocation is taken

here as the shortest execution time of a heuristic when executing simultaneously all

the heuristics on this instance.

This formulation of the problem as a portfolio is motivated by the fact that we

may not know which is the best suited heuristic to solve an instance before actually

solving it. The interest of this sharing model is that in practice if the benchmark of

instances is representative over the set to be solved, we can expect a better mean

execution time than using only one heuristic.

1.2. Related works

There exist many studies focusing on the construction of automated heuristic selec-

tion process. For a given problem, the approaches usually proceed first by identifying

the set of features which characterize its instances. A matching is then built between

types of instances and heuristics in order to determine an efficient heuristic for any

instance.

An et al. [2], for example, introduce a generic framework for heuristic selection

in a parallel context and apply it to several classical problems including sorting

and parallel reductions. Weerawarana et al. [21] suggest a model for the heuristics

selection in the case of the resolution of partial differential equations. The SALSA

project (Self Adapting Large-scale Solver Architecture) uses statistical techniques

for solver selection [8]. Bhowmick et al. [3] study the construction of a selection

process for solving linear systems. The construction of automated selection pro-

cess requires the identification of a representative set of features. This can be very

difficult depending on the targeted problems [8].

There exist other alternative works based on heuristic portfolio that can be used

in these cases. A portfolio of heuristics is a collection of different algorithms (or

algorithms with different parameters) running in an interleaved scheme. In [12, 13],

the authors have demonstrated the interest to use heuristic portfolio on randomized

heuristics. The concurrent use of heuristics for solving an instance has also been

suggested in [7, 20] with the concept of asynchronous team. Streeter et al. [19]

studied how to interleave the execution of various heuristics in order to reduce the

execution time of a set of instances.

Sayag et al. [15] have also studied a related problem, namely the time switching

problem. This problem considers a finite set of instances and assumes a finite set of

interruptible heuristics. To solve instances, the execution of the various heuristics

are interleaved in a fixed pattern of time intervals. The execution ends as soon as one
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heuristic solves the current instance. As previously, the goal in the task switching

problem is to find a schedule which minimizes the mean execution time on the set

of instances. This approach is interesting in a single resource problem and has also

been studied by Streeter et al. [19]. Sayag et al. [15] proved that to each resource

sharing schedule corresponds a time switching with a lower execution time, which

means that if there is no overhead on context switching, it is always better to use

time slicing on the heuristics on the whole resources instead of applying resource

sharing. Even if the time switching approach produces theoretically schedules with

constant approximation ratio, it assumes that the heuristics can be interrupted at

any moment. However, all the interrupted states have to be stored, leading to a

prohibitive memory cost on multiple resources.

Let us notice also that in several cases, giving more resources to a heuristic

does not have a positive impact on its execution. This is especially true when using

heuristics that are hard to parallelize, like those involving a large number of irregular

memory accesses and communications [22]. That is why we focus on the discrete

version of the resource sharing scheduling problem (denoted by RSSP) instead of

time switching as introduced in [15].

To the best of our knowledge, there are mainly two papers about the RSSP that

are closely related to our work. Sayag et al.[15] address the continuous linear RSSP,

where the output is a fraction of the available resources allocated to each heuristic,

and the cost function is linear, meaning that the cost for solving an instance with

only one resource is x times the cost with x resources. In our previous work [4]

a discrete version of the linear restricted RSSP is studied, denoted by lr-dRSSP.

The discrete setting means that the output is an integer representing the number

of resources allocated to each heuristic, and the restriction assumption means that

every solution must allocate at least one processor to every heuristic. The restricted

version was proposed given that the l-dRSSP (without restriction) has no constant

ratio polynomial approximation algorithm (unless P = NP ) [4].

1.3. Contributions and organization of the paper

In this work, we study the r-dRSSP problem. More precisely, given any heuristic

hi, any instance Ij and any number of allocated resources in {1, . . . ,m}, we only

assume that C(hi, Ij , s) (the cost for solving Ij with hi deployed on s resources)

verifies 1 ≤
C(hi,Ij ,s)

C(hi,Ij ,λs) ≤ λ,∀λ ≥ 1. This reasonable assumption means that we

handle any instance where the speedup is non “super linear”.

A preliminary version for the lr-dRSSP problem was published in the APDCM

workshop [4]. The r-dRSSP problem is defined in Section 2.1. We provide in Sec-

tion 2.2 a proof for the complexity of lr-dRSSP (which was still open in [4]). In

Section 2.3, a first greedy algorithm is provided to give an insight on the prob-

lem. Oracle-based algorithms are then introduced in Section 3.1. We extend in 3.2

and 3.3 the oracle based approximation schemes proposed in [4] for lr-dRSSP to

r-dRSSP. We give in 3.4 a kind of tightness result by proving that the question



November 30, 2009 21:39 WSPC/INSTRUCTION FILE BDGNT09

4 Marin Bougeret, Pierre-François Dutot, Alfredo Goldman, Yanik Ngoko and Denis Trystram

asked to the oracle is almost the most “efficient” possible one. Then, we improve

in Section 3.5 these approximation schemes by applying the guess approximation

technique (introduced and applied to lr-dRSSP in [6]). Finally, in Section 4 we run

experiments (using instances extracted from actual execution times of heuristics

solving the SAT problem) to evaluate these algorithms.

2. Discrete Resource Sharing Scheduling Problem

2.1. Definition of the problem

restricted discrete Resource Sharing Scheduling Problem (r-dRSSP)

Instance: A finite set of instances I = {I1, . . . , In}, a finite set of heuristics

H = {h1, . . . , hk}, a set of m identical resources, a cost C(hi, Ij , s) ∈ R+ for each

Ij ∈ I, hi ∈ H and s ∈ {1, . . . ,m}, such that 1 ≤
C(hi,Ij ,s)

C(hi,Ij ,λs) ≤ λ,∀λ ≥ 1

Output: An allocation of the m resources S = (S1, . . . , Sk) such that Si ∈ N

and
∑k

i=1 Si ≤ m that minimizes
∑n

j=1 min
1≤i≤k

{C(hi, Ij , Si)|Si > 0}

The idea in this formulation is to find an efficient partition of resources to

deploy the set of heuristics on the homogeneous resources. The cost function

( min
1≤i≤k

{C(hi, Ij , Si)}) introduced by Sayag et al. [15] and used here, considers that

for each instance, all the different heuristics are executed with the defined share

and then stop their execution when at least one heuristic finds a solution.

2.2. Complexity

The NP completeness proof of the l-dRSSP is provided in [4], using a reduction

from the vertex cover problem. However, this proof cannot be directly adapted to

lr-dRSSP. Indeed, the gap between the optimal and non-optimal cases comes from

the fact that it is impossible to give one resource to every “important” heuristic

when there is no vertex cover, whereas the new constraint in lr-dRSSP forces any

solution to allocate at least one resource to every heuristic. Thus, we add in the

new reduction (still from the vertex cover) some artificial instances that amortize

this new constraint.

Theorem 1. lr-dRSSP is NP hard.

Proof. First, let remark that it is straightforward to verify that the problem is

in NP . Let us denote by T the threshold value of the lr-dRSSP decision prob-

lem. Given any solution S and any subset X ⊂ I, we denote by f(S)|X =
∑

Ij∈X min
1≤i≤k

{C(hi, Ij , Si)|Si > 0} the restricted cost of S on X. Being given a

graph G = (V,E), V = {v1, . . . , vk}, k = |V |, |E| = n in which we are looking for a

vertex cover V c ⊆ V of size x, we construct an instance of the lr-dRSSP problem as

follows. We define the set of heuristics as H = {h1, . . . , hk} (to each hi corresponds

the vertex vi ∈ V ). The number of resources is m = k + x. Given that any solution

of lr-dRSSP must allocate at least one resource to each heuristic, the decision only
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concerns the x extra resources. We choose I = I ′ ∪ I ′′, with I ′ = {I1, . . . , In} (to

each Ij ∈ I ′ corresponds an edge (vj1 , vj2) ∈ E), and I ′′ = {In+1, . . . , In+k} (I ′′

forces the solutions to balance the x “extra” resources, which means not giving

more than 2 resources to anybody). According to the linear cost assumption, it is

sufficient to define only the C(hi, Ij ,m) values. The cost function is:

C(hi, Ij ,m) =







α if j ∈ {1, . . . , n} and vi = vj1 or vi = vj2

Z if j ∈ {n + 1, . . . , n + k} and n + i = j

β otherwise

The constant α > 0 is chosen arbitrarily, and β = mT + 1 so that if a heuristic

computes an instance with this cost (even with all the resources), the corresponding

solution cannot be under the threshold value T . The values of T and Z later will be

fixed later. The basic idea of this reduction is the same as for the l-dRSSP problem:

if there is a vertex cover of size x, then there is a good naive solution S1 which gives

one “extra” resource to each of the x corresponding heuristics. Otherwise, we know

that any potentially good solution S must balance the x extra resources (I ′′ forces

any solution to well-balance the x), and then it is easy to see that S1 is better than

S on I ′.

More precisely, if there is a vertex cover V c = {vi1 , . . . , vix
} of size x, we define

S1
i = 2 if vi ∈ V c, and 1 otherwise. We have

∑k
i=1 S1

i = k + x, and Opt ≤ f(S1) =

f(S1)|I′ + f(S1)|I′′ = nmα
2 + Zm(k − x + x

2 ). Thus, we define the threshold value

T = nmα
2 + Zm(k − x + x

2 ). This value still depends on Z, which will be defined

after.

Otherwise, let us consider a solution S, and let a = card{Si = 1} = k−x+j, j ∈

{0, . . . , x − 1}. Because of I ′′, a should not be too large. We proceed by cases

according to the value of j.

If j > 0, f(S) ≥ f(S)|I′′ = mZ(a + ΣSi 6=1
1
Si

). Given that the function t(x) = 1
x

is convex, we know that ΣSi 6=1t(Si) ≥ (x − j)t(
ΣSi 6=1Si

x−j ) = (x − j)t( 2x−j
x−j ), which

implies f(S) ≥ mZ(k − x + j + (x−j)2

2x−j ). Hence,

f(S) − T ≥ m(Z(j +
(x − j)2

2x − j
−

x

2
) −

nα

2
)

f(S) − T ≥ m(Z(
xj

2(2x − j)
) −

nα

2
)

≥ m(
Z

4
−

nα

2
) because (j ≥ 1)

Thus, we define Z = 2nα + 1, and we get f(S) − T > 0. So in this first case, the

considered solution S is strictly over the threshold value T . In the other case (j = 0),

f(S) = f(S)|I′ +f(S)|I′′ ≥ (n−1)mα
2 +mα+f(S1)|I′′ . Then, f(S)−T ≥ α

2 > 0. In

both cases, if there is no vertex cover of size x, the cost of any solution S is strictly

greater than T which implies Opt > T .
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Notice that in Theorem 1 we proved the NP hardness using a linear cost

function, which means that for all i, j and for every number of allocated re-

sources s ∈ {1, . . . ,m}, C(hi, Ij , s) = C(hi, Ij ,m)m
s . This theorem implies of

course that the r-dRSSP is also NP hard, through the “natural” reduction which

consists in writing explicitly the m values for each heuristic and each instance.

However, one could argue that it is sufficient in the linear case to only give

the C(hi, Ij ,m) values, implying that the input could be described using only

O(nk log(Max(y1,y2)(C(y1, y2,m))) + log(m)) bits. Then, the previous reduction

from lr-dRSSP to r-DRSSP would not be polynomial in log(m), but only in m.

However, this O(m) dependencies is not important because Theorem 1 even proves

that lr-dRSSP is unary NP hard.

2.3. A first greedy algorithm: mean-allocation (MA)

To solve r-dRSSP, let us now analyze a greedy algorithm which will serve as a basis

for more sophisticated approximations presented in the next section. We consider

the algorithm mean-allocation (MA), which consists in allocating ⌊m
k ⌋ processors

to each heuristic.

Let us now introduce some new definitions and notations, given a fixed valid

solution S (not necessarily produced by MA), and a fixed optimal solution S∗.

Definition 2. Let σ(j) = argmin1≤i≤kC(hi, Ij , Si) be the index of the heuristic

which finds the solution first for the instance j in S (ties are broken arbitrarily).

Let define in the same way σ∗(j) as the index of the used heuristic for the instance

j in S∗.

Definition 3. Let T (Ij) = C(hσ(j), Ij , Sσ(j)) be the processing time of instance j

in S. Let define in the same way T ∗(Ij) as the processing time of instance j in S∗.

Proposition 4. MA is a k-approximation for r-dRSSP.

Proof. Let a and b in N such that m = ak + b, b < k. Notice that m ≥ k, otherwise

there are no feasible solutions where each heuristic has at least one processor. Hence,

a is greater or equal to 1.

For any instance j ∈ {1, .., n}, we have T (Ij) = C(hσ(j), Ij , Sσ(j)) ≤

C(hσ∗(j), Ij , Sσ∗(j)) by definition of T (Ij). In the worst case, Sσ∗(j) ≤ S∗
σ∗(j), im-

plying C(hσ∗(j), Ij , Sσ∗(j)) ≤
S∗

σ∗(j)

Sσ∗(j)
C(hσ∗(j), Ij , S

∗
σ∗(j)) ≤ m−(k−1)

Sσ∗(j)
T ∗(Ij) because

in the worst case, the considered optimal solution allocates the maximum possible

number of resources to heuristic σ∗(j). Finally,

m − (k − 1)

Sσ∗(j)
T ∗(Ij) =

ak + b − (k − 1)

a
T ∗(Ij) ≤ kT ∗(Ij).

We will now study how this algorithm can be improved thanks to the use of an

oracle.
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3. Approximation schemes based on oracle

3.1. Introduction

In this section, we provide approximation schemes for r-dRSSP using the oracle

formalism: we first assume the existence of a reliable oracle that can provide some

extra information for each instance, which allows to derive good approximation

ratios, and finally we will enumerate the set of the possible oracle answers to get

a “classical” algorithm (without oracle). The concept of adding some quantifiable

information to study what improvements can be derived exists in other fields than

optimization. Let us briefly review these oracle techniques.

In the distributed context [9], a problem is called information sensitive if a few

bits of information enable to decrease drastically the execution time. The informa-

tion sensitiveness is used to classify problems by focusing on lower bounds on the

size of advice necessary to reach a fixed performance, or giving explicitly oracle

information and studying the improvement (like in [9] and [10]).

In the on-line context, this quantifiable oracle information could be recognized

in the notion of “look-ahead”. The look-ahead could be defined as a slice of the

future which is revealed to the on-line algorithm. Thus, it is possible to prove lower

and upper bounds depending on the size of this slice [1, 23].

In the context of optimization, some polynomial time approximation schemes

have been designed thanks to the guessing technique [17, 16]. This technique can

be decomposed in two steps: proving an approximation ratio while assuming that

a little part of the optimal solution is known, and finally enumerating all the pos-

sibilities for this part of the optimal solution.

In this section, we show that by choosing “correctly” the asked information, it is pos-

sible to derive very good approximation ratio, even with MA as a basis. Moreover,

we will not only apply the guessing technique, but have a methodological approach

by proving that the question asked to the oracle is somehow “the best” possible. At

last, we improve the obtained approximation scheme by using the guess approxima-

tion technique [6]. More precisely, we provide (for any g ∈ {1, . . . , k−1} and an exe-

cution time in O(kn)) a (k−g)-approximation with an information of sizea g log(m),

and a k
g+1 -approximation with an information of size g(log(k) + log(m)). Then, we

prove that no information of “the same type” (coupled with MA) could lead to a

better ratio than k−g
g+1 . Finally, aiming at reducing the size of the oracle answer, we

provide a ρ-approximation with an information of size g(log(k) + j1 + log(log(m))),

where ρ is defined as:

ρ =
k + g

2j1−1

g + 1
.

aAs the encoding of the instance is fixed, all the information sizes are given exactly, without using
the O notation.
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3.2. Choosing an arbitrary subset of heuristics

As a first step, we choose arbitrarily g heuristics (denoted by {hi1 , . . . , hig
} and

called “the guessed heuristics”) among the k available heuristics. In the first guess

G̃1, the oracle provides a part of an optimal solution: the oracle gives the number

of processors allocated to these g heuristics in an optimal solution of r-dRSSP.

Definition 5 (Guess 1) Let G̃1 = (S∗
i1

, . . . , S∗
ig

), for a fixed subset (i1, . . . , ig) of

g heuristics and a fixed optimal solution S∗.

Notice that this guess can be encoded using |G̃1| = g log(m) bits. We first

introduce some notations: let k′ = k − g be the number of remaining heuristics,

s = Σg
l=1S

∗
il

the number of processors used in the guess, and m′ = m−s the number

of remaining processors. We also define (a′, b′) ∈ N
2 such that m′ = a′k′+b′, b′ < k′.

Let us consider a first algorithm MAG which, given any guess G =

[(i1, . . . , ig)(X1, . . . ,Xg)],Xi ≥ 1, allocates Xl processors to heuristic hil
, l ∈

{1, . . . , g}, and applies MA on the k′ other heuristics with the m′ remaining pro-

cessors. This algorithm used with G1 = [(i1, . . . , ig)(G̃1)] leads to the following

ratio.

Proposition 6. MAG1 is a (k − g)-approximation for r-dRSSP, for any g ∈

{0 . . . k − 1}.

Proof. First, remark that MAG1 produces a valid solution because we know that

a′ ≥ 1 (there is at least one processor per heuristic in the considered optimal

solution). Then, for any instance j treated by a guessed heuristic in the considered

optimal solution (σ∗(j) ∈ {1, . . . , g}), MAG1 is at least as good as the optimal. For

the other instances, the analysis is the same as for MA, and leads to the desired

ratio.

Corollary 7. There is an (k−g)-approximation for r-dRSSP which runs in O(mg∗

kn), for any g ∈ {0 . . . k − 1}.

Proof. We simply enumerate all the possible answers of the oracle, and choose the

best solution, incurring a cost in O(2|G̃1| ∗ kn).

In the following, instead of choosing an arbitrary subset of g heuristics, we will

look for what could be the “best” properties to ask for.

3.3. Choosing a convenient subset of heuristics

In this section we define a new guess, which is larger than G̃1, but leads to a better

approximation ratio. As shown in [4], the “difficult” instances seem to be the ones

where the optimal solution uses only a few heuristics (meaning that the major part

of the computation time is only due to these few heuristics). For example, the worst

cases of MA and MAG1 occur when the optimal uses only one heuristic and allocates
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almost all the resources to it. Hence, we are interested in the most useful heuristics

and we introduce the following definition. For any heuristic hi, i ∈ {1, .., k}, let

T ∗(hi) = Σj/σ∗(j)=iT
∗(Ij) be the “useful” computation time of heuristic i in the

solution S∗. We define the second guess as follows.

Definition 8 (Guess 2) Let G2 = [(i∗1, . . . , i
∗
g), (S

∗
i∗1

, ..., S∗
i∗g

)], be the number of

processors allocated to the g most efficient heuristics (which means T ∗(hi∗1
) ≥ .. ≥

T ∗(hi∗g
) and T ∗(hi∗g

) ≥ T ∗(hi),∀i /∈ {i∗1, .., i
∗
g}) in a fixed optimal solution S∗.

Notice that this guess can be encoded using |G2| = g(log(k) + log(m)) bits

to indicate which subset of g heuristics must be chosen, and the allocation of the

heuristics. Thanks to this larger guess, we derive the following better ratio.

Proposition 9. MAG2 is a k
g+1 -approximation for r-dRSSP.

Proof. For the sake of clarity, we can assume without loss of generality that the

heuristics indicated by the oracle are the g first one, meaning that (i∗1, . . . , i
∗
g) =

(1, . . . , g). The proof with an arbitrary cost function is structured as the one in [4]

with linear cost assumption. Let X+ = {i ∈ {g + 1, . . . , k}|Si > S∗
i } be the set of

“non-guessed” heuristics for which MAG2 allocated more than the optimal number

of resources. We define in the same way X− = {i ∈ {g + 1, . . . , k}|Si ≤ S∗
i }.

For all the instances j such that σ∗(j) is in {1, . . . , g} or X+, we have T (Ij) ≤

T ∗(Ij) as MAG2 allocates at least the number of resources used in the optimal for

these instances. For j such that σ∗(j) is in X−, we have T (Ij) ≤
S∗

i

Si
T ∗(Ij) since

the cost function is not super-linear. Thus, summing over all heuristics we get:

TMAG2 ≤

g
∑

i=1

T ∗(hi) +
∑

i∈X+

T ∗(hi) +
∑

i∈X−

S∗
i

Si
T ∗(hi)

=

k∑

i=1

T ∗(hi) +
∑

i∈X−

(
S∗

i

Si
− 1

)

T ∗(hi)

TMAG2 ≤ Opt + M

(∑

i∈X− S∗
i

a′
− card(X−)

)

︸ ︷︷ ︸

λ

, with M = max
i∈{g+1,...,k}

(T ∗(hi))

Then, we claim that λ ≤ k′ − 1. Let j = card{X−}. We can assume j ≥

1, otherwise MAG2 is optimal. We use the same notations (m′ = a′k′ + b′ with

a′ ≥ 1, b′ < k′) as in the previous proof. The worst case occurs when the optimal

solution allocates only one resource to each heuristic in X−, leading to
∑

i∈X− S∗
i =

m′−
∑

i∈X+ S∗
i ≤ m′−(k′−j). Thus, λ ≤ m′−k′+j(1−a′)

a′ ≤ a′k′+b′−(k′−1)−a′

a′ ≤ k′−1.

Moreover, Opt = Σg
i=1T

∗(hi) + Σk
i=g+1T

∗(hi) ≥ gT ∗(hg) + M ≥ (g + 1)M .

Finally, the ratio for MAG2 is r ≤ 1 + k′−1
g+1 = k

g+1 .
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Corollary 10. There is an k
g+1 -approximation for r-dRSSP which runs in

O((km)g ∗ kn), for any g ∈ {0 . . . k − 1}.

3.4. Tightness: comparison with the best subset of heuristics

In the previous subsection, we investigated a “convenient” property to decide which

subset of heuristics should be asked to the oracle. By asking the allocation of a

particular subset of g heuristics as proposed in Definition 8 (rather than an arbitrary

subset of size g), we improved the (k − g)-approximation ratio to a k
g+1 ratio. This

drastic improvement leads to a natural question: is there another property that

would lead to really better approximation ratio than k
g+1? As we will explain in

Proposition 11, we investigated this question and found that no property leads to

a better ratio than k−g
g+1 .

Proposition 11 (Tightness) There is no selection property (i.e. a criteria to se-

lect for which subset of g heuristics we ask the optimal allocation to the oracle) that

leads to a better ratio than k−g
g+1 , even for a linear cost function.

Proof. To prove this statement, we construct an instance such that whatever

the selected subset of g heuristics (i1, . . . , ig), the corresponding guess G =

[(i1, . . . , ig)(S
∗
i1

, . . . , S∗
ig

)] is such that MAG ≥ k−g
g+1Opt.

Let us define now this particular instance X, for fixed size of guess g (we use the

same notation k′ = k−g). We consider k heuristics, m = (g+2)k′−1 resources, and

a set I = I ′ ∪ I ′′ of k instances, with I ′ = {I1, . . . , Ig+1} and I ′′ = {Ig+2, . . . , Ik}.

Given that we are under the linear cost assumption, it is sufficient to only define

the C(hi, Ij ,m) values. The cost function is:

C(hi, Ij ,m) =







Z if j ∈ {1, . . . , g + 1} and i = j

ǫ if j ∈ {g + 2, . . . , k} and i = j

β otherwise.

We choose β = mZ + 1 so that for any solution S the cost for solving Ij only

depends on Sj (because ∀S, σ(j) = j).

We claim that the optimal solution S∗ for Xc allocates k′ resources to heuristic

hi, i ∈ {1, . . . , g + 1}, and 1 resource hi, i ∈ {g + 2, . . . , k}. Notice that the total

number of allocated resources is equal to m. The cost of S∗ is f(S∗) = m((g+1) Z
k′ +

(k′−1)ǫ). We will now prove that this solution is optimal with a similar argument as

in the NP hardness proof: any “good” solution must allocate as many resources as

possible (ie (g+1)k′) to solve the first g+1 instances, and moreover these resources

must be evenly distributed to the first g + 1 heuristics. More precisely, consider a

solution S = {S1, . . . , Sk} such that ∃i0 ∈ {1, . . . , g + 1}/Si0 = k′ − j, j ≥ 1.

Then, f(S) ≥ f(S)|I′ = m( Z
Si0

+ Σi∈{1,...,g+1},i 6=i0
Z
Si

). Using the same argument of

convexity, we get f(S) ≥ mZ( 1
Si0

+ g g
gk′+j ) Finally, f(S) − f(S∗) ≥ m(Z( 1

k′−j +

g2

gk′+j −
g+1
k′ )− (k′−1)ǫ) = m(Z j2(g+1)

k′(gk′+j)(k′−j) − (k′−1)ǫ) > 0 for Z arbitrary large.

Hence, S∗ is an optimal solution for X.
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Let us now analyze the cost of MAG for any subset {i1, . . . , ig}. Let x =

Card({i1, . . . , ig} ∩ {g + 2, . . . , k}). Notice that 0 ≤ x ≤ min(g, k′ − 1) The total

number of resources in the guess is s = (g−x)k′+x, and m′ = (x+1)k′+k′−1−x,

implying m′ < (x + 2)k′. Then, the cost of MAG (under the linear cost as-

sumption) is TMAG ≥ m((g − x) Z
k′ + (x + 1)Z

α ), with α ≤ (x + 1). Thus,

TMAG ≥ m((g − x) Z
k′ + Z) ≥ mZ, and

T
MAG

Opt ≥ Z
(g+1)Z

k′ +(k′−1)ǫ
−→

Z→∞

k′

g+1 .

Notice that the previous instance could be used to prove that the k
g+1 ratio

of MAG2 is tight. Indeed, with Z large enough we will have G2 = [(1, 2, . . . , g −

1, g), (k′, . . . , k′)] and
T

MAG2

Opt ≥
g Z

k′ +Z

(g+1) Z
k′ +(k′−1)ǫ

−→
Z→∞

k
g+1 .

3.5. Improvements with guess approximation

The idea of the guess approximation technique (introduced in [6]) is to find how to

“contract” the answer of the oracle, without neither loosing too much information

nor worsening the approximation ratio. We now look for what could be contracted

here. In the case of guess 2, the oracle provides two types of information: a set of

indices of heuristics (which verify a particular property) and a set of numbers of

resources. The first type of information seems to be hard to approximate. Indeed,

the information here is intrinsically binary, that is a given heuristic satisfies or

not a given property. Thus, we are more interested in approximating the second

part of the oracle information: the number of processors allocated to particular

heuristics (in an optimal solution). Using the same notation as in Definition 8, let

Ḡ2 = [(i∗1, . . . , i
∗
g), (S̄

∗
i∗1

, ..., S̄∗
i∗g

)] be the contracted answer.

In order to define “correctly” the S̄∗
il
, let us consider the two following points.

First, notice that it could be wrong to allocate more processors than the optimal

for the guessed heuristics (i.e.
∑g

l=1 S̄∗
il

>
∑g

l=1 S∗
il
), because there could be not

enough remaining resources to allocate to the “non-guessed” heuristics, leading to

an infeasible solution. Thus, the contraction can be chosen such that
∑g

l=1 S̄∗
il

≤
∑g

l=1 S∗
il

(we will even choose S̄∗
il
≤ S∗

il
,∀l). Secondly, using only x resources instead

of x + ǫ could be very bad if x is small.

Taking into account these two remarks, let us define the S̄∗
il

as follows. We

consider a mantissa-exponent representation for the S∗
il
, with a fixed sizeb j1 ∈

{1, .., ⌈log(m)⌉} of mantissa. Thus, S∗
il

= ail
2eil +bil

, where ail
is encoded on j1 bits,

0 ≤ eil
≤ ⌈log(m)⌉−j1, and bil

≤ 2eil −1. Then, we define S̄∗
il

= ail
2eil . Notice that

the length of the approximated guess becomes |Ḡ2| = Σg
l=1(log(il) + |ail

| + |eil
|) ≤

g(log(k) + j1 + log(log(m))). We now study the approximation ratio derived with

the same algorithm as previously.

Proposition 12. MAḠ2 is a
k+ g

2j1−1

g+1 -approximation for r-dRSSP.

bIn all the paper, log denote the log2 function
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Proof. Again, let us assume without loss of generality that (i∗1, . . . , i
∗
g) = (1, . . . , g).

We first prove that ∀i ∈ {1, . . . , g}, S∗
i /S̄∗

i ≤ β, with β = 1 + 1
2j1−1 . If S∗

i ≤ 2j1 − 1,

we have S̄∗
i = S∗

i because S∗
i can be written with j1 bits. Otherwise, S∗

i /S̄∗
i =

ai2
ei+bi

ai2ei
≤ 1 + 1

ai
≤ 1 + 1

2j1−1 = β.

Then, the proof can be directly adapted from Proposition 9 (we use the same

notation X+ and X−):

TMAḠ2 ≤ β

g
∑

i=1

T ∗(hi) +
∑

i∈X+

T ∗(hi) +
∑

i∈X−

S∗
i

Si
T ∗(hi)

= β

k∑

i=1

T ∗(hi) +
∑

i∈X+

(1 − β)T ∗(hi) +
∑

i∈X−

(
S∗

i

Si
− β)T ∗(hi)

≤ βOpt + M (

∑

i∈X− S∗
i

a′
− βcard(X−))

︸ ︷︷ ︸

λ

, with M = maxi∈{g+1,...,k}(T
∗(hi))

For the same reason as in Proposition 9, we have λ ≤ k′ − β. Then, the ratio of
¯MAG2 is r ≤ β + k′−β

g+1 =
k+ g

2j1−1

g+1 .

Corollary 13. There is an
k+ g

2j1−1

g+1 -approximation for r-dRSSP which runs in

O((k2j1 log(m))g ∗ kn), for any g ∈ {0 . . . k − 1} and j1 ∈ {1, .., ⌈log(m)⌉}.

Notice that the MAG1 algorithm could also be improved with the guess ap-

proximation technique. We would get a β(k − g) ratio, using an information of

size j1 + log(log(m)). In our previous work, we also considered another naive al-

gorithm (which simply redistributes a well chosen fraction of the resources given

to the guessed heuristics to the others), however it does not bring any significant

improvement over the algorithms presented above.

4. Experiments

Some preliminary experiments have been reported in [4] (comparing execution times

for MAG1 and MAG2 using the linear cost assumption). Thus we will focus in the

following experiments on two axes: studying the impact of the guess approximation

on the execution times and returned values, and investigating an example of the non

linear case. The complete description (including source codes) of the experiments

is available on-line [5].

4.1. Description of the protocol

4.1.1. Inputs of r-dRSSP used for the experiments

We applied our algorithms on the satisfiability problem (SAT). The SAT problem

consists in determining whether a formula of a logical proposition given as a con-

junction of clauses is satisfied for at least one interpretation. Since this hard problem
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is very well known, there exist many heuristics that have been proposed to provide

solutions for it.

Let us describe here how we constructed our inputs for the experiments. We used

a SAT database (SatExc) which gives for a set of 23 heuristics (SAT solvers) and a

benchmark of 1303 instances for SAT the CPU execution times (on a single machine)

of each heuristics on the 1303 instances of the benchmark. Thus we did not actually

run these heuristics, but we used these CPU times to have a realistic matrix cost.

The 1303 instances of the SatEx database are issued from many domains where

the SAT problem are encountered. Some of them are: logistic planning, formal

verification of microprocessors and scheduling. These instances are also issued from

many challenging benchmarks for SAT which are used in one of the most popular

annual SAT competition d.

The SatEx database contains 23 heuristics issued from three main SAT solvers

family [18]. These are:

• The DLL family with the heuristics: asat, csat, eqsatz, nsat, sat − grasp,

posit, relsat, sato, sato − 3.2.1, satz, satz − 213, satz − 215, zchaff ;

• The DP family with : calcres, dr, zres;

• The randomized DLL family with : ntab, ntab−back, ntab−back2, relsat−

200.

Other heuristics are heerhugo, modoc, modoc − 2.0

We define thanks to these 1303 ∗ 23 values all the C(hi, Ij ,m), for all i and j. In

the linear case, these values are sufficient to entirely define the cost matrix. For the

experiments concerning the non-linear case, we have chosen a logarithmic speedup,

meaning that we defined C(hi, Ij , x) =
C(hi,Ij ,1)

log(x) . All the considered inputs have the

1303 instances. For the inputs of r-dRSSP with k heuristics, k < 23, we randomly

chose a subset of heuristics of size k (using an uniform distribution).

4.1.2. Description of the measures

There are two types of results: the returned values (the computed cost for solving

the considered input) and the execution times. The only difficulty for measuring the

returned values concerns MAG1 and MAḠ1 . Indeed, recall that these algorithms

use an arbitrary subset of g heuristics. Thus, the returned values could depend

critically on the chosen subset. To avoid this problem we considered the mean cost

of these algorithms over 30 experiments, while choosing randomly (using an uniform

distribution) a subset of g heuristics for each experiment and keeping unchanged all

the other parameters. The figures show the standard deviations, which were small

in all the experiments.

Concerning the execution times, these experiments were done on a AMD

chttp://www.lri.fr/~simon/satex/satex.php3
dhttp://www.satcompetition.org
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Opteron 246 CPU with 2 cores and 2 GB of memory. For MAG1 and MAḠ1 ,

we considered their mean execution times over the 30 experiments (the standard

deviation was negligible).

4.2. Experiment 1

The goal of the first experience is to study the impact of the guess approximation

technique on the returned values. Thus, the comparison are made between the cost

of MAG1 , MAG2 and the one of MAḠ1 , MAḠ2 for different values of g. The input

of this experiment is constructed with the 23 heuristics, and m = 100 machines. The

j1 parameter used in the MAḠi algorithm must be between 1 and 6. We decided to

only show the results for two representative values of j1, that is j1 = 1 and j1 = 4.

In this case we assumed the linear cost assumption.
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Fig. 1. Discrete Resource Sharing Cost with 23 heuristics and 100 resources

Figure 1 depicts the portfolio cost obtained in this experiment. MAGi(x) in this

picture corresponds to the algorithm MAḠi with j1 = x. As one can observe here,

the new heuristics proposed are better than MA (which presented an absolute cost

of 4253266, or 9.50 times worse than MAG1(1)). Moreover, the guess approximation

technique (applied in Section 3.5) does not degrade too much the quality of the

solutions. Indeed, the ratio between the portfolio cost computed by MAḠ1(1) and

MAG1 for g = 1 is equal to 1.17. For MAG2 , this ratio is equal to 1.11.
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4.3. Experiment 2

In this experiment we are interested in comparisons with the optimal values and

computation time. We compare the cost (and the execution time) of MAG1 , MAG2 ,

MAḠ1 and MAḠ2 with the optimal one for different values of g. Notice that the

optimal solution is computed by simple enumeration, leading to a cost in O(mk).

Thereby, the input of this experiment is constructed with only 6 (randomly chosen)

heuristicse, and m = 50 machines. We decided to only show the results for two

representative values of j1, that is j1 = 1 and j1 = 3. In this case we also assumed

the linear cost assumption.

Figure 2 depicts the portfolio cost obtained in this experiment. One can observe

again that it is interesting to restrict the subset of allocation for MAG1 and MAG2 .

For instance, when guessing 4 heuristics, the ratio between the portfolio cost of

MAḠ2(1) and the optimal algorithm is equal to 1.3, which is actually lower than the

theoretical ratio equal to 6+4/2
5 = 1.6. Notice also that when guessing 4 heuristics

with j1 = 3, MAḠ2(3) finds the optimal portfolio cost. We also illustrate through

this experiment the benefit of MAḠi algorithms in considering their executions

times. In Figure 4, we present the execution times of MAḠi , MAGi and the optimal

algorithm. The MAḠi algorithms in general provide a lower execution time than the

other ones. For example, when guessing g = 4 heuristics, MAḠ1(1) is 44 times faster

than MAḠ1(3), which is also 5.3 times faster than MAḠ1 . Similarly, MAḠ2(1) is

201 times faster than MAḠ2(3), which is also 1.5 times faster than MAḠ2 .

4.4. Experiment 3

This experiment is exactly the same as Experiment 2, except that we assume here

the logarithmic cost function.

Figure 2 depicts the portfolio cost obtained in this experiment. This Figure shows

that the relative behavior of the different algorithms does not change from the linear

to the logarithmic case. Indeed, the MAḠi algorithms compute a solution which is

slightly worse than the MAGi ones. For instance the ratio between the portfolio cost

of MAḠ1 and MAG1 for g = 4 and j1 = 1 is equal to 1.02. For MAḠ2 , this ratio

is equal to 1.03. The comparisons with the optimal solution are also tighter: the

ratio between the portfolio cost of MAḠ2(1) (for g = 4) and the optimal algorithm

is equal to 1.08. These ratios are lower than in the linear case. Indeed, if the cost

function is “close to” a constant one, it seems reasonable that the gap between the

solutions decreases.

5. Conclusion

In this work we extended our previous results [4] on the linear restricted discrete

resource sharing scheduling problem. The main contributions are the complexity

eFor the sake of reproducibility, the chosen heuristics were: csat, ntab − back2, modoc, dr, ntab,
zchaff
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Fig. 3. Discrete Resource Sharing Cost with 6 heuristics and 50 resources (Non-linear case)

proof of lr-dRSSP, the extension (and the improvement using a guess approximation

technique [6]) of previous approximation schemes [4] to the non-linear case, the

tightness result that shows that the question asked to the oracle was well chosen,

and the experiments for these new algorithms. There are many perspectives for

continuing this work, namely the proposal of a model and new heuristics for the
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Fig. 4. Execution time with 6 heuristics and 50 resources (Linear case)

case of heterogeneous resources and the study of a mixed problem with both resource

sharing and time switching.
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