
Packing Arc-Disjoint Cycles in Tournaments ∗
1

Stéphane Bessy2

Université de Montpellier, LIRMM, CNRS, Montpellier, France3

bessy@lirmm.fr4

Marin Bougeret5

Université de Montpellier, LIRMM, CNRS, Montpellier, France6

bougeret@lirmm.fr7

R. Krithika8

Indian Institute of Technology Palakkad, India9

krithika@iitpkd.ac.in10

Abhishek Sahu11

The Institute of Mathematical Sciences, HBNI, Chennai, India12

asahu@imsc.res.in13

Saket Saurabh14

The Institute of Mathematical Sciences, HBNI, Chennai, India and University of Bergen,15

Bergen, Norway16

saket@imsc.res.in17

Jocelyn Thiebaut18

Université de Montpellier, LIRMM, CNRS, Montpellier, France19

thiebaut@lirmm.fr20

Meirav Zehavi21

Ben-Gurion University, Beersheba, Israel22

meiravze@bgu.ac.il23

Abstract24

A tournament is a directed graph in which there is a single arc between every pair of distinct25

vertices. Given a tournament T on n vertices, we explore the classical and parameterized com-26

plexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint27

cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We28

refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint29

Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT30

can be seen as the linear programming dual of the well-studied problem of finding a minimum31

feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, sur-32

prisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are33

both NP-complete. Then, we show that the problem of determining if a tournament has a cycle34

packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and35

ATT are fixed-parameter tractable, they can be solved in 2O(k log k)nO(1) time and 2O(k)nO(1)36

time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that37

ACT and ATT cannot be solved in 2O(
√
k)nO(1) time under the Exponential-Time Hypothesis.38
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1 Introduction43

Given a (directed or undirected) graph G and a positive integer k, the Disjoint Cycle44

Packing problem is to determine whether G has k (vertex or arc/edge) disjoint (directed45

or undirected) cycles. Packing disjoint cycles is a fundamental problem in Graph Theory46

and Algorithm Design with applications in several areas. Since the publication of the classic47

Erdős-Pósa theorem in 1965 [22], this problem has received significant scientific attention in48

various algorithmic realms. In particular, Vertex-Disjoint Cycle Packing in undirected49

graphs is one of the first problems studied in the framework of parameterized complexity.50

In this framework, each problem instance is associated with a non-negative integer k called51

parameter, and a problem is said to be fixed-parameter tractable (FPT) if it can be solved in52

f(k)nO(1) time for some computable function f , where n is the input size. For convenience,53

the running time f(k)nO(1) is denoted as O?(f(k)). A kernelization algorithm is a polynomial-54

time algorithm that transforms an arbitrary instance of the problem to an equivalent instance55

of the same problem whose size is bounded by some computable function g of the parameter56

of the original instance. The resulting instance is called a kernel and if g is a polynomial57

function, then it is called a polynomial kernel. A decidable parameterized problem is FPT58

if and only if it has a kernel (not necessarily of polynomial size). Kernelization typically59

involves applying a set reduction rules to the given instance to produce another instance.60

A reduction rule is said to be safe if it is sound and complete, i.e., applying it to the given61

instance produces an equivalent instance. In order to classify parameterized problems as62

being FPT or not, the W-hierarchy is defined: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. It is believed63

that the subset relations in this sequence are all strict, and a parameterized problem that is64

hard for some complexity class above FPT in this hierarchy is said to be fixed-parameter65

intractable. Further details on parameterized algorithms can be found in [17, 20, 25, 27].66

Vertex-Disjoint Cycle Packing in undirected graphs is FPT with respect to the67

solution size k [11, 38] but has no polynomial kernel unless NP ⊆ coNP/poly [12]. In contrast,68

Edge-Disjoint Cycle Packing in undirected graphs admits a kernel with O(k log k)69

vertices (and is therefore FPT) [12]. On directed graphs, these problems have many practical70

applications (for example in biology [13, 19]) and they have been extensively studied [7, 36].71

It turns out that Vertex-Disjoint Cycle Packing and Arc-Disjoint Cycle Packing72

are equivalent and are W[1]-hard [35, 43]. Therefore, studying these problems on a subclass73

of directed graphs is a natural direction of research. Tournaments form a mathematically74

rich subclass of directed graphs with interesting structural and algorithmic properties [6, 40].75

Tournaments have several applications in modeling round-robin tournaments and in the76

study of voting systems and social choice theory [30, 32].77

Feedback Vertex Set and Feedback Arc Set are two well-explored algorithmic78

problems on tournaments. A feedback vertex (arc) set is a set of vertices (arcs) whose deletion79

results in an acyclic graph. Given a tournament, MinFAST and MinFVST are the problems80

of obtaining a feedback arc set and feedback vertex set of minimum size, respectively. We refer81

to the corresponding decision version of the problems as FAST and FVST. The optimization82

problems MinFAST and MinFVST have numerous practical applications in the areas of83

voting theory [18], machine learning [16], search engine ranking [21] and have been intensively84

studied in various algorithmic areas. MinFAST and MinFVST are NP-hard [3, 14] while85

FAST and FVST are FPT when parameterized by the solution size k [4, 24, 26, 32]. Further,86

FAST has a kernel with O(k) vertices [10] and FVST has a kernel with O(k1.5) vertices87
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[37]. Surprisingly, the duals (in the linear programming sense) of MinFAST and MinFVST88

have not been considered in the literature until recently. Any tournament that has a cycle89

also has a triangle [7]. Therefore, if a tournament has k vertex-disjoint cycles, then it also90

has k vertex-disjoint triangles. Thus, Vertex-Disjoint Cycle Packing in tournaments91

is just packing vertex-disjoint triangles. This problem is NP-hard [8]. A straightforward92

application of the colour coding technique [5] shows that this problem is FPT and a kernel93

with O(k2) vertices is an immediate consequence of the quadratic element kernel known for94

3-Set Packing [1]. Recently, a kernel with O(k1.5) vertices was shown for this problem95

using interesting variants and generalizations of the popular expansion lemma [37].96

A tournament that has k arc-disjoint cycles need not necessarily have k arc-disjoint97

triangles. This observation hints that packing arc-disjoint cycles could be significantly98

harder than packing vertex-disjoint cycles. It also hints that packing arc-disjoint cycles99

and arc-disjoint triangles in tournaments could be problems of different complexities. This100

is the starting point of our study. Subsequently, we refer to a set of pairwise arc-disjoint101

cycles as a cycle packing and a set of pairwise arc-disjoint triangles as a triangle packing.102

Given a tournament, MaxACT and MaxATT are the problems of obtaining a maximum103

set of arc-disjoint cycles and triangles, respectively. We refer to the corresponding decision104

version of the problems as ACT and ATT. Formally, given a tournament T and a positive105

integer k, ACT (resp. ATT) is the task of determining if T has k arc-disjoint cycles (resp.106

triangles). From a structural point of view, the problem of partitioning the arc set of a107

directed graph into a collection of triangles has been studied for regular tournaments [45],108

almost regular tournaments [2] and complete digraphs [29]. In this work, we study the109

classical complexity of MaxACT and MaxATT and the parameterized complexity of ACT110

and ATT with respect to the solution size (i.e. the number k of cycles/triangles) as parameter.111

112

Our main contributions:113

We prove that MaxATT and MaxACT are NP-hard (Theorems 4 and 6). As a114

consequence, we also show that ACT and ATT do not admit algorithms with O?(2o(
√
k))115

running time under the Exponential-Time Hypothesis (Theorem 9). Moreover, deciding if116

a tournament has a cycle packing and a feedback arc set of the same size is NP-complete117

(Theorem 8).118

A tournament T has k arc-disjoint cycles if and only if T has k arc-disjoint cycles each of119

length at most 2k + 1 (Theorem 10).120

ACT can be solved in O?(2O(k log k)) time (Theorem 16) and admits a kernel with O(k)121

vertices (Theorem 15).122

ATT can be solved inO?(2O(k)) time and admits a kernel withO(k) vertices (Theorem 17).123

2 Preliminaries124

We denote the set {1, 2, . . . , n} of consecutive integers from 1 to n by [n].125

Directed Graphs. A directed graph D (or digraph) is a pair consisting of a finite set126

V (D) of vertices of D and a set A(D) of arcs of D, which are ordered pairs of elements127

of V (D). For a vertex v ∈ V (D), its out-neighbourhood, denoted by N+(v), is the set128

{u ∈ V (D): vu ∈ A(D)} and its out-degree, denoted by d+(x), is |N+(v)|. For a set F of arcs,129

V (F ) denotes the union of the sets of endpoints of arcs in F . Given a digraph D and a subset130

X of vertices, we denote by D[X] the digraph induced by the vertices in X. Moreover, we131

denote by D \X the digraph D[V (D) \X] and say that this digraph is obtained by deleting132

X from D.133
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23:4 Packing Arc-Disjoint Cycles in Tournaments

Paths and Cycles. A path P in a digraph D is a sequence (v1, . . . , vk) of distinct134

vertices such that for each i ∈ [k − 1], vivi+1 ∈ A(D). The set {v1, . . . , vk} is denoted by135

V (P ) and the set {vivi+1: i ∈ [k − 1]} is denoted by A(P ). A cycle C in D is a sequence136

(v1, . . . , vk) of distinct vertices such that (v1, . . . , vk) is a path and vkv1 ∈ A(D). The length137

of a path or cycle X is the number of vertices in it. A cycle on three vertices is called a138

triangle. A digraph is called a directed acyclic graph if it has no cycles. A feedback arc139

set (FAS) is a set of arcs whose deletion results in an acyclic graph. For a digraph D, let140

minfas(D) denote the size of a minimum FAS of D. Any directed acyclic graph D has an141

ordering σ(D) = (v1, . . . , vn) called topological ordering of its vertices such that for each142

vivj ∈ A(D), i < j holds. Given an ordering σ and two vertices u and v, we write u <σ v if143

u is before v in σ.144

Tournaments. A tournament T is a digraph in which for every pair u, v of distinct145

vertices either uv ∈ A(T ) or vu ∈ A(T ) but not both. In other words, a tournament T on n146

vertices is an orientation of the complete graph Kn. A tournament T can alternatively be147

defined by an ordering σ(T ) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T )148

(which will be denoted A(T ) as the considered ordering is not ambiguous), where each arc149

a ∈ A(T ) is of the form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we define V (T ) =150

{vi : i ∈ [n]} and A(T ) = A(T )∪A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is151

the set of forward arcs of T in the given ordering σ(T ). The pair (σ(T ),A(T )) is called a linear152

representation of the tournament T . A tournament is called transitive if it is a directed acyclic153

graph and a transitive tournament has a unique topological ordering. Given two tournaments154

T1, T2 defined by σ(Tl) and A(Tl) with l ∈ {1, 2}, we denote by T = T1T2 the tournament155

called the concatenation of T1 and T2, where V (T ) = V (T2) ∪ V (T2), σ(T ) = σ(T1)σ(T2) is156

the concatenation of the two sequences, and A(T ) = A(T1) ∪A(T2).157

3 NP-hardness of MaxACT and MaxATT158

This section contains our main results. We prove the NP-hardness of MaxATT using a159

reduction from 3-SAT(3). Recall that 3-SAT(3) corresponds to the specific case of 3-SAT160

where each clause has at most three literals, and each literal appears at most two times161

positively and exactly one time negatively. In the following, denote by F the input formula162

of an instance of 3-SAT(3). Let n be the number of its variables and m be the number of163

its clauses. We may suppose that n ≡ 3 (mod 6). If it is not the case, we can add up to 5164

unused variables x with the trivial clause x ∨ x. This operation guarantees us we keep the165

hypotheses of 3-SAT(3). We can also assume that m+ 1 ≡ 3 (mod 6). Indeed, if it not the166

case, we add 6 new unused variables x1, . . . , x6 with the 6 trivial clauses xi ∨ xi, and the167

clause x1 ∨ x2. This padding process keep both the 3-SAT(3) structure and n ≡ 3 (mod 6).168

From F we construct a tournament T which is the concatenation of two tournaments Tv and169

Tc defined below.170

In the following, let f be the reduction that maps an instance F of 3-SAT(3) to a171

tournament T we describe now.172

The variable tournament Tv. For each variable vi of F , we define a tournament Vi173

of order 6 as follows: σi(Vi) = (ri, x̄i, x1
i , si, x

2
i , ti) and Aσ(Vi) = {siri, tix1

i }. Figure 1 is174

a representation of one variable gadget Vi. One can notice that the minimum FAS of Vi175

corresponds exactly to the set of its backward arcs. We now define V (Tv) be the union176

of the vertex sets of the Vis and we equip Tv with the order σ1σ2 . . . σn. Thus, Tv has 6n177

vertices. We also add the following backward arcs to Tv. Since n ≡ 3 (mod 6), there is an178
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ri x̄i x1
i

si x2
i ti

Figure 1 The variable gadget Vi. Only backward arcs are depicted, so all the remaining arcs are
forward arcs.

edge-disjoint (undirected) triangle packing of Kn covering all its edges with triangles that179

can be computed in polynomial time [33]. Let {u1, . . . , un} be an arbitrary enumeration of180

the vertices of Kn. Using a perfect triangle packing ∆Kn
of Kn, we create a tournament181

TKn
such that σ′(TKn

) = (u1, . . . , un) and Aσ′(TKn
) = {ukui : (ui, uj , uk) is a triangle of182

∆Kn
with i < j < k}. Now we set Aσ(Tv) = {xy : x ∈ V (Vi), y ∈ V (Vj) for i 6= j and183

ujui ∈ Aσ′(TKn)}∪⋃ni=1Aσ(Vi). In some way, we “blew up” every vertex ui of TKn into our184

variable gadget Vi.185

The clause tournament Tc. For each of the m clauses cj of F , we define a tournament186

Cj of order 3 as follows: σ(Cj) = (c1j , c2j , c3j) and Aσ(Cj) = ∅. In addition, we have a187

(m + 1)th tournament denoted by Cm+1 and defined by σ(Cm+1) = (c1m+1, c
2
m+1, c

3
m+1)188

and Aσ(Cm+1) = {c3m+1c
1
m+1}, that is Cm+1 is a triangle. We call this triangle the189

dummy triangle , and its vertices the dummy vertices. We now define Tc such that190

σ(Tc) is the concatenation of each ordering σ(Cj) in the natural order, that is σ(Tc) =191

(c11, c21, c31, . . . , c1m, c2m, c3m, c1m+1, c
2
m+1, c

3
m+1). So Tc has 3(m+ 1) vertices. Since m+ 1 ≡ 3192

(mod 6), we use the same trick as above to add arcs to Aσ(Tc) coming from a perfect packing193

of undirected triangles of Km+1. Once again, we “blew up” every vertex uj of TKm+1 into194

our clause gadget Cj .195

The tournament T . To define our final tournament T let us begin with its ordering196

σ defined by σ(T ) = σ(Tv)σ(Tc). Then we construct Avc(T ) the backward arcs between Tc197

and Tv. For any j ∈ [m], if the clause cj in F has three literals, that is cj = `1 ∨ `2 ∨ l3, then198

we add to Avc(T ) the three backward arcs c3jzu where u ∈ [3] and such that zu = x̄iu when199

`u = v̄iu , and zu ∈ {x1
iu
, x2
iu
} when `u = viu in such a way that for any i ∈ [n], there exists a200

unique arc a ∈ Avc(T ) with h(a) = x1
i . Informally, in the previous definition, if x1

iu
is already201

“used” by another clause, we chose zu = x2
iu
. Such an orientation will always be possible since202

each variable occurs at most two times positively and once negatively in F . If the clause cj203

in F has only two literals, that is cj = `1 ∨ `2, then we add in Avc(T ) the two backward arcs204

c2jzu where u ∈ [2] and such that zu = x̄iu when `u = v̄iu and zu ∈ {x1
iu
, x2
iu
} when `u = viu205

in such a way that for any i ∈ [n], there exists a unique arc a ∈ Avc(T ) with h(a) = x1
i .206

Finally, we add in Avc(T ) the backward arcs cum+1x̄i for any u ∈ [3] and i ∈ [n]. These arcs207

are called dummy arcs. We set Aσ(T ) = Aσ(Tv) ∪Aσ(Tc) ∪Avc(T ). Notice that each x̄i has208

exactly four arcs a ∈ Aσ(T ) such that h(a) = x̄i and t(a) is a vertex of Tc. To finish the209

construction, notice also that T has 6n+3(m+1) vertices and can be computed in polynomial210

time. Figure 2 is an example of the tournament obtained from a trivial 3-SAT(3) instance.211

Now, we move on to proving the correctness of the reduction. First of all, observe that in212

each variable gadget Vi, there are only four triangles: let δ1
i , δ2

i , δ3
i and δ4

i be the triangles213

(ri, x̄i, si), (ri, x1
i , si), (x1

i , si, ti) and (x1
i , x

2
i , ti), respectively. Moreover, notice that there are214

only three maximal triangle packings of Vi which are {δ1
i , δ

3
i }, {δ1

i , δ
4
i } and {δ2

i , δ
4
i }. We call215

these packings ∆>i , ∆>′
i and ∆⊥i , respectively.216

Given a triangle packing ∆ of T and a subset X of vertices, we define for any x ∈ X217

CVIT 2016
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r1 x̄1 x1
1
s1 x2

1 t1 r2 x̄2 x1
2
s2 x2

2 t2 r3 x̄3 x1
3
s3 x2

3 t3 c11 c21 c31 c12 c22 c32

c13 c23 c33

Figure 2 Example of reduction obtained when F = {c1, c2} where c1 = v̄1 ∨ v2 ∨ v̄3 and
c2 = v1 ∨ v̄2 ∨ v3. Forward arcs are not depicted. In addition to the depicted backward arcs, we
have the 36 backward arcs from V3 to V1, and the 9 backward arcs from C3 to C1.

the ∆-local out-degree of the vertex x, denoted d+
X\∆(x), as the remaining out-degree218

of x in T [X] when we remove the arcs of the triangles of ∆. More formally, we set:219

d+
X\∆(x) = |{xa: a ∈ X,xa ∈ A[X], xa /∈ A(∆)}|.220

I Remark. Given a variable gadget Vi, we have:221

(i) d+
Vi\∆>

i

(x1
i ) = d+

Vi\∆>
i

(x2
i ) = 1 and d+

Vi\∆>
i

(x̄i) = 3,222

(ii) d+
Vi\∆>′

i

(x1
i ) = 1, d+

Vi\∆>′
i

(x2
i ) = 0 and d+

Vi\∆>′
i

(x̄i) = 3,223

(iii) d+
Vi\∆⊥

i

(x1
i ) = d+

Vi\∆⊥
i

(x2
i ) = 0 and d+

Vi\∆⊥
i

(x̄i) = 4,224

(iv) none of x̄ix1
i , x̄ix2

i , x̄iti belongs to ∆>i or ∆⊥i .225

Informally, we want to set the variable xi to true (resp. false) when one of the locally-226

optimal ∆>′
i or ∆>i (resp. ∆⊥i ) is taken in the variable gadget Vi in the global solution. Now227

given a triangle packing ∆ of T , we partition ∆ into the following sets:228

∆V,V,V = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Vk with i < j < k},229

∆V,V,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Ck with i < j},230

∆V,C,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Cj , c ∈ Ck with j < k},231

∆C,C,C = {(a, b, c) ∈ ∆ : a ∈ Ci, b ∈ Cj , c ∈ Ck with i < j < k},232

∆2V,C = {(a, b, c) ∈ ∆ : a, b ∈ Vi, c ∈ Cj},233

∆V,2C = {(a, b, c) ∈ ∆ : a ∈ Vi, b, c ∈ Cj},234

∆3V = {(a, b, c) ∈ ∆ : a, b, c ∈ Vi},235

∆3C = {(a, b, c) ∈ ∆ : a, b, c ∈ Ci}.236

Notice that in T , there is no triangle with two vertices in a variable gadget Vi and its237

third vertex in a variable gadget Vj with i 6= j since all the arcs between two variable gadgets238

are oriented in the same direction. We have the same observation for clauses.239

In the two next lemmas, we prove some properties concerning the solution ∆, which imply240

the result of Lemma 3.241

I Lemma 1. There exists a triangle packing ∆v (resp. ∆c) which uses exactly the arcs between242

distinct variable gadgets (resp. clause gadgets). Therefore, we have |∆V,V,V |≤ 6n(n− 1) and243

|∆C,C,C |≤ 3m(m+ 1)/2 and these bounds are tight.244

Proof. First recall that the tournament Tv is constructed from a tournament TKn
which245

admits a perfect packing of n(n − 1)/6 triangles. Then we replaced each vertex ui in246

TKn
by the variable gadget Vi and kept all the arcs between two variable gadgets Vi247
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and Vj in the same orientation as between ui and uj . Let uiujuk be a triangle of the248

perfect packing of TKn
. We temporally relabel the vertices of Vi, Vj and Vk respectively by249

{fi, i ∈ [6]}, {gi, i ∈ [6]} and {hi, i ∈ [6]} and consider the tripartite tournament K6,6,6 given250

by V (K6,6,6) = {fi, gi, hi, i ∈ [6]} and A(K6,6,6) = {figj , gihj , hifj : i, j ∈ [6]}. Then it is251

easy to check that {(fi, gj , hi+j (mod 6)) : i, j ∈ [6]} is a perfect triangle packing of K6,6,6.252

Since every triangle of TKn becomes a K6,6,6 in Tv, we can find a triangle packing ∆v which253

use all the arcs between disjoint variable gadgets. We use the same reasoning to prove that254

there exists a triangle packing ∆c which use all the arcs available in Tc between two distinct255

clause gadget. J256

I Lemma 2. For any triangle packing ∆ of the tournament T , we have:257

(i) |∆V,V,V |+|∆C,C,C |≤ 6n(n− 1) + 3m(m+ 1)/2,258

(ii) |∆2V,C |+|∆V,2C |+|∆V,C,C |+|∆V,V,C |≤ |Avc(T )|,259

(iii) |∆3V |≤ 2n,260

(iv) |∆3C |≤ 1.261

Therefore in total we have |∆|≤ 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1.262

Proof. Let ∆ be a triangle packing of T . Recall that we have: |∆|= |∆V,V,V |+ |∆V,V,C |+263

|∆V,C,C |+ |∆C,C,C |+ |∆2V,C |+ |∆V,2C |+ |∆3V |+ |∆3C |. First, inequality (i) comes from264

Lemma 1. Then, we have |∆2V,C |+|∆V,2C |+|∆V,C,C |+|∆V,V,C |≤ |Avc(T )| since every triangle265

of these sets consumes one backward arc from Tc to Tv. We have |∆3V |≤ 2n since we have266

at most 2 disjoint triangles in each variable gadget. Finally we also have |∆3C |≤ 1 since the267

dummy triangle is the only triangle lying in a clause gadget. J268

I Lemma 3. F is satisfiable if and only if there exists a triangle packing ∆ of size 6n(n−269

1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1 in the tournament T .270

As 3-SAT(3) is NP-hard [41, 44], this implies the following theorem.271

I Theorem 4. MaxATT is NP-hard.272

As mentioned in the introduction, packing arc-disjoint cycles is not necessarily equivalent273

to packing arc-disjoint triangles. Thus, we need to establish the following lemma to transfer274

the previous NP-hardness result to MaxACT.275

I Lemma 5. Given a 3-SAT(3) instance F , and T the tournament constructed from F276

with the reduction f , we have a triangle packing ∆ of T of size 6n(n− 1) + 3m(m+ 1)/2 +277

2n+ |Avc(T )|+1 if and only if there is a cycle packing O of the same size.278

The previous lemma and Theorem 4 imply the following theorem.279

I Theorem 6. MaxACT is NP-hard.280

Let us now define two special cases Tight-ATT (resp. Tight-ACT) where, given a281

tournament T and a linear ordering σ with k backward arcs, where k = minfas(T ), the goal282

is to decide if there is a triangle (resp. cycle) packing of size k. We call these special cases283

the “tight” versions of the classical packing problems because as the input admits an FAS284

of size k, any triangle (or cycle) packing has size at most k. We have the following result,285

directly implying the NP-hardness of Tight-ATT and Tight-ACT.286

I Lemma 7. Let T be a tournament constructed by the reduction f , and k be the threshold287

value defined in Lemma 3. Then, we have k = minfas(T ) and we can construct (in polynomial288

time) an ordering of T with k backward arcs.289
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I Theorem 8. Tight-ATT and Tight-ACT are NP-hard.290

Finally, the size s of the required packing in Lemma 3 satisfies s = O((n+m)2). Under291

the Exponential-time Hypothesis, the problem 3-SAT cannot be solved in 2o(n+m) [17, 31].292

Then, using the linear reduction from 3-SAT to 3-SAT(3) [44], we also get the following293

result.294

I Theorem 9. Under the Exponential-time Hypothesis, ATT and ACT cannot be solved in295

O?(2o(
√
k)) time.296

In the framework of parameterizing above guaranteed values [39], the above results imply297

that ACT parameterized below the guaranteed value of the size of a minimal feedback arc298

set is fixed-parameter intractable.299

4 Parameterized Complexity of ACT300

The classical Erdős-Pósa theorem for cycles in undirected graphs states that for each non-301

negative integer k, every undirected graph either contains k vertex-disjoint cycles or has a302

feedback vertex set consisting of f(k) = O(k log k) vertices [22]. An interesting consequence303

of this theorem is that it leads to an FPT algorithm for Vertex-Disjoint Cycle Packing304

(see [38] for more details).305

Analogous to these results, we prove an Erdős-Pósa type theorem for tournaments and306

show that it leads to an O?(2O(k log k)) time algorithm and a linear vertex kernel for ACT.307

First we obtain the following result.308

I Theorem 10. Let k and r be positive integers such that r ≤ k. A tournament T contains309

a set of r arc-disjoint cycles if and only if T contains a set of r arc-disjoint cycles each of310

length at most 2k + 1.311

Proof. The reverse direction of the claim holds trivially. Let us now prove the forward312

direction. Let C be a set of r arc-disjoint cycles in T that minimizes
∑
C∈C |C|. If every313

cycle in C is a triangle, then the claim trivially holds. Otherwise, let C be a longest cycle in314

C and let ` denote its length. Let vi, vj be a pair of non-consecutive vertices in C. Then,315

either vivj ∈ A(T ) or vjvi ∈ A(T ). In any case, the arc e between vi and vj along with A(C)316

forms a cycle C ′ of length less than ` with A(C ′) \ {e} ⊂ A(C). By our choice of C, this317

implies that e is an arc in some other cycle Ĉ ∈ C. This property is true for the arc between318

any pair of non-consecutive vertices in C. Therefore, we have
(
`
2
)
− ` ≤ `(k − 1) leading to319

` ≤ 2k + 1. J320

This result essentially shows that it suffices to determine the existence of k arc-disjoint321

cycles in T each of length at most 2k + 1 in order to determine if (T, k) is an yes-instance322

of ACT. This immediately leads to a quadratic Erdős-Pósa bound. That is, for every323

non-negative integer k, every tournament T either contains k arc-disjoint cycles or has an324

FAS of size O(k2). Next, we strengthen this result to arrive at a linear bound.325

We will use the following lemma known from [15] in order to prove Theorem 121. For a326

digraph D, let Λ(D) denote the number of non-adjacent pairs of vertices in D. That is, Λ(D)327

is the number of pairs u, v of vertices of D such that neither uv ∈ A(D) nor vu ∈ A(D).328

1 The authors would like to thank F. Havet for pointing out that Lemma 11 was a consequence of a result
of [15], as well for an improvement of the constant in Theorem 12.
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I Lemma 11. [15] Let D be a triangle-free digraph in which for every pair u, v of distinct329

vertices, at most one of uv or vu is in A(D). Then, we can compute an FAS of size at most330

Λ(D) in polynomial time.331

I Theorem 12. For every non-negative integer k, every tournament T either contains k332

arc-disjoint triangles or has an FAS of size at most 5(k−1) that can be obtained in polynomial333

time.334

Proof. Let C be a maximal set of arc-disjoint triangles in T (that can be obtained greedily335

in polynomial time). If |C|≥ k, then we have the required set of triangles. Otherwise, let336

D denote the digraph obtained from T by deleting the arcs that are in some triangle in337

C. Clearly, D has no triangle and Λ(D) ≤ 3(k − 1). Let F be an FAS of D obtained in338

polynomial time using Lemma 11. Then, we have |F |≤ 3(k− 1). Next, consider a topological339

ordering σ of D − F . Each triangle of C contains at most 2 arcs which are backward in this340

ordering. If we denote by F ′ the set of all the arcs of the triangles of C which are backward341

in σ, then we have |F ′|≤ 2(k − 1) and (D − F )− F ′ is acyclic. Thus F ∗ = F ∪ F ′ is an FAS342

of T satisfying |F ∗|≤ 5(k − 1). J343

Next, we show how to obtain a linear kernel for ACT. This kernel is inspired by the344

linear kernelization described in [10] for FAST and uses Theorem 12. Let T be a tournament345

on n vertices. First, we apply the following reduction rule.346

I Reduction Rule 4.1. If a vertex v is in no cycle, then delete v from T .347

This rule is clearly safe as our goal is to find k cycles and v cannot be in any of them.348

To describe our next rule, we need to state a lemma known from [10]. An interval is a349

consecutive set of vertices in a linear representation (σ(T ),A(T )) of a tournament T .350

I Lemma 13 ([10]). Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule 4.1 is351

not applicable. If |V (T )|≥ 2|A(T )|+1, then there exists a partition J of V (T ) into intervals352

(that can be computed in polynomial time) such that there are |A(T ) ∩ E|> 0 arc-disjoint353

cycles using only arcs in E where E denotes the set of arcs in T with endpoints in different354

intervals.355

Our reduction rule that is based on this lemma is as follows.356

I Reduction Rule 4.2. Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule357

4.1 is not applicable. Let J be a partition of V (T ) into intervals satisfying the properties358

specified in Lemma 13. Reverse all arcs in A(T ) ∩ E and decrease k by |A(T ) ∩ E| where E359

denotes the set of arcs in T with endpoints in different intervals.360

I Lemma 14. Reduction Rule 4.2 is safe.361

Proof. Let T ′ be the tournament obtained from T by reversing all arcs in A(T )∩E. Suppose362

T ′ has k − |A(T ) ∩ E| arc-disjoint cycles. Then, it is guaranteed that each such cycle is363

completely contained in an interval. This is due to the fact that T ′ has no backward arc364

with endpoints in different intervals. Indeed, if a cycle in T ′ uses a forward (backward) arc365

with endpoints in different intervals, then it also uses a back (forward) arc with endpoints in366

different intervals. It follows that for each arc uv ∈ E, neither uv nor vu is used in these367

k − |A(T ) ∩ E| cycles. Hence, these k − |A(T ) ∩ E| cycles in T ′ are also cycles in T . Then,368

we can add a set of |A(T ) ∩ E| cycles obtained from the second property of Lemma 13 to369

these k − |A(T ) ∩ E| cycles to get k cycles in T . Conversely, consider a set of k cycles in370
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T . As argued earlier, we know that the number of cycles that have an arc that is in E is at371

most |A(T ) ∩E|. The remaining cycles (at least k − |A(T ) ∩E| of them) do not contain any372

arc that is in E, in particular, they do not contain any arc from A(T ) ∩ E. Therefore, these373

cycles are also cycles in T ′. J374

Thus, we have the following result.375

I Theorem 15. ACT admits a kernel with O(k) vertices.376

Proof. Let (T, k) denote the instance obtained from the input instance by applying Reduction377

Rule 4.1 exhaustively. From Lemma 12, we know that either T has k arc-disjoint triangles or378

has an FAS of size at most 5(k − 1) that can be obtained in polynomial time. In the first379

case, we return a trivial yes-instance of constant size as the kernel. In the second case, let F380

be the FAS of size at most 5(k − 1) of T . Let (σ(T ),A(T )) be the linear representation of T381

where σ(T ) is a topological ordering of the vertices of the directed acyclic graph T − F . As382

V (T − F ) = V (T ), |A(T )|≤ 5(k − 1). If |V (T )|≥ 10k − 9, then from Lemma 13, there is a383

partition of V (T ) into intervals with the specified properties. Therefore, Reduction Rule 4.2384

is applicable (and the parameter drops by at least 1). When we obtain an instance where385

neither of the Reduction Rules 4.1 and 4.2 is applicable, it follows that the tournament in386

that instance has at most 10k vertices. J387

Finally, we show that ACT can be solved in O?(2O(k log k)) time. The idea is to reduce388

the problem to the following Arc-Disjoint Paths problem in directed acyclic graphs:389

given a digraph D on n vertices and k ordered pairs (s1, t1), . . . , (sk, tk) of vertices of D, do390

there exist arc-disjoint paths P1, . . . , Pk in D such that Pi is a path from si to ti for each391

i ∈ [k]? On directed acyclic graphs, Arc-Disjoint Paths is known to be NP-complete392

[23], W[1]-hard [43] with respect to k as parameter and solvable in nO(k) time [28]. Despite393

its fixed-parameter intractability, we will show that we can use the nO(k) algorithm and394

Theorems 12 and 15 to describe an FPT algorithm for ACT.395

I Theorem 16. ACT can be solved in O?(2O(k log k)) time.396

Proof. Consider an instance (T, k) of ACT. Using Theorem 15, we obtain a kernel I = (T̂ , k̂)397

such that T̂ has O(k) vertices. Further, k̂ ≤ k. By definition, (T, k) is an yes-instance if398

and only if (T̂ , k̂) is an yes-instance. Using Theorem 12, we know that T̂ either contains399

k̂ arc-disjoint triangles or has an FAS of size at most 5(k̂ − 1) that can be obtained in400

polynomial time. If Theorem 12 returns a set of k̂ arc-disjoint triangles in T̂ , then we declare401

that (T, k) is an yes-instance.402

Otherwise, let F̂ be the FAS of size at most 5(k̂ − 1) returned by Theorem 12. Let403

D denote the (acyclic) digraph obtained from T̂ by deleting F̂ . Observe that D has O(k)404

vertices. Suppose T̂ has a set C = {C1, . . . , Ck̂} of k̂ arc-disjoint cycles. For each C ∈ C, we405

know that A(C) ∩ F̂ 6= ∅ as F̂ is an FAS of T̂ . We can guess that subset F of F̂ such that406

F = F̂ ∩A(C). Then, for each cycle Ci ∈ C, we can guess the arcs Fi from F that it contains407

and also the order πi in which they appear. This information is captured as a partition F of408

F into k̂ sets, F1 to F
k̂
and the set {π1, . . . , πk̂} of permutations where πi is a permutation409

of Fi for each i ∈ [k̂]. Any cycle Ci that has Fi ⊆ F contains a (v, x)-path between every410

pair (u, v), (x, y) of consecutive arcs of Fi with arcs from A(D). That is, there is a path411

from h(π−1
i (j)) and t(π−1

i ((j + 1) mod |Fi|)) with arcs from D for each j ∈ [|Fi|]. The total412

number of such paths in these k̂ cycles is O(|F |) and the arcs of these paths are contained in413

D which is a (simple) directed acyclic graph.414
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The number of choices for F is 2|F̂ | and the number of choices for a partition F =415

{F1, . . . , Fk̂} of F and a set X = {π1, . . . , πk̂} of permutations is 2O(|F̂ |log|F̂ |). Once such a416

choice is made, the problem of finding k̂ arc-disjoint cycles in T̂ reduces to the problem of417

finding k̂ arc-disjoint cycles C = {C1, . . . , Ck̂} in T̂ such that for each 1 ≤ i ≤ k̂ and for each418

1 ≤ j ≤ |Fi|, Ci has a path Pij between h(π−1
i (j)) and t(π−1

i ((j + 1) mod |Fi|)) with arcs419

from D = T̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in D and420

can be solved in |V (D)|O(r) time using the algorithm in [28]. Therefore, the overall running421

time of the algorithm is O?(2O(k log k)) as |V (D)|= O(k) and r = O(k). J422

5 Parameterized Complexity of ATT423

It is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]424

for packing subgraphs of bounded size, and in particular for ATT. Moreover, using matching425

techniques, we also provide a kernel with a linear number of vertices.426

In this section, we provide an FPT algorithm and a linear vertex kernel for ATT. First,427

it is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique428

[5] for packing subgraphs of bounded size.429

I Theorem 17. ATT can be solved in O?(2O(k)) time.430

Proof. Consider an instance I = (T, k) of ATT. Let n denote |V (T )| and m denote |A(T )|.431

Let F denote the family of colouring functions c : A(T ) → [3k] of size 2O(k) log2m that432

can be computed in O?(2O(k)) time using 3k-perfect family of hash functions [?]. For each433

colouring function c in F , we colour A(T ) according to c and find a triangle packing of size434

k whose arcs use different colours. We use a standard dynamic programming routine to435

finding such a triangle packing. Clearly, if I is an yes-instance and C is a set of k arc-disjoint436

triangles in T , there is a colouring function in F that colours the 3k arcs in these triangles437

with distinct colours and our algorithm will find the required triangle packing. Given a438

colouring c ∈ F , we first compute for every set of 3 colours {a, b, c} whether the arcs coloured439

with a, b or c induce a triangle using 3 different colours or not. Then, for every set S of440

3(p+ 1) colours with p ∈ [k − 1], we recursively test if the arcs coloured with the colours in441

S induce p+ 1 arc-disjoint triangles whose arcs use all the colours of S. This is achieved by442

iterating over every subset {a, b, c} of S and checking if there is a triangle using colours a, b443

and c and a collection of p arc-disjoint triangles whose arcs use all the colours of S \ {a, b, c}.444

For a given S, we can find this collection of triangles in O(p3) = O(k3) time. Therefore, the445

overall running time of the algorithm is O?(2O(k)). J446

Next, we show that ATT has a linear vertex kernel.447

I Theorem 18. ATT admits a kernel with O(k) vertices.448

Proof. Let X be a maximal collection of arc-disjoint triangles of a tournament T obtained449

greedily. Let VX denote the vertices of the triangles in X and AX denote the arcs of VX .450

Let U be the remaining vertices of V (T ), i.e., U = V (T ) \ VX . If |X |≥ k, then (T, k) is an451

yes-instance of ATT. Otherwise, |X |< k and |VX |< 3k. Moreover, notice that T [U ] is acyclic452

and T does not contain a triangle with one vertex in VX and two in vertices in U (otherwise453

X would not be maximal).454

Let B be the (undirected) bipartite graph defined by V (B) = AX ∪ U and E(B) =455

{au: a ∈ AX , u ∈ U such that (t(a), h(a), u) forms a triangle in T}. Let M be a maximum456

matching of B and A′ (resp. U ′) denote the vertices of AX (resp. U) covered by M . Define457

A′ = AX \A′ and U ′ = U \ U ′.458
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We now prove that (VX ∪ U ′, k) is a linear kernel of (T, k). Let C be a maximum sized459

triangle packing that minimizes the number of vertices of U ′ belonging to a triangle of C. By460

previous remarks, we can partition C into CX ∪ F where CX are the triangles of C included461

in T [VX ] and F are the triangles of C containing one vertex of U and two vertices of VX . It462

is clear that F corresponds to a union of vertex-disjoint stars of B with centres in U . Denote463

by U [F ] the vertices of U clause gadget g to a triangle of F . If U [F ] ⊆ U ′ then (VX ∪ U ′, k)464

is immediately a kernel. Suppose there exists a vertex x0 such that x0 ∈ U [F ] ∩ U ′.465

We will build a tree rooted in x0 with edges alternating between F and M . For this let466

H0 = {x0} and construct recursively the sets Hi+1 such that467

Hi+1 =
{
NF (Hi) if i is even,
NM (Hi) if i is odd,468

where, given a subset S ⊆ U , NF (S) = {a ∈ AX :∃s ∈ S s.t. (t(a), h(a), s) ∈ F and as /∈M}469

and given a subset S ⊆ AX , NM (S) = {u ∈ U :∃a ∈ AX s.t. au ∈M}. Notice that Hi ⊆ U470

when i is even and that Hi ⊆ AX when i is odd, and that all the Hi are distinct as F is a471

union of disjoint stars and M a matching in B. Moreover, for i ≥ 1 we call Ti the set of edges472

between Hi and Hi−1. Now we define the tree T such that V (T ) =
⋃
iHi and E(T ) =

⋃
i Ti.473

As Ti is a matching (if i is even) or a union of vertex-disjoint stars with centres in Hi−1 (if i474

is odd), it is clear that T is a tree.475

For i being odd, every vertex of Hi is incident to an edge of M otherwise B would contain476

an augmenting path for M , a contradiction. So every leaf of T is in U and incident to an477

edge of M in T and T contains as many edges of M than edges of F . Now for every arc478

a ∈ AX ∩ V (T ) we replace the triangle of C containing a and corresponding to an edge of F479

by the triangle (t(a), h(a), u) where au ∈M (and au is an edge of T ). This operation leads480

to another collection of arc-disjoint triangles with the same size as C but containing a strictly481

smaller number of vertices in U ′, yielding a contradiction.482

Finally VX ∪U ′ can be computed in polynomial time and we have |VX ∪U ′|≤ |VX |+|M |≤483

2|VX |≤ 6k, which proves that the kernel has O(k) vertices. J484

6 Concluding Remarks485

In this work, we studied the classical and parameterized complexity of packing arc-disjoint486

cycles and triangles in tournaments. We showed NP-hardness, fixed-parameter tractability487

and linear kernelization results. An interesting problem could be to find subclasses of488

tournaments where these problems are polynomial-time solvable. For instance, we show489

in the full version of the paper that it is the case for sparse tournaments, that is for490

tournaments which admit an FAS that is a matching. This class of tournaments is worthy of491

attention for these packing problems as packing vertex-disjoint triangles (and hence cycles)492

in sparse tournaments is NP-complete [8]. To conclude, observe that very few problems on493

tournaments are known to admit an O?(2
√
k)-time algorithm when parameterized by the494

standard parameter k [42] - FAST is one of them [4, 24]. To the best of our knowledge,495

outside bidimensionality theory, there are no packing problems that are known to admit such496

subexponential algorithms. In light of the 2o(
√
k) lower bound shown for ACT and ATT, it497

would be interesting to explore if these problems admit O?(2O(
√
k)) algorithms.498
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Abstract24

A tournament is a directed graph in which there is a single arc between every pair of distinct25

vertices. Given a tournament T on n vertices, we explore the classical and parameterized com-26

plexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint27

cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We28

refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint29

Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT30

can be seen as the linear programming dual of the well-studied problem of finding a minimum31

feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, sur-32

prisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are33

both NP-complete. Then, we show that the problem of determining if a tournament has a cycle34

packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT is35

fixed-parameter tractable and admits a polynomial kernel when parameterized by k. In particu-36

lar, we show that ACT has a kernel with O(k) vertices and can be solved in 2O(k log k)nO(1) time.37

Then, we show that ATT too has a kernel with O(k) vertices and can be solved in 2O(k)nO(1)38

time. Afterwards, we describe polynomial-time algorithms for ACT and ATT when the input39

tournament has a feedback arc set that is a matching. We also prove that ACT and ATT cannot40

be solved in 2O(
√
k)nO(1) time under the Exponential-Time Hypothesis.41
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1 Introduction46

Given a (directed or undirected) graph G and a positive integer k, the Disjoint Cycle47

Packing problem is to determine whether G has k (vertex or arc/edge) disjoint (directed48

or undirected) cycles. Packing disjoint cycles is a fundamental problem in Graph Theory49

and Algorithm Design with applications in several areas. Since the publication of the classic50

Erdős-Pósa theorem in 1965 [26], this problem has received significant scientific attention in51

various algorithmic realms. In particular, Vertex-Disjoint Cycle Packing in undirected52

graphs is one of the first problems studied in the framework of parameterized complexity.53

In this framework, each problem instance is associated with a non-negative integer k called54

parameter, and a problem is said to be fixed-parameter tractable (FPT) if it can be solved in55

f(k)nO(1) time for some computable function f , where n is the input size. For convenience,56

the running time f(k)nO(1) where f grows super-polynomially with k is denoted as O?(f(k)).57

A kernelization algorithm is a polynomial-time algorithm that transforms an arbitrary instance58

of the problem to an equivalent instance of the same problem whose size is bounded by some59

computable function g of the parameter of the original instance. The resulting instance is60

called a kernel and if g is a polynomial function, then it is called a polynomial kernel and61

we say that the problem admits a polynomial kernel. A decidable parameterized problem62

is FPT if and only if it has a kernel (not necessarily of polynomial size). Kernelization63

typically involves applying a set of rules (called reduction rules) to the given instance to64

produce another instance. A reduction rule is said to be safe if it is sound and complete,65

i.e., applying it to the given instance produces an equivalent instance. In order to classify66

parameterized problems as being FPT or not, the W-hierarchy is defined: FPT ⊆ W[1] ⊆67

W[2] ⊆ . . . ⊆ XP. It is believed that the subset relations in this sequence are all strict, and a68

parameterized problem that is hard for some complexity class above FPT in this hierarchy69

is said to be fixed-parameter intractable. As mentioned before, the set of parameterized70

problems that admit a polynomial kernel is contained in the class FPT and it is believed71

that this subset relation is also strict. Further details on parameterized algorithms can be72

found in [21, 24, 29, 31].73

Vertex-Disjoint Cycle Packing in undirected graphs is FPT with respect to the74

solution size k [12, 43] but has no polynomial kernel unless NP ⊆ coNP/poly [13]. In contrast,75

Edge-Disjoint Cycle Packing in undirected graphs admits a kernel with O(k log k)76

vertices (and is therefore FPT) [13]. On directed graphs, these problems have many practical77

applications (for example in biology [14, 23]) and they have been extensively studied [7, 40, 44].78

It turns out that Vertex-Disjoint Cycle Packing and Arc-Disjoint Cycle Packing79

are equivalent and are W[1]-hard [39, 52]. Therefore, studying these problems on a subclass80

of directed graphs is a natural direction of research. Tournaments form a mathematically81

rich subclass of directed graphs with interesting structural and algorithmic properties [6, 46].82

A tournament is a directed graph in which there is a single arc between every pair of distinct83

vertices. Tournaments have several applications in modeling round-robin tournaments and in84

the study of voting systems and social choice theory [34, 36, 42]. Further, the combinatorics85

of inclusion relations of tournaments is reasonably well-understood [16]. A seminal result in86

the theory of undirected graphs is the Graph Minor Theorem (also known as the Robertson87
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and Seymour theorem) that states that undirected graphs are well-quasi-ordered under the88

minor relation [50]. Developing a similar theory of inclusion relations of directed graphs89

has been a long-standing research challenge. However, there is such a result known for90

tournaments that states that tournaments are well-quasi-ordered under the strong immersion91

relation [16]. This is another reason why tournaments is one of the most well-studied classes92

of directed graphs. In fact, this result on containment theory also holds for a superclass93

of tournaments, namely, semicomplete digraphs [8]. A semicomplete digraph is a directed94

graph in which there is at least one arc between every pair of distinct vertices. Many results95

(including some of the ones described in this work) for tournaments straightaway hold for96

semicomplete digraphs too.97

Feedback Vertex Set and Feedback Arc Set are two well-explored algorithmic98

problems on tournaments. A feedback vertex (arc) set is a set of vertices (arcs) whose99

deletion results in an acyclic graph. Given a tournament, MinFAST and MinFVST are the100

problems of obtaining a feedback arc set and feedback vertex set of minimum size, respectively.101

We refer to the corresponding decision version of the problems as FAST and FVST. The102

optimization problems MinFAST and MinFVST have numerous practical applications in103

the areas of voting theory [22, 42], machine learning [18], search engine ranking [25] and104

have been intensively studied in various algorithmic areas. MinFAST and MinFVST are105

NP-hard [3, 15, 19, 53] while FAST and FVST are FPT when parameterized by the solution106

size k [4, 28, 30, 36, 49]. Further, FAST has a kernel with O(k) vertices [11] and FVST107

has a kernel with O(k1.5) vertices [41]. Surprisingly, the duals (in the linear programming108

sense) of MinFAST and MinFVST have not been considered in the literature until recently.109

Any tournament that has a cycle also has a triangle [7]. Therefore, if a tournament has k110

vertex-disjoint cycles, then it also has k vertex-disjoint triangles. Thus, Vertex-Disjoint111

Cycle Packing in tournaments is just packing vertex-disjoint triangles. This problem is112

NP-hard [9]. A straightforward application of the colour coding technique [5] shows that113

this problem is FPT and a kernel with O(k2) vertices is an immediate consequence of the114

quadratic element kernel known for 3-Set Packing [1]. Recently, a kernel with O(k1.5)115

vertices was shown for this problem using interesting variants and generalizations of the116

popular expansion lemma [41].117

It is easy to verify that a tournament that has k arc-disjoint cycles need not necessarily118

have k arc-disjoint triangles. This observation hints that packing arc-disjoint cycles could119

be significantly harder than packing vertex-disjoint cycles. Further, it also hints that the120

problems of packing arc-disjoint cycles and arc-disjoint triangles in tournaments could have121

different complexities. This is the starting point of our study. Subsequently, we refer to122

a set of pairwise arc-disjoint cycles as a cycle packing and a set of pairwise arc-disjoint123

triangles as a triangle packing. Given a tournament, MaxACT and MaxATT are the124

problems of obtaining a maximum set of arc-disjoint cycles and triangles, respectively. We125

refer to the corresponding decision version of the problems as ACT and ATT. Formally,126

given a tournament T and a positive integer k, ACT is the task of determining if T has127

k arc-disjoint cycles and ATT is the task of determining if T has k arc-disjoint triangles.128

MaxATT is a special case of 3-Set Packing, by creating the hypergraph on the arc set129

of the tournament and each triangle becomes a hyperedge. The 3-Set Packing problem130

admits a 4
3 + ε approximation [20], implying the same result for MaxATT. From a structural131

point of view, the problem of partitioning the arc set of a directed graph into a collection of132

triangles has been studied for regular tournaments [55], almost regular tournaments [2] and133

complete digraphs [33]. In this work, we study the classical complexity of MaxACT and134

MaxATT and the parameterized complexity of ACT and ATT with respect to the solution135

CVIT 2016

594



23:4 Packing Arc-Disjoint Cycles in Tournaments

size (i.e. the number k of cycles/triangles) as parameter. First, we show that MaxACT136

and MaxATT are NP-hard. Then, we show that ACT is FPT and admits a linear vertex137

kernel when parameterized by k. Next, we show that ATT is FPT and admits a linear138

vertex kernel when parameterized by k. Finally, we show that MaxACT and MaxATT are139

polynomial-time solvable on sparse tournaments (tournaments that have a feedback arc set140

that is a matching). This class of tournaments is interesting for cycle packing problems and141

packing vertex-disjoint triangles (and hence cycles) in sparse tournaments is NP-complete [9].142

In particular, we show the following results.143

MaxATT and MaxACT are NP-hard (Theorems 4 and 6). As a consequence, we also144

show that ACT and ATT do not admit algorithms with O?(2o(
√
k)) running time under145

the Exponential-Time Hypothesis (Theorem 10). Moreover, deciding if a tournament has146

a cycle packing and a feedback arc set of the same size is NP-complete (Theorem 9).147

A tournament T has k arc-disjoint cycles if and only if T has k arc-disjoint cycles each of148

length at most 2k + 1 (Theorem 11).149

ACT can be solved in O?(2O(k log k)) time (Theorem 17) and admits a kernel with O(k)150

vertices (Theorem 16).151

ATT can be solved in O?(2O(k)) time (Theorem 18) and admits a kernel with O(k)152

vertices (Theorem 19).153

MaxATT and MaxACT restricted to sparse tournaments is polynomial-time solvable154

(Theorem 22).155

Road Map. The paper is organized as follows. In Section 2, we give some definitions related156

to directed graphs, paths, cycles and tournaments. In Section 3, we show the result on the157

NP-hardness of the problems considered. In Section 4, we show the parameterized complexity158

results of ACT. Then, in Section 5, we show the parameterized complexity results of ATT.159

Then, we show the polynomial-time solvability of MaxATT and MaxACT restricted to160

sparse tournaments in Section 6. Finally, we conclude with some remarks in Section 7.161

2 Preliminaries162

We denote the set {1, 2, . . . , n} of consecutive integers from 1 to n by [n].163

Directed Graphs. A directed graph (or digraph) is a pair consisting of a set V of vertices164

and a set A of arcs. An arc is specified as an ordered pair of vertices (called its endpoints).165

We will consider only simple unweighted digraphs. For a digraph D, V (D) and A(D) denote166

the set of its vertices and the set of its arcs, respectively. Two vertices u, v are said to167

be adjacent in D if uv ∈ A(D) or vu ∈ A(D). For an arc e = uv, we define h(e) = v as168

the head of e and t(e) = u as the tail of e. For a vertex v ∈ V (D), its out-neighbourhood,169

denoted by N+(v), is the set {u ∈ V (D): vu ∈ A(D)} and its in-neighbourhood, denoted by170

N−(v), is the set {u ∈ V (D):uv ∈ A(D)}. For a set F of arcs, V (F ) denotes the union171

of the sets of endpoints of arcs in F . Given a digraph D and a subset X of vertices, we172

denote by D[X] the digraph induced by the vertices in X. Moreover, we denote by D \X173

the digraph D[V (D) \X] and say that this digraph is obtained by deleting X from D. For a174

set F ⊆ A(D), D − F denotes the digraph obtained from D by deleting F .175

Paths and Cycles. A path P in a digraph D is a sequence (v1, . . . , vk) of distinct vertices176

such that for each i ∈ [k − 1], vivi+1 ∈ A(D). The set {v1, . . . , vk} is denoted by V (P ) and177

the set {vivi+1: i ∈ [k− 1]} is denoted by A(P ). A path P = (v1, . . . , vk) is called an induced178

(or chordless) path if A(P ) are the only arcs of D[V (P )]. A cycle C in D is a sequence179

(v1, . . . , vk) of distinct vertices such that (v1, . . . , vk) is a path and vkv1 ∈ A(D). The set180
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{v1, . . . , vk} is denoted by V (C) and the set {vivi+1: i ∈ [k−1]}∪{vkv1} is denoted by A(C).181

A cycle C = (v1, . . . , vk) is called an induced (or chordless) cycle if A(C) are the only arcs182

of D[V (C)]. The length of a path or cycle X is the number of vertices in it and is denoted183

by |X|. For a set C of paths or cycles, V (C) denotes the set {v ∈ V (D):∃C ∈ C, v ∈ V (C)}184

and A(C) denotes the set {e ∈ A(D):∃C ∈ C, e ∈ A(C)}. A cycle on three vertices is called185

a triangle. A digraph is said to be triangle-free if it has no triangles. A set of pairwise186

arc-disjoint cycles is called a cycle packing and a set of pairwise arc-disjoint triangles is called187

a triangle packing. A digraph is called a directed acyclic graph if it has no cycles. A feedback188

arc set (FAS) is a set of arcs whose deletion results in an acyclic graph. For a digraph D,189

let minfas(D) denote the size of a minimum FAS of D. Any directed acyclic graph D has190

an ordering σ(D) = (v1, . . . , vn) called topological ordering of its vertices such that for each191

vivj ∈ A(D), i < j holds. Given an ordering σ and two vertices u and v, we write u <σ v if192

u is before v in σ.193

Tournaments. A tournament T is a digraph in which for every pair u, v of distinct vertices194

either uv ∈ A(T ) or vu ∈ A(T ) but not both. In other words, a tournament T on n vertices195

is an orientation of the complete graph Kn. A tournament T can alternatively be defined by196

an ordering σ(T ) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T ) (which will197

be denoted A(T ) as the considered ordering is not ambiguous), where each arc a ∈ A(T ) is of198

the form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we define V (T ) = {vi : i ∈ [n]}199

and A(T ) = A(T ) ∪ A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is the set200

of forward arcs of T in the given ordering σ(T ). The pair (σ(T ),A(T )) is called a linear201

representation of the tournament T . A tournament is called transitive if it is a directed202

acyclic graph and a transitive tournament has a unique topological ordering. It is clear that203

for any linear representation (σ(T ),A(T )) of T the set A(T ) is an FAS of T . A tournament204

is sparse if it admits an FAS which is a matching. Given a linear representation (σ(T ),A(T ))205

of a tournament T , a triangle C in T is a triple (vi1 , vi2 , vi3) with il < il+1 such that either206

vi3vi1 ∈ A(T ), vi3vi2 /∈ A(T ) and vi2vi1 /∈ A(T ) (in this case we call C a triangle with207

backward arc vi3vi1), or vi3vi1 /∈ A(T ), vi3vi2 ∈ A(T ) and vi2vi1 ∈ A(T ) (in this case we208

call C a triangle with two backward arcs vi3vi2 and vi2vi1). Given two tournaments T1, T2209

defined by σ(Tl) and A(Tl) with l ∈ {1, 2}, we denote by T = T1T2 the tournament called210

the concatenation of T1 and T2, where V (T ) = V (T2) ∪ V (T2), σ(T ) = σ(T1)σ(T2) is the211

concatenation of the two sequences, and A(T ) = A(T1) ∪A(T2).212

3 NP-hardness of MaxACT and MaxATT213

This section contains our main results. We prove the NP-hardness of MaxATT using a214

reduction from 3-SAT(3). Recall that 3-SAT(3) corresponds to the specific case of 3-SAT215

where each clause has at most three literals, and each literal appears at most two times216

positively and exactly one time negatively. In the following, denote by F the input formula217

of an instance of 3-SAT(3). Let n be the number of its variables and m be the number of218

its clauses. We may suppose that n ≡ 3 (mod 6). If it is not the case, we can add up to 5219

unused variables x with the trivial clause x ∨ x. This operation guarantees us we keep the220

hypotheses of 3-SAT(3). We can also assume that m+ 1 ≡ 3 (mod 6). Indeed, if it not the221

case, we add 6 new unused variables x1, . . . , x6 with the 6 trivial clauses xi ∨ xi, and the222

clause x1 ∨ x2. This padding process keep both the 3-SAT(3) structure and n ≡ 3 (mod 6).223

From F we construct a tournament T which is the concatenation of two tournaments Tv and224

Tc defined below.225
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ri x̄i x1
i

si x2
i ti

Figure 1 The variable gadget Vi. Only backward arcs are depicted, so all the remaining arcs are
forward arcs.

In the following, let f be the reduction that maps an instance F of 3-SAT(3) to a226

tournament T we describe now.227

The variable tournament Tv. For each variable vi of F , we define a tournament Vi of228

order 6 as follows: σi(Vi) = (ri, x̄i, x1
i , si, x

2
i , ti) and Aσ(Vi) = {siri, tix1

i }. Figure 1 is a229

representation of one variable gadget Vi. One can notice that the minimum FAS of Vi230

corresponds exactly to the set of its backward arcs. We now define V (Tv) be the union231

of the vertex sets of the Vis and we equip Tv with the order σ1σ2 . . . σn. Thus, Tv has 6n232

vertices. We also add the following backward arcs to Tv. Since n ≡ 3 (mod 6), there is an233

edge-disjoint (undirected) triangle packing of Kn covering all its edges with triangles that234

can be computed in polynomial time [37]. Let {u1, . . . , un} be an arbitrary enumeration of235

the vertices of Kn. Using a perfect triangle packing ∆Kn of Kn, we create a tournament236

TKn
such that σ′(TKn

) = (u1, . . . , un) and Aσ′(TKn
) = {ukui : (ui, uj , uk) is a triangle of237

∆Kn
with i < j < k}. Now we set Aσ(Tv) = {xy : x ∈ V (Vi), y ∈ V (Vj) for i 6= j and238

ujui ∈ Aσ′(TKn
)}∪⋃ni=1Aσ(Vi). In some way, we “blew up” every vertex ui of TKn

into our239

variable gadget Vi.240

The clause tournament Tc. For each of them clauses cj of F , we define a tournament Cj of241

order 3 as follows: σ(Cj) = (c1j , c2j , c3j ) and Aσ(Cj) = ∅. In addition, we have a (m+1)th tour-242

nament denoted by Cm+1 and defined by σ(Cm+1) = (c1m+1, c
2
m+1, c

3
m+1) and Aσ(Cm+1) =243

{c3m+1c
1
m+1}, that is Cm+1 is a triangle. We call this triangle the dummy triangle , and its ver-244

tices the dummy vertices. We now define Tc such that σ(Tc) is the concatenation of each order-245

ing σ(Cj) in the natural order, that is σ(Tc) = (c11, c21, c31, . . . , c1m, c2m, c3m, c1m+1, c
2
m+1, c

3
m+1).246

So Tc has 3(m+ 1) vertices. Since m+ 1 ≡ 3 (mod 6), we use the same trick as above to247

add arcs to Aσ(Tc) coming from a perfect packing of undirected triangles of Km+1. Once248

again, we “blew up” every vertex uj of TKm+1 into our clause gadget Cj .249

The tournament T . To define our final tournament T let us begin with its ordering σ250

defined by σ(T ) = σ(Tv)σ(Tc). Then we construct Avc(T ) the backward arcs between Tc251

and Tv. For any j ∈ [m], if the clause cj in F has three literals, that is cj = `1 ∨ `2 ∨ `3,252

then we add to Avc(T ) the three backward arcs c3jzu where u ∈ [3] and such that zu = x̄iu253

when `u = v̄iu , and zu ∈ {x1
iu
, x2
iu
} when `u = viu in such a way that for any i ∈ [n], there254

exists a unique arc a ∈ Avc(T ) with h(a) = x1
i . Informally, in the previous definition, if x1

iu
255

is already “used” by another clause, we chose zu = x2
iu
. Such an orientation will always be256

possible since each variable occurs at most two times positively and once negatively in F . If257

the clause cj in F has only two literals, that is cj = `1 ∨ `2, then we add in Avc(T ) the two258

backward arcs c2jzu where u ∈ [2] and such that zu = x̄iu when `u = v̄iu and zu ∈ {x1
iu
, x2
iu
}259

when `u = viu in such a way that for any i ∈ [n], there exists a unique arc a ∈ Avc(T ) with260

h(a) = x1
i .261

Finally, we add in Avc(T ) the backward arcs cum+1x̄i for any u ∈ [3] and i ∈ [n]. These arcs262

are called dummy arcs. We set Aσ(T ) = Aσ(Tv) ∪Aσ(Tc) ∪Avc(T ). Notice that each x̄i has263
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r1 x̄1 x1
1
s1 x2

1 t1 r2 x̄2 x1
2
s2 x2

2 t2 r3 x̄3 x1
3
s3 x2

3 t3 c11 c21 c31 c12 c22 c32

c13 c23 c33

Figure 2 Example of reduction obtained when F = {c1, c2} where c1 = v̄1 ∨ v2 ∨ v̄3 and
c2 = v1 ∨ v̄2 ∨ v3. Forward arcs are not depicted. In addition to the depicted backward arcs, we
have the 36 backward arcs from V3 to V1, and the 9 backward arcs from C3 to C1.

exactly four arcs a ∈ Aσ(T ) such that h(a) = x̄i and t(a) is a vertex of Tc. To finish the264

construction, notice also that T has 6n+3(m+1) vertices and can be computed in polynomial265

time. Figure 2 is an example of the tournament obtained from a trivial 3-SAT(3) instance.266

Now, we move on to proving the correctness of the reduction. First of all, observe that in267

each variable gadget Vi, there are only four triangles: let δ1
i , δ2

i , δ3
i and δ4

i be the triangles268

(ri, x̄i, si), (ri, x1
i , si), (x1

i , si, ti) and (x1
i , x

2
i , ti), respectively. Moreover, notice that there are269

only three maximal triangle packings of Vi which are {δ1
i , δ

3
i }, {δ1

i , δ
4
i } and {δ2

i , δ
4
i }. We call270

these packings ∆>i , ∆>′i and ∆⊥i , respectively.271

Given a triangle packing ∆ of T and a subset X of vertices, we define for any x ∈ X272

the ∆-local out-degree of the vertex x, denoted d+
X\∆(x), as the remaining out-degree273

of x in T [X] when we remove the arcs of the triangles of ∆. More formally, we set:274

d+
X\∆(x) = |{xa: a ∈ X,xa ∈ A[X], xa /∈ A(∆)}|.275

I Remark. Given a variable gadget Vi, we have:276

(i) d+
Vi\∆>i

(x1
i ) = d+

Vi\∆>i
(x2
i ) = 1 and d+

Vi\∆>i
(x̄i) = 3,277

(ii) d+
Vi\∆>′i

(x1
i ) = 1, d+

Vi\∆>′i

(x2
i ) = 0 and d+

Vi\∆>′i

(x̄i) = 3,278

(iii) d+
Vi\∆⊥i

(x1
i ) = d+

Vi\∆⊥i
(x2
i ) = 0 and d+

Vi\∆⊥i
(x̄i) = 4,279

(iv) none of x̄ix1
i , x̄ix2

i , x̄iti belongs to ∆>i or ∆⊥i .280

Informally, we want to set the variable xi to true (resp. false) when one of the locally-281

optimal ∆>′i or ∆>i (resp. ∆⊥i ) is taken in the variable gadget Vi in the global solution. Now282

given a triangle packing ∆ of T , we partition ∆ into the following sets:283

∆V,V,V = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Vk with i < j < k},284

∆V,V,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Ck with i < j},285

∆V,C,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Cj , c ∈ Ck with j < k},286

∆C,C,C = {(a, b, c) ∈ ∆ : a ∈ Ci, b ∈ Cj , c ∈ Ck with i < j < k},287

∆2V,C = {(a, b, c) ∈ ∆ : a, b ∈ Vi, c ∈ Cj},288

∆V,2C = {(a, b, c) ∈ ∆ : a ∈ Vi, b, c ∈ Cj},289

∆3V = {(a, b, c) ∈ ∆ : a, b, c ∈ Vi},290

∆3C = {(a, b, c) ∈ ∆ : a, b, c ∈ Ci}.291

Notice that in T , there is no triangle with two vertices in a variable gadget Vi and its292

third vertex in a variable gadget Vj with i 6= j since all the arcs between two variable gadgets293

are oriented in the same direction. We have the same observation for clauses.294

In the two next lemmas, we prove some properties concerning the solution ∆.295
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I Lemma 1. There exists a triangle packing ∆v (resp. ∆c) which uses exactly the arcs between296

distinct variable gadgets (resp. clause gadgets). Therefore, we have |∆V,V,V |≤ 6n(n− 1) and297

|∆C,C,C |≤ 3m(m+ 1)/2 and these bounds are tight.298

Proof. First recall that the tournament Tv is constructed from a tournament TKn
which299

admits a perfect packing of n(n− 1)/6 triangles. Then we replaced each vertex ui in TKn300

by the variable gadget Vi and kept all the arcs between two variable gadgets Vi and Vj in301

the same orientation as between ui and uj . Let uiujuk be a triangle of the perfect packing302

of TKn
. We temporally relabel the vertices of Vi, Vj and Vk respectively by {fi: i ∈ [6]},303

{gi: i ∈ [6]} and {hi: i ∈ [6]} and consider the tripartite tournament K6,6,6 given by304

V (K6,6,6) = {fi, gi, hi: i ∈ [6]} and A(K6,6,6) = {figj , gihj , hifj : i, j ∈ [6]}. Then it is easy305

to check that {(fi, gj , hi+j (mod 6)): i, j ∈ [6]} is a perfect triangle packing of K6,6,6. Since306

every triangle of TKn becomes a K6,6,6 in Tv, we can find a triangle packing ∆v which use307

all the arcs between disjoint variable gadgets. We use the same reasoning to prove that there308

exists a triangle packing ∆c which use all the arcs available in Tc between two distinct clause309

gadget. J310

I Lemma 2. For any triangle packing ∆ of the tournament T , we have the following311

inequalities:312

(i) |∆V,V,V |+|∆C,C,C |≤ 6n(n− 1) + 3m(m+ 1)/2,313

(ii) |∆2V,C |+|∆V,2C |+|∆V,C,C |+|∆V,V,C |≤ |Avc(T )|, where |Avc(T )|= |Avc(T )|,314

(iii) |∆3V |≤ 2n,315

(iv) |∆3C |≤ 1.316

Therefore in total we have |∆|≤ 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1.317

Proof. Let ∆ be a triangle packing of T . Recall that we have: |∆|= |∆V,V,V |+ |∆V,V,C |+318

|∆V,C,C |+ |∆C,C,C |+ |∆2V,C |+ |∆V,2C |+ |∆3V |+ |∆3C |. First, inequality (i) comes from319

Lemma 1. Then, we have |∆2V,C |+|∆V,2C |+|∆V,C,C |+|∆V,V,C |≤ |Avc(T )| since every triangle320

of these sets consumes one backward arc from Tc to Tv. We have |∆3V |≤ 2n since we have321

at most 2 disjoint triangles in each variable gadget. Finally we also have |∆3C |≤ 1 since the322

dummy triangle is the only triangle lying in a clause gadget. J323

These two lemmas allow us to prove the following.324

I Lemma 3. F is satisfiable if and only if there exists a triangle packing ∆ of size 6n(n−325

1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1 in the tournament T .326

Proof. First, let suppose that there exists an assignment a of the variables which satisfies F ,327

and let a> (resp. a⊥) be the set of variables set to true (resp. false).328

We construct a triangle packing ∆ of T with the desired number of triangles. First, we329

pick all the disjoint triangles of ∆v and ∆c. By Lemma 2, if we also add the dummy triangle330

(c1m+1, c
2
m+1, c

3
m+1) we have 6n(n− 1) + 3m(m+ 1)/2 + 1 triangles in ∆ until now.331

Then, for any variable vi of the formula F , if vi ∈ a>, then we add in ∆ the triangles332

∆>i . Otherwise, we add ∆⊥i . One can check that in both cases, these triangles are disjoint to333

the triangles we just added. Thus, in each Vi, we made an locally-optimal solution, so we334

added 2n triangles in ∆.335

Now we add in ∆ the triangles (x̄i, ti, c1m+1), (x̄i, x1
i , c

2
m+1) and (x̄i, x2

i , c
3
m+1) which will336

consume all the dummy arcs of the tournament. Recall that in Remark 3 we mentioned337

that the vertices x1
i and x2

i (resp. x̄i) have an ∆>i -local out-degree both equal to 1 (resp.338

∆⊥i -local out-degree equals to 4). Then given a clause cj , let ` be one literal which satisfies339

cj . Assume that the clause is of size 3, since the reasoning is the same for clauses of size 2.340
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If ` is a positive literal, say vi, then let u be the number such that c3jxui is a backward arc341

of T . By Remark 3, we know that there exists v ∈ Vi such that the arc xui v is available to342

make the triangle (xui , v, c3j ). Otherwise, that is if ` is a negative literal, say v̄i, then we have343

d+
Vi\∆⊥i

(x̄i) = 4. Three of these four available arcs are used in the triangles which consume344

the dummy arcs, then we can still make the triangle (x̄i, si, c3j ). Let also `1 and `2 be the two345

other literals of cj (which do not necessarily satisfy cj). Denote by a1 and a2 the vertices of346

Tv connected to c3j corresponding to the literals `1 and `2, respectively. Then we add the347

two following triangles: (a1, c
1
j , c

3
j ) and (a2, c

2
j , c

3
j ). So we used all the backward arc from Tc348

to Tv, and there are no triangles which use two arcs of Avc(T ). Then in the packing ∆ there349

are in total 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1 triangles.350

Conversely let ∆ be a triangle packing of T with |∆|= 6n(n− 1) + 3m(m+ 1)/2 + 2n+351

|Avc(T )|+1. In the same way as we already did before, we partition ∆ into the different subsets352

we defined before. We have |∆|= |∆V,V,V |+|∆V,V,C |+|∆V,C,C |+|∆C,C,C |+|∆2V,C |+|∆V,2C |353

+|∆3V |+|∆3C |. By Lemma 2 all the upper bounds described above are tight, that is:354

|∆V,V,V |+|∆C,C,C |= 6n(n− 1) + 3m(m+ 1)/2,355

|∆2V,C |+|∆V,2C |+|∆V,C,C |+|∆V,V,C |= |Avc(T )|,356

|∆3V |= 2n,357

|∆3C |= 1.358

Let us first prove that |∆V,V,C |+|∆V,C,C |= 0. Let x = |∆V,V,C |+|∆V,C,C |. Since each359

triangle of the sets ∆V,V,C ,∆V,C,C ,∆2V,C and ∆V,2C uses exactly one backward arc of360

Avc(T ), it implies that |∆2V,C |+|∆V,2C |≤ |Avc(T )|−x. Moreover, if x 6= 0, then we have361

|∆V,V,V |< |∆v| or |∆C,C,C |< |∆c| because each triangle in ∆V,V,C (resp. ∆V,C,C) will use one362

arc between two distinct variable gadgets (resp. clause gadgets) and according to Lemma 1, ∆v363

(resp. ∆c) uses all the arcs between distinct variable gadgets (resp. clause gadgets). Finally,364

we always have |∆3V |≤ 2n and |∆3C |≤ 1 by construction. Therefore, if x 6= 0, we have |∆|<365

|∆v|+|∆c|+x+(|Avc(T )|−x)+2n+1 that is |∆|< 6n(n−1)+3m(m+1)/2+2n+ |Avc(T )|+1,366

which is impossible. So we must have x = 0, which implies ∆V,V,C = ∆V,C,C = ∅.367

Since |∆3V |= 2n and we have at most two arc-disjoint triangles in each variable gadget Vi,368

it implies that ∆[Vi] ∈ {∆⊥i ,∆>i ,∆>
′

i }. In the following, we will simply write ∆i instead369

of ∆[Vi]. Let us consider the following assignment a: for any variable vi, if ∆i = ∆⊥i , then370

a(vi) = false and a(vi) = true otherwise. Let us see that the assignment a satisfies the371

formula F . We have just proved that the backward arcs from Tc to Tv are all used in ∆2V,C372

and ∆V,2C . As |∆3C |= 1 the dummy triangle Cm+1 belongs to ∆. So every dummy arc373

cum+1x̄i is contained in a triangle of ∆ which uses an arc of Vi. Therefore in each Vi we have374

d+
Vi\∆i

(x̄i) ≥ 3. Moreover, for each clause of size q with q ∈ {2, 3}, there are q triangles which375

use the backward arcs coming from the clause to variable gadgets. Let Cj be a clause gadget376

of size 3 (we can do the same reasoning if Cj has size 2). By construction the 3 triangles377

cannot all lie in ∆V,2C . Thus, there is at least one of these triangles which is in ∆2V,C . Let t378

be one of them, Vi be the variable gadget where t has two out of its three vertices and x̃ be379

the vertex of Vi which is also the head of the backward arc from Cj to Vi. By construction,380

x̃ corresponds to a literal ` in the clause cj . If ` is positive, then x̃ = x1
i or x̃ = x2

i . In both381

cases, since t has a second vertex in Vi, we have d+
Vi\∆i

(x̃) > 0. Thus, using Figure 3 we382

cannot have ∆i = ∆⊥i so the assignment sets the positive literal ` to true, which satisfies cj .383

Otherwise, ` is negative so x̃ = x̄i. Since x̄i has to use three out-going arcs to consume the384

dummy arcs and one out-going arc to consume t, we have d+
Vi\∆i

(x̄i) ≥ 4 and so ∆i = ∆⊥i385

by Figure 3. Therefore, cj is satisfied in that case too. Thus, the assignment a satisfies the386

whole formula F . J387
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As 3-SAT(3) is NP-hard [47, 54], this directly implies the following theorem.388

I Theorem 4. MaxATT is NP-hard.389

As mentioned in the introduction, packing arc-disjoint cycles is not necessarily equivalent390

to packing arc-disjoint triangles. Thus, we need to establish the following lemma to transfer391

the previous NP-hardness result to MaxACT.392

I Lemma 5. Given a 3-SAT(3) instance F , and T the tournament constructed from F393

with the reduction f , we have a triangle packing ∆ of T of size 6n(n− 1) + 3m(m+ 1)/2 +394

2n+ |Avc(T )|+1 if and only if there is a cycle packing O of the same size.395

Proof. Given a cycle packing O of T of size 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T )|+1,396

we partition it into the following sets:397

OV = {(v1, . . . , vp) ∈ O:∃i ∈ [n],∀k ∈ [p], vk ∈ Vi},398

OC = {(v1, . . . , vp) ∈ O:∃j ∈ [m+ 1],∀k ∈ [p], vk ∈ Cj},399

OV ∗ = {(v1, . . . , vp) ∈ O:∀k ∈ [p],∃i ∈ [n], vk ∈ Vi and (v1, . . . , vp) /∈ OV },400

OC∗ = {(v1, . . . , vp) ∈ O:∀k ∈ [p],∃j ∈ [m+ 1], vk ∈ Cj and (v1, . . . , vp) /∈ OC},401

OV ∗,C∗ = {(v1, . . . , vp) ∈ O:∃i ∈ [n],∃j ∈ [m+ 1],∃k1, k2 ∈ [p], vk1 ∈ Vi, vk2 ∈ Cj}.402

As we did in the previous proof, we begin by finding upper bounds on each of these sets. First,403

recall that the FAS of each Vi is 2. Thus, we have |OV |≤ 2n. By construction, we also have404

|OC |≤ 1. Secondly, notice that a cycle of OV ∗ cannot belong to exactly two distinct variable405

gadgets since the arcs between them are all in the same direction. Thus, the cycles of OV ∗406

have at least three vertices which implies |OV ∗ |≤ 6n(n− 1). We obtain |OC∗ |≤ 3m(m+ 1)/2407

using the same reasoning on OC∗ . Finally, we have |OV ∗,C∗ |≤ |Avc(T )| since each cycle must408

have at least one backward arc.409

Putting these upper bounds together, we obtain that |O|≤ 6n(n− 1) + 3m(m+ 1)/2 +410

2n+ |Avc(T )|+1 which implies that the bounds are tight. In particular, cycles of OV ∗ (resp.411

OC∗) use exactly three arcs that are between distinct variable gadgets (resp. clause gadgets)412

and all these arcs are used. So we can construct a new cycle packing O′ where we replace413

the cycles of OV ∗ and OC∗ by the triangle packings ∆v and ∆c defined in Lemma 1. The414

new solution uses a subset of arcs of O and has the same size.415

The cycles of OV ∗,C∗ use exactly one backward arc of Avc(T ) due to the tight upper416

bound |Avc(T )|. Moreover, by the previous reasoning, two vertices of a cycle of OV ∗,C∗417

cannot belong to two different variable gadgets (resp. clause gadgets). Let Cj be a clause418

gadget which has three literals (if it has only two literals, the reasoning is analogous). Let419

x̃ik ∈ Vik be the head of a backward arc from c3j where k ∈ [3]. By the previous arguments420

each arc c3j x̃ik is contained in a cycle ok of O for k ∈ [3]. There is at least one x̃ik whose421

next vertex in ok, say y, belongs to Vik since Cj has only two other vertices in addition to422

c3j . Without loss of generality, we may assume that x̃i3 is that vertex. Then, we can replace423

o1 and o2 by the triangles (x̃i1 , c1j , c3j) and (x̃i2 , c2j , c3j). The arcs c1jc3j and c2jc3j cannot have424

already been used because Cj is acyclic and we previously consumed all the arcs between425

clause gadgets. In the same way, we replace the cycle o3 by the triangle (x̃i3 , y, c3j ). The arc426

yc3j is available since it could have been used only in the cycle o3.427

We now prove that given a Vi, we can restructure every cycle of OV [Vi] into triangles.428

Recall that OV [Vi] have exactly 2 cycles, and notice that by construction one cannot have429

two cycles each having a size greater than 3. First, if the two cycles are triangles, we are430

done. Then OV [Vi] contains a triangle, say δ, and a cycle, say o, of size greater than 3. If431

o contains the backward arc siri, then by construction o = (ri, x̄i, x1
i , si). In that case, we432

necessary have δ = (x1
i , x

2
i , ti) and we can restructure o in the triangle (ri, x1

i , si). The arc433
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rix
1
i is not contained in O since the only arcs inside Vi we may have imposed until now are434

out-going arcs of x1
i , x

2
i and x̄i. If o contains the backward arc tix1

i , then by construction435

o = (x1
i , si, x

2
i , ti) and t = (ri, x̄i, si). In the same way, we can restructure o into (x1

i , si, ti)436

whose all the arcs are available.437

As OC is already a triangle, T finally has a triangle packing of size 6n(n− 1) + 3m(m+438

1)/2 + 2n+ |Avc(T )|+1. The other direction of the equivalence is straightforward. J439

The previous lemma and Theorem 4 directly imply the following theorem.440

I Theorem 6. MaxACT is NP-hard.441

Let us now define two special cases Tight-ATT (resp. Tight-ACT) where, given a442

tournament T and a linear ordering σ with k backward arcs (where k = minfas(T )), the443

goal is to decide if there is a triangle (resp. cycle) packing of size k. We call these special444

cases the “tight” versions of the classical packing problems because as the input admits an445

FAS of size k, any triangle (or cycle) packing has size at most k. We now prove that we446

can construct in polynomial time an ordering of T , the tournament of the reduction, with k447

backward arcs (where k is the threshold value defined in Lemma 3).448

I Lemma 7. Let T be a tournament constructed by the reduction f , and k be the threshold449

value defined in Lemma 3. Then, we can construct (in polynomial time) an ordering of T450

with k backward arcs implying that T has an FAS of size k.451

Proof. Let us define a linear representation (σ(T ),A(T )) such that |A(T )|= k. Remember452

that since n ≡ 3 (mod 6), the edges of the n-clique Kn can be packed into a packing O of453

n(n−1)/6 (undirected) triangles. Let us first prove that there exists an orientation TKn
of Kn454

and a linear ordering σ of TKn
with |O| backward arcs. Let σ = 1 . . . n. For each undirected455

triangle ijk in O where i < j < k, we set ki ∈ A(TKn) (implying that ij and jk are forward456

arcs). As all edges are used in O this defines an orientation for all edges. Thus, there is457

only |O| backward arcs in σ. Thus, when using the previous orientations TKn to construct458

the variable tournament Tv of the reduction (remember that we blow up each vertex ui into459

6 vertices Vi), we get an ordering with 36n(n − 1)/6 = 6n(n − 1) backward arcs between460

two different Vi (more formally, |{a ∈ A(Tv):∃i1 6= i2, h(a) ∈ Vi1 , t(a) ∈ Vi2}|= 6n(n− 1)).461

Following the same construction for the clause tournament Tc we get an ordering with462

3m(m+ 1)/2 backward arcs between two distinct Cj . Now, as there are two backward arcs463

in each Vi, one backward arc in Cm+1, and |Avc(T )| backward arcs from Tc to Tv, the total464

number of backward arcs is k. J465

We also prove that k = minfas(T ).466

I Lemma 8. Let T = (V,A) be a tournament constructed by the reduction f and k be the467

threshold value defined in Lemma 3. Then, minfas(T ) ≥ k.468

Proof. We suppose that T is equipped with the ordering defined in Lemma 7. Let F be an469

optimal FAS of T . Given an arc a, let v(a) = {t(a), h(a)}. Let us partition the arcs of T470

into the following sets. For any i ∈ [n], j ∈ [m+ 1], let us define471

AVi
= {a ∈ A: v(a) ⊆ Vi}472

ACj = {a ∈ A: v(a) ⊆ Cj}473

AViCj = {a ∈ A: |v(a) ∩ Vi|= |v(a) ∩ Cj |= 1}474

AViVi′ = {a ∈ A: |v(a) ∩ Vi|= |v(a) ∩ Vi′ |= 1} where i 6= i′475

ACjCj′ = {a ∈ A: |v(a) ∩ Cj |= |v(a) ∩ Cj′ |= 1} where j 6= j′476
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For any i, i′ ∈ [n], j, j′ ∈ [m + 1] and X ∈ {Vi, Cj , ViCj , ViVi′ , CjCj′}, we also define the477

corresponding sets FX in F , where for example FVi
= F ∩AVi

. In addition, for any j ∈ [m+1]478

we define F∗Cj
=
⋃
i∈[n] FViCj

. Let T ′v be the directed graph (T ′v is not a tournament) obtained479

by starting from Tv and only keeping arcs in AViVi′ for any i, i′ ∈ [n] with i 6= i′. As F is FAS480

of T , FV V =
⋃
i,i′∈[n],i6=i′ FViVi′ must be an FAS of T ′v. As according to Lemma 1 there is a481

cycle packing of size 6n(n− 1) in T ′v, we get |FV V |≥ 6n(n− 1). The same arguments hold for482

the clause part, and thus with FCC =
⋃
j,j′∈[m+1],j 6=j′ FCjCj′ , we get |FCC |≥ 3m(m+ 1)/2.483

As Cm+1 is a triangle, we also get |FCm+1 |≥ 1.484

For any j ∈ [m], let uj ∈ {2, 3} be equal to the size of the clause j (we also have485

uj = |{a ∈ A(T ): ∃i ∈ [n], h(a) ∈ Vi and t(a) ∈ Cj}|). Let L = {j ∈ [m]: |F∗Cj ∪ FCj |≥ uj}486

be informally the set of clauses where F spends a large (in fact larger than the uj required)487

amount of arcs, and S = [m] \L. Let us prove that for any j ∈ S, |FCj |≥ uj − 1. Let us first488

consider the case where uj = 3. Suppose by contradiction than FCj
= {a} (arguments will489

also hold for FCj = ∅). Remember that σ(Cj) = (c1j , c2j , c3j ) (there are only forward arcs). As490

|F∗Cj
|≤ 1, there exists i ∈ [n] and two arcs a1, a2 not in F such that t(a1) = c3j , h(a1) ∈ Vi,491

t(a2) = h(a1), and h(a2) 6= t(a). Thus, (t(a1), t(a2), h(a2)) is a triangle using no arc of F , a492

contradiction. As the same kind of arguments holds for the case where uj = 2, we get that493

for any j ∈ S, |FCj
|≥ uj − 1 (implying also |F∗Cj

|= 0).494

Let us now prove that |S|≤ 1. Suppose by contradiction that |S|≥ 2. Let j1 and j2495

be in S. For any l ∈ [2], let define al such that there exists il ∈ [n] with t(al) ∈ Cjl
and496

h(a1) ∈ Vil . Notice that we may have i1 = i2, but we always have h(a1) 6= h(a2). Moreover,497

as ai is the unique backward arc of T with t(a) ∈ ⋃j∈[m] Cj , we get that a3 = h(a1)t(a2)498

and a4 = h(a2)t(a1) are forward arcs of T . As |F∗Cj1
|= |F∗Cj2

|= 0 we know that al /∈ F for499

l ∈ [4]. Thus, (t(a1), h(a1), t(a2), h(a2), t(a1)) is a cycle using no arc of F , a contradiction.500

Let L′ = {i ∈ [n]:∃a ∈ T s.t. h(a) ∈ Vi and t(a) ∈ Cj , j ∈ S}. Notice that if S = ∅501

then L′ = ∅, and otherwise |L′|= uj0 , where S = {j0}. Let S′ = [n] \ L′. For any i ∈ [n],502

let AViCm+1 = A(T ) ∩ AViCm+1 . Recall that AViCm+1 = cum+1x̄i for u ∈ [3] where x̄i ∈ Vi.503

Moreover, for any x ∈ {x̄i, x1
i , x

2
i }, let AxVi = {a ∈ T : t(a) = x and h(a) ∈ Vi}. Notice that504

|Ax̄iVi
|= 4, |Ax1

i
Vi
|= 2 and |Ax2

i
Vi
|= 1.505

Let us prove that for any i ∈ S′, |FVi ∪ FViCm+1 |≥ 5. If Ax̄iVi ⊆ F , then as FVi must be506

an FAS of Vi and Ax̄iVi
is not an FAS of Vi, there exists at least another arc in FVi

and we507

get |FVi
|≥ 5. Otherwise, AViCm+1 ⊆ F (if it is not the case, there is a cycle cum+1x̄iv where508

v ∈ Vi is a out-neighbour of x̄i). Then, as minfas(Vi) ≥ 2, |FVi ∪ FViCm+1 |≥ 5.509

Let us finally prove that for any i ∈ L′, |FVi
∪ FViCm+1 |≥ 6. As i ∈ L′, there is an510

arc a ∈ T with h(a) ∈ Vi and t(a) ∈ Cj0 where S = {j0}. Let x = h(a). Notice that511

x ∈ {x̄i, x1
i , x

2
i }. As |F∗Cj0

|= 0 we get that AxVi
⊆ FVi

(otherwise there would be a cycle512

with one vertex in Cj0 , x, and an out-neighbour of x in Vi).513

Case 1: x = x̄i.As FVi
must be an FAS of Vi, F needs two other arcs in AVi

and we get514

|FVi
|≥ 6.515

Case 2: x = x1
i .If Ax̄iVi ⊆ F then |FVi ∪ FViCm+1 |≥ 6. Otherwise, as before we get516

AViCm+1 ⊆ F , and as Ax1
i
Vi

is not an FAS of Vi, F need another arc in Vi, implying517

|FVi
∪ FViCm+1 |≥ 6.518

Case 3: x = x2
i .If Ax̄iVi ⊆ F then as Ax2

i
Vi
∪Ax̄iVi is not an FAS of Vi, F need another arc519

in Vi, implying |FVi
|≥ 6. Otherwise, as before we get AViCm+1 ⊆ F , and as Ax1

i
Vi

is not an520

FAS of Vi, F need two other arcs in Vi, implying |FVi ∪ FViCm+1 |≥ 6.521

Putting all the pieces together, we get the following.522
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|F |=|FV V |+|FCC |+|FCm+1 |+
∑

j∈L
(|F∗Cj

∪ FCj
|) +

∑

j∈S
(|F∗Cj

∪ FCj
|)523

+
∑

i∈S′
(|FVi

∪ FViCm+1 |) +
∑

i∈L′
(|FVi

∪ FViCm+1 |)524

≥ 6n(n− 1) + 3m(m+ 1)
2 + 1 +

∑

j∈L
uj +

∑

j∈S
(uj − 1) + 5|S′|+6|L′|525

≥ 6n(n− 1) + 3m(m+ 1)
2 + 1 +

∑

j∈[m]

uj + 5n = k526

527

J528

Then, using Lemma 7 and Lemma 8, we get the NP-hardness of Tight-ATT and529

Tight-ACT.530

I Theorem 9. Tight-ATT and Tight-ACT are NP-hard.531

Finally, the size s of the required packing in Lemma 3 satisfies s = O((n+m)2). Under532

the Exponential-time Hypothesis, the problem 3-SAT cannot be solved in 2o(n+m) [21, 35].533

Then, using the linear reduction from 3-SAT to 3-SAT(3) [54], we also get the following534

result.535

I Theorem 10. Under the Exponential-time Hypothesis, ATT and ACT cannot be solved536

in O?(2o(
√
k)) time.537

In the framework of parameterizing above guaranteed values [45], the above results imply538

that ACT parameterized below the guaranteed value of the size of a minimal feedback arc539

set is fixed-parameter intractable.540

4 Parameterized Complexity of ACT541

The classical Erdős-Pósa theorem for cycles in undirected graphs states that there exists542

a function f(k) = O(k log k) such that for each non-negative integer k, every undirected543

graph either contains k vertex-disjoint cycles or has a feedback vertex set consisting of544

f(k) vertices [26]. An interesting consequence of this theorem is that it leads to an FPT545

algorithm for Vertex-Disjoint Cycle Packing. It is well known that the treewidth (tw)546

of a graph is not larger than the size of its feedback vertex set, and that a naive dynamic547

programming scheme solves Vertex-Disjoint Cycle Packing in O?(2O(tw log tw)) time548

(see, e.g., [21]). Thus, the existence of an O?(2O(k log2 k)) time algorithm can be viewed as a549

direct consequence of the Erdős-Pósa theorem (see [43] for more details). Analogous to these550

results, we prove an Erdős-Pósa type theorem for tournaments and show that it leads to an551

O?(2O(k log k)) time algorithm and a linear vertex kernel for ACT.552

4.1 An Erdős-Pósa Type Theorem553

In this section, we show certain interesting combinatorial results on arc-disjoint cycles in554

tournaments.555

I Theorem 11. Let k and r be positive integers such that r ≤ k. A tournament T contains556

a set of r arc-disjoint cycles if and only if T contains a set of r arc-disjoint cycles each of557

length at most 2k + 1.558
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Proof. The reverse direction of the claim holds trivially. Let us now prove the forward559

direction. Let C be a set of r arc-disjoint cycles in T that minimizes
∑
C∈C |C|. If every560

cycle in C is a triangle, then the claim trivially holds. Otherwise, let C be a longest cycle in561

C and let ` denote its length. Let vi, vj be a pair of non-consecutive vertices in C. Then,562

either vivj ∈ A(T ) or vjvi ∈ A(T ). In any case, the arc e between vi and vj along with A(C)563

forms a cycle C ′ of length less than ` with A(C ′) \ {e} ⊂ A(C). By our choice of C, this564

implies that e is an arc in some other cycle Ĉ ∈ C. This property is true for the arc between565

any pair of non-consecutive vertices in C. Therefore, we have
(
`
2
)
− ` ≤ `(k − 1) leading to566

` ≤ 2k + 1. J567

This result essentially shows that it suffices to determine the existence of k arc-disjoint568

cycles in T each of length at most 2k + 1 in order to determine if (T, k) is an yes-instance569

of ACT. This immediately leads to a quadratic Erdős-Pósa bound. That is, for every570

non-negative integer k, every tournament T either contains k arc-disjoint cycles or has an571

FAS of size O(k2). Next, we strengthen this result to arrive at a linear bound.572

We will use the following lemma known from [17] in the process1. For a digraph D, let573

Λ(D) denote the number of non-adjacent pairs of vertices in D. That is, Λ(D) is the number574

of pairs u, v of vertices of D such that neither uv ∈ A(D) nor vu ∈ A(D). Recall that for a575

digraph D, minfas(D) denotes the size of a minimum FAS of D.576

I Lemma 12. [17] Let D be a triangle-free digraph in which for every pair u, v of distinct577

vertices, at most one of uv or vu is in A(D). Then, we can compute an FAS of size at most578

Λ(D) in polynomial time.579

This leads to the following main result of this section.580

I Theorem 13. For every non-negative integer k, every tournament T either contains k581

arc-disjoint triangles or has an FAS of size at most 5(k−1) that can be obtained in polynomial582

time.583

Proof. Let C be a maximal set of arc-disjoint triangles in T (that can be obtained greedily584

in polynomial time). If |C|≥ k, then we have the required set of triangles. Otherwise, let585

D denote the digraph obtained from T by deleting the arcs that are in some triangle in586

C. Clearly, D has no triangle and Λ(D) ≤ 3(k − 1). Let F be an FAS of D obtained in587

polynomial time using Lemma 12. Then, we have |F |≤ 3(k− 1). Next, consider a topological588

ordering σ of D − F . Each triangle of C contains at most 2 arcs which are backward in this589

ordering. If we denote by F ′ the set of all the arcs of the triangles of C which are backward590

in σ, then we have |F ′|≤ 2(k − 1) and (D − F )− F ′ is acyclic. Thus F ∗ = F ∪ F ′ is an FAS591

of T satisfying |F ∗|≤ 5(k − 1). J592

4.2 A Linear Vertex Kernel593

Next, we show that ACT has a linear vertex kernel. This kernel is inspired by the linear594

kernelization described in [11] for FAST and uses Theorem 13. Let T be a tournament on n595

vertices. First, we apply the following reduction rule.596

I Reduction Rule 4.1. If a vertex v is not in any cycle, then delete v from T .597

1 The authors would like to thank F. Havet for pointing out that Lemma 12 was a consequence of a result
of [17], as well for an improvement of the constant in Theorem 13.
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This rule is clearly safe as our goal is to find k cycles and v cannot be in any of them.598

To describe our next rule, we need to state a lemma known from [11]. An interval is a599

consecutive set of vertices in a linear representation (σ(T ),A(T )) of a tournament T .600

I Lemma 14 ([11]). 2 Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule 4.1601

is not applicable. If |V (T )|≥ 2|A(T )|+1, then there exists a partition J of V (T ) into intervals602

(that can be computed in polynomial time) such that there are |A(T ) ∩ E|> 0 arc-disjoint603

cycles using only arcs in E where E denotes the set of arcs in T with endpoints in different604

intervals.605

Our reduction rule that is based on this lemma is as follows.606

I Reduction Rule 4.2. Let T = (σ(T ),A(T )) be a tournament on which Reduction Rule607

4.1 is not applicable. Let J be a partition of V (T ) into intervals satisfying the properties608

specified in Lemma 14. Reverse all arcs in A(T ) ∩ E and decrease k by |A(T ) ∩ E| where E609

denotes the set of arcs in T with endpoints in different intervals.610

I Lemma 15. Reduction Rule 4.2 is safe.611

Proof. Let T ′ be the tournament obtained from T by reversing all arcs in A(T )∩E. Suppose612

T ′ has k − |A(T ) ∩ E| arc-disjoint cycles. Then, it is guaranteed that each such cycle is613

completely contained in an interval. This is due to the fact that T ′ has no backward arc614

with endpoints in different intervals. Indeed, if a cycle in T ′ uses a forward (backward) arc615

with endpoints in different intervals, then it also uses a back (forward) arc with endpoints in616

different intervals. It follows that for each arc uv ∈ E, neither uv nor vu is used in these617

k − |A(T ) ∩ E| cycles. Hence, these k − |A(T ) ∩ E| cycles in T ′ are also cycles in T . Then,618

we can add a set of |A(T ) ∩ E| cycles obtained from the second property of Lemma 14 to619

these k − |A(T ) ∩ E| cycles to get k cycles in T . Conversely, consider a set of k cycles in620

T . As argued earlier, we know that the number of cycles that have an arc that is in E is at621

most |A(T ) ∩E|. The remaining cycles (at least k − |A(T ) ∩E| of them) do not contain any622

arc that is in E, in particular, they do not contain any arc from A(T ) ∩ E. Therefore, these623

cycles are also cycles in T ′. J624

Thus, we have the following result.625

I Theorem 16. ACT admits a kernel with O(k) vertices.626

Proof. Let (T, k) denote the instance obtained from the input instance by applying Reduction627

Rule 4.1 exhaustively. From Lemma 13, we know that either T has k arc-disjoint triangles or628

has an FAS of size at most 5(k − 1) that can be obtained in polynomial time. In the first629

case, we return a trivial yes-instance of constant size as the kernel. In the second case, let F630

be the FAS of size at most 5(k − 1) of T . Let (σ(T ),A(T )) be the linear representation of T631

where σ(T ) is a topological ordering of the vertices of the directed acyclic graph T − F . As632

V (T − F ) = V (T ), |A(T )|≤ 5(k − 1). If |V (T )|≥ 10k − 9, then from Lemma 14, there is a633

partition of V (T ) into intervals with the specified properties. Therefore, Reduction Rule 4.2634

is applicable (and the parameter drops by at least 1). When we obtain an instance where635

neither of the Reduction Rules 4.1 and 4.2 is applicable, it follows that the tournament in636

that instance has at most 10k vertices. J637

2 Lemma 14 is Lemma 3.9 of [11] that has been rephrased to avoid the use of several definitions and
terminology introduced in [11].
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4.3 An FPT Algorithm638

Finally, we show that ACT can be solved in O?(2O(k log k)) time. The idea is to reduce639

the problem to the following Arc-Disjoint Paths problem in directed acyclic graphs:640

given a digraph D on n vertices and k ordered pairs (s1, t1), . . . , (sk, tk) of vertices of D, do641

there exist arc-disjoint paths P1, . . . , Pk in D such that Pi is a path from si to ti for each642

i ∈ [k]? On directed acyclic graphs, Arc-Disjoint Paths is known to be NP-complete643

[27], W[1]-hard [52] with respect to k as parameter and solvable in nO(k) time [32]. Despite644

its fixed-parameter intractability, we will show that we can use the nO(k) algorithm and645

Theorems 13 and 16 to describe an FPT algorithm for ACT.646

I Theorem 17. ACT can be solved in O?(2O(k log k)) time.647

Proof. Consider an instance (T, k) of ACT. Using Theorem 16, we obtain a kernel I = (T̂ , k̂)648

such that T̂ has O(k) vertices. Further, k̂ ≤ k. By definition, (T, k) is an yes-instance if649

and only if (T̂ , k̂) is an yes-instance. Using Theorem 13, we know that T̂ either contains650

k̂ arc-disjoint triangles or has an FAS of size at most 5(k̂ − 1) that can be obtained in651

polynomial time. If Theorem 13 returns a set of k̂ arc-disjoint triangles in T̂ , then we declare652

that (T, k) is an yes-instance.653

Otherwise, let F̂ be the FAS of size at most 5(k̂ − 1) returned by Theorem 13. Let654

D denote the (acyclic) digraph obtained from T̂ by deleting F̂ . Observe that D has O(k)655

vertices. Suppose T̂ has a set C = {C1, . . . , Ck̂} of k̂ arc-disjoint cycles. For each C ∈ C, we656

know that A(C) ∩ F̂ 6= ∅ as F̂ is an FAS of T̂ . We can guess that subset F of F̂ such that657

F = F̂ ∩A(C). Then, for each cycle Ci ∈ C, we can guess the arcs Fi from F that it contains658

and also the order πi in which they appear. This information is captured as a partition F of659

F into k̂ sets, F1 to F
k̂
and the set {π1, . . . , πk̂} of permutations where πi is a permutation660

of Fi for each i ∈ [k̂]. Any cycle Ci that has Fi ⊆ F contains a (v, x)-path between every661

pair (u, v), (x, y) of consecutive arcs of Fi with arcs from A(D). That is, there is a path662

from h(π−1
i (j)) and t(π−1

i ((j + 1) mod |Fi|)) with arcs from D for each j ∈ [|Fi|]. The total663

number of such paths in these k̂ cycles is O(|F |) and the arcs of these paths are contained in664

D which is a (simple) directed acyclic graph.665

The number of choices for F is 2|F̂ | and the number of choices for a partition F =666

{F1, . . . , Fk̂} of F and a set X = {π1, . . . , πk̂} of permutations is 2O(|F̂ |log|F̂ |). Once such a667

choice is made, the problem of finding k̂ arc-disjoint cycles in T̂ reduces to the problem of668

finding k̂ arc-disjoint cycles C = {C1, . . . , Ck̂} in T̂ such that for each 1 ≤ i ≤ k̂ and for each669

1 ≤ j ≤ |Fi|, Ci has a path Pij between h(π−1
i (j)) and t(π−1

i ((j + 1) mod |Fi|)) with arcs670

from D = T̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in D and671

can be solved in |V (D)|O(r) time using the algorithm in [32]. Therefore, the overall running672

time of the algorithm is O?(2O(k log k)) as |V (D)|= O(k) and r = O(k). J673

5 Parameterized Complexity of ATT674

In this section, we provide an FPT algorithm and a linear vertex kernel for ATT. First, it is675

easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]676

for packing subgraphs of bounded size.677

I Theorem 18. ATT can be solved in O?(2O(k)) time.678

Proof. Consider an instance I = (T, k) of ATT. Let n denote |V (T )| and m denote |A(T )|.679

Let F denote the family of colouring functions c : A(T )→ [3k] of size 2O(k) log2m that can680
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be computed in O?(2O(k)) time using 3k-perfect family of hash functions [51]. For each681

colouring function c in F , we colour A(T ) according to c and find a triangle packing of size682

k whose arcs use different colours. We use a standard dynamic programming routine to683

finding such a triangle packing. Clearly, if I is an yes-instance and C is a set of k arc-disjoint684

triangles in T , there is a colouring function in F that colours the 3k arcs in these triangles685

with distinct colours and our algorithm will find the required triangle packing. Given a686

colouring c ∈ F , we first compute for every set of 3 colours {a, b, c} whether the arcs coloured687

with a, b or c induce a triangle using 3 different colours or not. Then, for every set S of688

3(p+ 1) colours with p ∈ [k − 1], we recursively test if the arcs coloured with the colours in689

S induce p+ 1 arc-disjoint triangles whose arcs use all the colours of S. This is achieved by690

iterating over every subset {a, b, c} of S and checking if there is a triangle using colours a, b691

and c and a collection of p arc-disjoint triangles whose arcs use all the colours of S \ {a, b, c}.692

For a given S, we can find this collection of triangles in O(p3) = O(k3) time. Therefore, the693

overall running time of the algorithm is O?(2O(k)). J694

Next, we show that ATT has a linear vertex kernel.695

I Theorem 19. ATT admits a kernel with O(k) vertices.696

Proof. Let X be a maximal collection of arc-disjoint triangles of a tournament T obtained697

greedily. Let VX denote the vertices of the triangles in X and AX denote the arcs of VX .698

Let U be the remaining vertices of V (T ), i.e., U = V (T ) \ VX . If |X |≥ k, then (T, k) is an699

yes-instance of ATT. Otherwise, |X |< k and |VX |< 3k. Moreover, notice that T [U ] is acyclic700

and T does not contain a triangle with one vertex in VX and two in vertices in U (otherwise701

X would not be maximal).702

Let B be the (undirected) bipartite graph defined by V (B) = AX ∪ U and E(B) =703

{au: a ∈ AX , u ∈ U such that (t(a), h(a), u) forms a triangle in T}. Let M be a maximum704

matching of B and A′ (resp. U ′) denote the vertices of AX (resp. U) covered by M . Define705

A′ = AX \A′ and U ′ = U \ U ′.706

We now prove that (VX ∪ U ′, k) is a linear kernel of (T, k). Let C be a maximum sized707

triangle packing that minimizes the number of vertices of U ′ belonging to a triangle of C. By708

previous remarks, we can partition C into CX ∪ F where CX are the triangles of C included709

in T [VX ] and F are the triangles of C containing one vertex of U and two vertices of VX . It710

is clear that F corresponds to a union of vertex-disjoint stars of B with centres in U . Denote711

by U [F ] the vertices of U which belong to a triangle of F . If U [F ] ⊆ U ′ then (VX ∪ U ′, k) is712

immediately a kernel. Suppose there exists a vertex x0 such that x0 ∈ U [F ] ∩ U ′.713

We will build a tree rooted in x0 with edges alternating between F and M . For this let714

H0 = {x0} and construct recursively the sets Hi+1 such that715

Hi+1 =
{
NF (Hi) if i is even,
NM (Hi) if i is odd,716

where, given a subset S ⊆ U , NF (S) = {a ∈ AX :∃s ∈ S s.t. (t(a), h(a), s) ∈ F and as /∈M}717

and given a subset S ⊆ AX , NM (S) = {u ∈ U :∃a ∈ AX s.t. au ∈M}. Notice that Hi ⊆ U718

when i is even and that Hi ⊆ AX when i is odd, and that all the Hi are distinct as F is a719

union of disjoint stars and M a matching in B. Moreover, for i ≥ 1 we call Ti the set of edges720

between Hi and Hi−1. Now we define the tree T such that V (T ) =
⋃
iHi and E(T ) =

⋃
i Ti.721

As Ti is a matching (if i is even) or a union of vertex-disjoint stars with centres in Hi−1 (if i722

is odd), it is clear that T is a tree.723

For i being odd, every vertex of Hi is incident to an edge of M otherwise B would contain724

an augmenting path for M , a contradiction. So every leaf of T is in U and incident to an725
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edge of M in T and T contains as many edges of M than edges of F . Now for every arc726

a ∈ AX ∩ V (T ) we replace the triangle of C containing a and corresponding to an edge of F727

by the triangle (t(a), h(a), u) where au ∈M (and au is an edge of T ). This operation leads728

to another collection of arc-disjoint triangles with the same size as C but containing a strictly729

smaller number of vertices in U ′, yielding a contradiction.730

Finally VX ∪U ′ can be computed in polynomial time and we have |VX ∪U ′|≤ |VX |+|M |≤731

2|VX |≤ 6k, which proves that the kernel has O(k) vertices. J732

6 MaxACT and MaxATT in Sparse Tournaments733

Recall that a tournament is sparse if it admits an FAS which is a matching. In this section,734

we show that MaxACT and MaxATT are polynomial-time solvable on sparse tournaments.735

Note that packing vertex-disjoint triangles (and hence cycles) in sparse tournaments is736

NP-complete [9].737

Let T be a sparse tournament according to the ordering of its vertices σ(T ), that is the738

set of its backward arcs A(T ) is a matching. If a backward arc xy of T lies between two739

consecutive vertices, then we can exchange the position of x and y in σ(T ) to obtain a sparse740

tournament with fewer backward arc. So we can assume that the backward arcs of T do not741

contain consecutive vertices. Moreover, if a vertex x of T is contained in no backward arc742

of T then call A (resp. B) the vertices of T which are before (resp. after) x in σ(T ). Let743

X0 be the set of triangles made from a backward arc from B to A and the vertex x. As744

T is sparse it is clear that X0 is a set of disjoint triangles. Moreover, it can easily be seen745

that there exists an optimal packing of triangles (resp. cycles) of T which is the union of746

an optimal packing of triangles (resp. cycles) of T [A], one of T [B] and X0. Thus to solve747

MaxATT or MaxACT on T we can solve the problem on T [A] and on T [B] and build the748

optimal solution for T . Therefore we can focus on the case where every vertex of T is the749

beginning or the end of a backward arc A(T ). We will call such a tournament a fully sparse750

tournament. So we focus on solving MaxATT in fully sparse tournaments. In the following,751

let Π be the problem of finding a collection of arc-disjoint triangles of maximum size on fully752

sparse tournament.753

Now order the arcs e1, . . . , eb of A(T ) such that for any i ∈ [b − 1], h(ei) <σ h(ei+1).754

Moreover, let G′ be the digraph with vertex set V ′ = {ei: i ∈ [b]} and arc set A′ defined755

by: (eiej) ∈ A′ if (h(ei), h(ej), t(ei)) or (h(ei), t(ej), t(ei)) is a triangle of T . Let Π′ be the756

problem such that, given a digraph G′ = (V ′, A′), the objective is to find a maximum sized757

subset of A′ such that the digraph induced by the arcs of the subset is a functional and758

digon-free digraph. Remind that a functional digraph is a digraph such that any of its759

vertices has out-degree at most 1.760

Let X be a solution (not necessary optimal) of Π′(G′), and eiej an arc of X. We denote761

by Π(eiej) the triangle (h(ei), h(ej), t(ei)) if i < j and otherwise. Given a triangle Π(eiej),762

let s(ej) be the second vertex of Π(eiej); in other words, if Π(eiej) = (h(ei), t(ej), t(ei)), then763

s(ej) = t(ej) and s(ej) = h(ej) otherwise. Informally, Π(eiej) corresponds to the triangle764

formed by the backward arc ei and one vertex of ej , that vertex being s(ej). In the same765

way, we define Π(X) =
⋃
x∈X Π(x).766

I Claim 19.1. Let X be a solution of Π′(G′). The set X is an optimal solution if and only767

if Π(X) is an optimal solution of Π(T ).768

Proof. Let eiej and ekel be two distinct arcs of X. We cannot have ei = ek as X induces769

a functional digraph in G′. Without loss of generality, we may assume that i < k, that is770
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h(ei) <σ h(ek). Moreover, we cannot have t(ei) = t(ek) without contradicting that T is a771

sparse tournament. As h(ei) <σ h(ek) the arc h(ei)s(ej) is not an arc of Π(ekel). Thus if772

Π(eiej) and Π(ekel) share a common arc, it means that s(ej)t(ei) = h(ek)s(el). But in this773

case ei = el and ej = ek, implying {eiej , ekel} is a digon of G′, which contradict the fact774

that X is a solution Π′(G′). So, if X is a solution of Π′(G′), then Π(X) is an solution of775

Π(T ). Notice that the size of the solution does not change.776

On the other hand, if X is a subset of the arcs of G′ such that Π(X) is a solution of777

Π(T ). We cannot have a vertex ei of G′ such that d+
X(ei) > 1, since it would imply that the778

backward arc ei of T is covered by at least two triangles of Π(X). So X induces a functional779

subdigraph of G′. As previously the digraph induced by X is also digon-free otherwise we780

would have two arc-disjoint triangles on only four vertices in Π(X), which is impossible.781

Thus, X is a solution of Π′(G′), and the solution of the same size.782

The two problems Π and Π′ being both maximization problems, they have the same783

optimal solution. J784

Now we show how to solve Π′ in polynomial time.785

I Claim 19.2. If G′ is strongly connected and has a cycle C of size at least 3 then the786

solution of Π′(G′) is the number of vertices of G′.787

Proof. We construct the arc set X as follows: we start by taking the arcs of C. Then, while788

there is a vertex x which is not covered by any arcs of X, we add to X the arcs of the789

shortest path from x to any vertex of X. By construction, every vertex x of every arc of X790

verify d+
X(x) = 1, and X is digon free. Since X covers every vertex of G′, |X| is a maximum791

solution of Π′(G′), that is the number of vertices of G′. J792

A digraph D is a digoned tree if D arises from a non-trivial tree whose each edge is793

replaced by a digon.794

I Claim 19.3. If G′ is strongly connected and has only cycles of size 2 then G′ is a digoned795

tree.796

Proof. Since G′ is strongly connected, then for any arc xy of G′ there exists a path from797

y to x. As G′ only contains cycles of size 2, the only path from y to x is the directed arc798

yx. So every arc of G′ is contained in a digon. If H is the underlying graph of G′ (without799

multiple edges) then it is clear that H is a tree otherwise G′ would contain a cycle of size800

more than 2. J801

I Claim 19.4. If G′ is a digoned tree or if |V (G′)|= 1, then the optimal solution of Π′(G′)802

is |V (G′)|−1.803

Proof. The case |V (G′)|= 1 is clear. So assume that G′ is a digoned tree and let X be a set804

of arcs of G′ corresponding to an optimal solution of Π′(G′). Then X is acyclic and then805

has size at most |V (G′)|−1. Moreover, any in-branching of G′ provides a solution of size806

|V (G′)|−1. J807

I Lemma 20. Let G′ be a digraph with n vertices. Denote by S1, . . . , Sp terminal strong808

components of G′ such that for any i with 1 ≤ i ≤ k, Si is a digoned tree or an isolated809

vertex and for any i > k, Si contains a cycle of length at least 3. Then an optimal solution810

of Π′(G′) has size n− k and we can construct one in polynomial time.811
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Proof. We can assume that G′ is connected otherwise we apply the result on every connected812

component of G′ and the disjoint union of the solutions produces an optimal solution on the813

whole digraph G′.814

So assume that G′ is connected and let S be a terminal strong component of G′. If X is815

an optimal solution of Π′(G′) then the restriction of X to the arcs of G′[S] is an optimal816

solution of Π′(G′[S]). Indeed otherwise we could replace this set of arcs in X by an optimal817

solution of Π′(G′[S]) and obtain a better solution for Π′(G′), a contradiction.818

So by Claim 19.2 and Claim 19.4 the set X contains at most
∑
i=1,...,p|Si|−k arcs lying819

in a terminal component of G′. Now as every vertex of G′ \⋃i=1,...,p Si is the beginning of at820

most one arc of X, the set X has size at most n− k. Conversely by growing in-branchings821

in G′ from the union of the optimal solutions of Π′(G′[Si]) for i = 1, . . . , p, by Claim 19.2822

and 19.4 we obtain a solution of Π′(G′) of size n− k which is then optimal. Moreover, this823

solution can clearly be built in polynomial time. J824

Using Claim 19.1 and Lemma 20 we can solve MaxATT in polynomial time.825

I Lemma 21. In a fully sparse tournament T the size of a maximum cycle packing is equal826

to the size of a maximum triangle packing.827

Proof. First if T has an optimal triangle packing of size |A(T )| then as A(T ) is an FAS of T ,828

every optimal cycle packing of T has size |A(T )|. Otherwise, we build from T the digraph G′829

as previously. By Lemma 20, G′ has some terminal components S1, . . . , Sk which are either830

a single vertex or induces a digoned tree and every optimal triangle packing of T has size831

|A(T )|−k. Let see that no Si can be a single vertex. Indeed if Si = {e} where e is a backward832

arc of T , it means that no backward of T begins or ends between h(e) and t(e) in σ(T ). As T833

is fully sparse, it means that h(e) and t(e) are consecutive in σ(T ) what we forbid previously.834

Now consider a component Si which induces a digoned tree in G′. Let πi be the order σ(T )835

restricted to the heads and tails of the arcs of T corresponding to the vertices of Si. First836

notice that πi is an interval of the order σ(T ). Indeed otherwise there exists two backward837

arcs a and b of T such that a ∈ Si, b /∈ Si and h(a) is before the head or the of b which is838

before t(a) in σ(T ). But in this case there is an arc in G′ from a to b contradicting the fact839

that Si is a terminal component of G′. So we denote πi by (x1, x2, . . . , xl) and notice that840

x1 and x2 are then forced to be the heads of backward arcs belonging to Si. If x3 is also841

the head of backward arc of Si, then we obtain that the three corresponding backward arcs842

form a 3-cycle in G′ contradicting the fact that Si induces a digoned tree in G′. Repeating843

the same argument we show that l is even and that the backward arcs corresponding to the844

elements of Si are exactly x3x1, xlxl−2 and xjxj−3 for all odd j ∈ [l] \ {1, 3}. In other words845

Si induces a ’digoned path’ in G′. Now consider ∆ an optimal cycle packing of T . Let X1846

be the set of backward arcs of A(T ) with head strictly before x1 and tail strictly after xl in847

σ(T ). And let ∆1 be the cycles of ∆ using at least one arc of X1. It is easy to check that848

∆′ = (∆ \∆1) ∪ {(h(e), x1, t(e)): e ∈ X1} is also an optimal cycle packing of T . Now every849

cycle of ∆′ which uses a backward arc of Si only uses backward arcs of Si (otherwise it must850

one arc of X1, which is not possible). Let ∆i be the set of cycles of ∆ using backward arcs851

of Si. It is easy to see that {xixi+1: i even and i ∈ [l − 2]} is an FAS of T [{x1, . . . , xl}] and852

has size l/2− 1 = |Si|−1. So we have |∆i|≤ |Si|−1.853

Repeating this argument for i = 1, . . . , k we obtain that |∆|≤ |A(T )|−k. Thus by Lemma 20854

∆ has the same size than an optimal triangle packing of T . J855

This leads to the following main result of this section.856
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I Theorem 22. MaxATT and MaxACT restricted to sparse tournaments can be solved in857

polynomial time.858

7 Concluding Remarks859

In this work, we studied the classical and parameterized complexity of packing arc-disjoint860

cycles and triangles in tournaments. We showed NP-hardness, fixed-parameter tractability and861

linear kernelization results. We also showed that these problems are polynomial-time solvable862

in sparse tournaments. To conclude, observe that very few problems on tournaments are863

known to admit an O?(2
√
k)-time algorithm when parameterized by the standard parameter864

k [48] - FAST is one of them [4, 28]. To the best of our knowledge, outside bidimensionality865

theory, there are no packing problems that are known to admit such subexponential algorithms.866

In light of the 2o(
√
k) lower bound shown for ACT and ATT, it would be interesting to867

explore if these problems admit O?(2O(
√
k)) algorithms.868
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