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Abstract. We consider robust variants of the bin-packing problem where
the sizes of the items can take any value in a given uncertainty set
U ⊆ ×ni=1[ai, ai + âi], where a ∈ [0, 1]n represents the nominal sizes
of the items and â ∈ [0, 1]n their possible deviations. We consider more
specifically two uncertainty sets previously studied in the literature. The
first set, denoted UΓ , contains scenarios in which at most Γ ∈ N items
deviate, each of them reaching its peak value ai + âi, while each other
item has its nominal value ai. The second set, denoted UΩ , bounds by
Ω ∈ [0, 1] the total amount of deviation in each scenario. We show that
a variant of the next-fit algorithm provides a 2-approximation for model
UΩ , and a 2(Γ+1) approximation for model UΓ (which can be improved
to 2 approximation for Γ = 1). This motivates the question of the ex-
istence of a constant ratio approximation algorithm for the UΓ model.
Our main result is to answer positively to this question by providing a
4.5 approximation for UΓ model based on dynamic programming.

Keywords: Bin-packing · Robust optimization · Approximation Algo-
rithm · Next-fit · Dynamic programming

1 Introduction

Bin packing is the problem of assigning a given set of n items, each item of a
specified size, to the smallest number of unit capacity bins. The problem has
been the subject of study in an extensive body of research initiated by several
publications in the 1970s including the work of Johnson et al. [11]. The problem
is NP-hard and in fact a straightforward reduction from the partition decision
problem implies that it is NP-hard to determine whether a bin-packing instance
has a solution using only two bins. This also shows that the problem cannot be
approximated within a factor less than 3/2. An approximation factor guarantee
of 3/2 has been proven for the first-fit decreasing algorithm by Simchi-Levi [16].
Much of the research has concentrated on the asymptotic setting where n tends

This research has benefited from the support of the ANR project ROBUST [ANR-
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to infinity, and in the online setting where the instance is not given in advance
but each item is revealed and packed one at a time. A fully polynomial-time
approximation scheme for the offline asymptotic problem is due to Karmarkar
and Karp [12]. The best asymptotic and absolute online competitive ratios of
1.578 and 5/3, respectively, are due to Balogh et al.in [4] and [3], respectively.

In many applications, the sizes of the items to be packed are not fully known
at the time that the packing is carried out. In cargo shipping, for example,
the actual weight of a container may deviate from its declared weight or its
measurements may be inaccurate. Bin packing has also been used to model the
assignment of elective surgeries to operating room in hospitals [8]. Here a bin
is a shift of a properly equipped and staffed operating room for performing
a certain type of elective surgeries. The room scheduler has to fit in the bins
as many cases (patients) as possible. In this setting clearly the length of time
of performing each surgery is subject to uncertainty for example in the event of
complications. One way to model the uncertainty that falls into the framework of
robust optimization is to assume that the sizes are uncertain parameters taking
any value in a given set U ⊂ Rn, where each a ∈ U represents a possible scenario.
This leads to the following problem (where the description of U is sometimes
not explicit to avoid exponential length in n)

RBP (Robust bin-packing)
Input: U ⊂ Rn
Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
maxa∈U

∑
i∈bj ai ≤ 1 for each j ∈ [k]

Minimize: k

Classically, robust combinatorial optimization has dealt with uncertain ob-
jective, meaning that the cost vector c can take any value in set U , unlike RBP
where the uncertainty affects the feasibility of the solutions. In that context, it
is well-known that arbitrary uncertainty sets U lead to robust counterparts that
are hardly approximable. For instance, the robust knapsack is not approximable
at all [1], while the shortest path, the spanning tree, the minimum cut, and the
assignment problem do not admit constant-ratios approximation algorithms, e.g.
[13, 14]. Furthermore, describing U by an explicit list of scenarios runs the risk
of over-fitting so the optimal solutions may become infeasible for small varia-
tions outside U . These two drawbacks are usually tackled by using more specific
uncertainty sets, defined by simple budget constraints. One of these widely used
uncertainty sets, UΓ , supposes that the size of each item is either its given nomi-
nal size āi, or its peak value āi+ âi. Furthermore, in any scenario, at most Γ ∈ N
of the items may assume their peak value simultaneously. Formally, UΓ can be
defined as UΓ = {a|∀i ∈ [n], ai ∈ {āi, āi+ âi} and

∑
i∈[n](ai− āi)/âi ≤ Γ}.3 Set

UΓ has been widely used in robust combinatorial optimization with a constant
number of constraints because the set essentially preserves the complexity and

3 UΓ is often defined alternatively in the literature, as the polytope {a ∈ ×i∈[n][āi, āi+
âi] |

∑
i∈[n](ai− āi)/âi ≤ Γ}. For the bin-packing problem, one readily verifies using

classical arguments that the two definitions lead to the same optimization problem.
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approximability properties of the nominal problem. The result was initially pro-
posed for min-max problems in [6], and was independently extended to uncertain
constraints in [2, 9], contrasting with the aformentionned uncertain objective. We
also consider a second uncertainty set (used in [10, 18], among others), charac-
terized again by ā and â, as well as the number Ω ∈ [0, 1] stating how much
deviation can be spread among all sizes, formally UΩ = {a ∈ ×i∈[n][āi, āi + âi] |∑
i∈[n](ai− āi) ≤ Ω}. From the approximability viewpoint, set UΩ benefits from

similar positive results as UΓ , see [15].

The above positive complexity results (e.g. [9, 15]) imply, for instance, that
there exists a fully-polynomial time approximation scheme (FPTAS) for the
robust knapsack problem with uncertain profits and uncertain weights belong-
ing to UΩ and/or UΓ . Interestingly, these positive results do not extend to most
scheduling problems (because they involve non-linearities) and to the bin-packing
problem (because it involves a non-constant numbers of robust constraints).
While in a previous paper [7] (with authors in common) we provided approx-
imability results on robust scheduling, no such results have yet been proposed
for the bin-packing problem, the only previous work focusing on numerical al-
gorithms [17]. The purpose of this paper is to fill these gaps, as we present
constant-ratio approximation algorithms the bin-packing problem, both for UΩ

and UΓ .

Notations, problems definitions, and next-fit algorithm In this paper
we consider two special cases of RBP. In the first one, ΓRBP, the input is
I = (n, a, â, Γ ) where n ∈ N, and we assume that U = UΓ . In the second one,
ΩRBP, the input is I = (n, a, â, Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and
Ω ∈ [0, 1], and we assume that U = UΩ .

Let us now provide some important notations that will allow us to restate
ΓRBP and ΩRBP in a more convenient way. Given n ∈ N, sets {0, 1, . . . , n}
and {1, . . . , n} are respectively denoted [n]0 and [n]. Set {i, . . . , j} is denoted by
Ji, jK. Given a vector v ∈ [0, 1]n and a subset X ⊆ [n], we define v(X) =

∑
i∈X vi.

Given two vectors a ∈ [0, 1]n, â ∈ [0, 1]n and a subset of items X ⊆ [n], we define
âΩ(X) = min{â(X), Ω}, Γ (X) as the set of Γ items in X with largest â values
(ties broken by taking smallest indices), or Γ (X) = X if |X| < Γ , and âΓ (X) =
â(Γ (X)). Accordingly, we define the fill of a bin b ⊆ [n] as fΓ (b) = a(b) + âΓ (b)
for set UΓ , and fΩ(b) = ā(b) + âΩ(b) for set UΩ . The fill of a bin for a general
uncertainty set U is denoted as fU (b) = maxa∈U a(b).

Consider the following example. We are given an ordered set of pairs (āi, âi),
X = {(0.3, 0.2), (0.4, 0.2), (0.3, 0.1), (0.2, 0.5)} with Γ = 2 and Ω = 0.3. Thus,
Γ (X) = {(0.3, 0.2), (0.2, 0.5)}, ā(X) = 1.2, âΓ (X) = 0.7, and fΓ (X) = 1.9.
Similarly, âΩ(X) = 0.3 and fΩ(X) = 1.0.

Now, observe that maxa∈U
∑
i∈bj ai ≤ 1 (the constraint required in RBP) is

equivalent to fU (b) ≤ 1, and thus to fΓ (bj) ≤ 1 for ΓRBP and fΩ(bj) ≤ 1 for
ΩRBP. For example in ΓRBP, fΓ (bj) ≤ 1 simply means that the total nominal
(a) size of the items plus the deviating size (â) of the Γ largest (in â values)
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items must not exceed one. Thus, the two optimization problems studied in this
paper can be equivalently formulated in the following way.

ΓRBP (Γ -robust bin-packing)
Input: I = (n, a, â, Γ ) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Γ ∈ N.
Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
fΓ (bj) ≤ 1 for each j ∈ [k]
Minimize: k

ΩRBP (Ω-robust bin-packing)
Input: I = (n, a, â, Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Ω ∈ [0, 1].
Output: A solution is a partition of [n] into k bins b1, . . . , bk such that
fΩ(bj) ≤ 1 for each j ∈ [k]
Minimize: k

The optimal solution value or cost of either problem is denoted by OPT(I) = k∗

(I may be omitted when the instance is clear from the context) and a corre-
sponding optimal solution is denoted by s∗ = {b∗1, b∗2, . . . , b∗k∗}. We introduce in
Algorithm 1 a variant of the standard next fit algorithm.

initialization: j = 1
1 Pack items (with smaller index first) in bj until fU (bj) > 1 or n ∈ bj . If n /∈ bj

then j ← j + 1 and repeat Step 1. Otherwise, k′ ← j proceed to Step 2.
2 Pack the last item of each bin in a new bin: for any j, let i = max(bj),

b1j = bj \ {i}, and b2j = {i}
return :

⋃k′

j=1{b
1
j , b

2
j}

Algorithm 1: Next-Fit(I)

Structure of the paper In Sections 2 and 3, we analyze the ratio provided by
Next-Fit for ΩRBP and ΓRBP, respectively. For ΩRBP, using ordering (1)
(non-increasing ordering on âi

āi
) the ratio is equal to 2. For ΓRBP, using order-

ing (2) (non-increasing ordering on âi), the ratio is bounded by 2(Γ + 1) (and
can be improved to 2 for Γ = 1). As Theorem 4 shows that neither ordering (1)
or (2) leads to a constant ratio using Next-Fit, this raises the question the
existence of a constant approximation for ΓRBP. In Section 4 we first review
some basic ideas and explain why they are not sufficient. Then, we introduce the
key elements necessary to develop our dynamic programming algorithm (DP) in
Section 5. The latter gives a ratio of 4.5 for ΓRBP and any Γ ∈ N, which is our
main result. The complete proofs of Theorems and Lemmas with a (?) symbol
can be found in the full version of this paper [5].

2 Next-fit for ΩRBP

Unlike the classical bin-packing problem, executing Next-Fit on arbitrarily
ordered items can lead to arbitrarily bad solutions. For example, given ε with
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0 < ε ≤ 1
2n , consider an instance with Ω = 1 − ε, and items ((2ε, 0), (0, 1 −

ε), . . . , (2ε, 0), (0, 1− ε)), where item i ∈ [n] is denoted by the pair (āi, âi). Using
this ordering, Next-Fit will create n/2 bins bj with fΩ(bj) > 1 for any j ∈ [n]
(which will be turned into n bins {b1j , b2j}), whereas the optimal solution uses
2 bins. This example also illustrates that, unlike in the standard bin-packing,
the total size argument no longer apply to the robust counterpart as having
fΩ(bj) > 1 for any j ∈ [n] does not imply a large (depending on n) lower bound
on the optimal.

Next, we consider an ordering of the items such that

â1/ā1 ≥ · · · ≥ ân/ān. (1)

Lemma 1. Suppose that the items are ordered according to (1).Then k′ ≤ k∗.

Proof. Consider an optimal solution b∗1, . . . , b
∗
k∗ and the subset of optimal bins

given by G∗ = {j ∈ [k∗] | â(b∗j ) > Ω}. Let

A =
∑
i∈[n]

(āi + âi) =

k′∑
j=1

(ā(bj) + â(bj)) =

k∗∑
j=1

(
ā(b∗j ) + â(b∗j )

)
.

Let G denote the first |G∗| bins opened in Step 1 of Next-Fit. If k′ ∈ G then
clearly k′ ≤ k∗. Otherwise, it can be observed that for each l ∈ G, ā(bl) > 1−Ω
(as ā(b`)+ âΩ(b`) > 1 and âΩ(b`) ≤ Ω) and 1−Ω ≥ maxj∈G∗ ā(b∗j ) (as fΩ(bj) ≤
1). Thus,

∑
j∈G ā(bj) >

∑
j∈G∗ ā(b∗j ) and so by the assumed ordering (1) of

the items, following a standard knapsack argument,
∑
j∈G â(bj) >

∑
j∈G∗ â(b∗j ).

Letting Ḡ = [k′] \G and Ḡ∗ = [k∗] \G∗, it follows that∑
j∈Ḡ

(ā(bj) + â(bj)) = A−
∑
j∈G

(ā(bj) + â(bj)) ≤

A−
∑
j∈G∗

(
a(b∗j ) + â(b∗j )

)
=
∑
j∈Ḡ∗

(
ā(b∗j ) + â(b∗j )

)
(equality may hold throughout if G∗ = ∅). Further, for each j ∈ Ḡ \ {k′},
ā(bj) + â(bj) ≥ f(bj) > 1 and for each j ∈ Ḡ∗, ā(b∗j ) + â(b∗j ) ≤ 1. Therefore,

|Ḡ| ≤
⌈∑

j∈Ḡ (ā(bj) + â(bj))
⌉
≤
⌈∑

j∈Ḡ∗
(
ā(b∗j ) + â(b∗j )

)⌉
≤ |Ḡ∗| and k′ ≤ k∗ as

claimed. ut

The lemma combined with Step 2 of Next-Fit immediately imply the following
theorem.

Theorem 1. If the items are ordered according to (1) then Next-Fit is a 2-
approximation algorithm for ΩRBP.

3 Next-fit for ΓRBP

From now on, we focus on problem ΓRBP. Remark first that using an arbitrary
ordering leads to arbitrarily bad solutions, considering Γ = 1 and the same
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items ((2ε, 0), (0, 1 − ε), . . . , (2ε, 0), (0, 1 − ε)) as in the previous section. Thus,
we consider here an ordering of the items such that

â1 ≥ · · · ≥ ân. (2)

The main result of this Section is the following.

Theorem 2. (?) If the items are ordered according to (2) then Next-Fit is a
2(Γ + 1)-approximation algorithm for ΓRBP.

The proof of Theorem 2 can be found in the full version of this paper [5].

We show here a simplified analysis showing that for Γ = 1, Next-Fit with
ordering (2) is a 2-approximation.

The deviating item of bin j in a fixed optimal solution s∗ and in the solution
of Next-Fit are denoted by singleton sets {i∗j} = Γ (b∗j ) and {ij} = Γ (bj),
respectively. We order the bins of s∗ such that i∗j ≥ i∗j+1.Notice that by definition
of Next-Fit and ordering (2) we also have ij ≥ ij+1.

Lemma 2. Suppose that the items are ordered according to (2) and that Γ = 1.
Then k′ ≤ k∗.

Proof. Suppose by contradiction that k′ > k∗. Let b1, . . . , bk′ be the bins opened
at Step 1 of Next-Fit and notice that fΓ (bj) = a(bj) + âΓ (bj) > 1 for each
j ∈ [k′−1], while a(b∗j )+âΓ (b∗j ) ≤ 1 for each j ∈ [k∗]. We prove next by induction
on ` ∈ [k∗] that ∑̀

j=1

a(bj) >
∑̀
j=1

a(b∗j ). (3)

For ` = 1, we have i1 = i∗1 = 1 and (3) follows immediately from âΓ (b1) = âΓ (b∗1).
Suppose now that induction hypothesis is true for `− 1. By definition of i∗` and

i`, we know that [i∗` − 1] ⊆
⋃`−1
j=1 b

∗
j and [i` − 1] =

⋃`−1
j=1 bj . Using induction

hypothesis, we get that i` ≥ i∗` , and accordingly âΓ (b`) ≤ âΓ (b∗` ). As l ≤ k∗ < l,
we have fΓ (bl) > 1, leading to a(b`) > a(b∗` ).

Thus, for l = k∗ we get
∑k∗

j=1 a(bj) >
∑k∗

j=1 a(b∗j ) =
∑
i∈[n] ai, which is

impossible. ut

As in the previous section, we obtain the following theorem.

Theorem 3. If the items are ordered according to (2) and Γ = 1 then Next-
Fit is a 2-approximation algorithm for ΓRBP.

To complete the analysis, we establish the following lower bound on the ratio
of Next-Fit.

Theorem 4. (?) If the items are ordered according to (2) or (1), then the ap-
proximation ratio of Next-Fit for ΓRBP is at least 2Γ

3 .
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Proof. Let us define an instance where the ordering (2) can lead to Step 1 of
Next-Fit using k′ = Γ bins while OPT = 3. Every row of the Γ × Γ matrix
below corresponds to the set of items in a bin (after the Step 1) of Next-Fit
algorithm

(ε, 1/Γ − δ1) (0, 1/Γ − δ1) . . . (0, 1/Γ − δ1)
...

...
. . .

...
(ε, 1/Γ − δΓ ) (0, 1/Γ − δΓ ) . . . (0, 1/Γ − δΓ )

(4)

where ε ≤ 1/Γ and δ1 ≤ · · · ≤ δΓ < ε/Γ . On the one hand, ε+Γ · (1/Γ − δl) > 1
for each l ∈ [Γ ], so step 1 of Next-Fit outputs Γ bins. On the other hand, an
optimal solution can pack all the items above except the ones in the first column
into a single bin because Γ ·1/Γ−δ1 ≤ 1. Further, the total weight of the first Γ/2

items of the first column sums up to Γ/2 ·(1/Γ +ε)−
∑Γ/2
l=1 δl ≤ 1−

∑Γ/2
l=1 δl ≤ 1,

and similarly for the last Γ/2 items, so an optimal solution may pack the first
column using two bins. Finally, instance (4) shows that Next-Fit produces a
solution 2Γ/3 times worse than the optimal one.

This instance can be adapted to establish a lower bound for the approxima-
tion ratio of Next-Fit when items are ordered according to (1); see [5]. ut

4 First ideas to get a constant ratio for ΓRBP

We maintain the assumption that the items are ordered according to (2).

4.1 Attempts to get a constant ratio

We discuss below some natural arguments to get constant ratios.

Attempt 1: using a classical size argument Next-Fit without a particular
ordering applied to instance of Section 3 leads to a solution with k′ = n/2 bins
(at the end of Step 1) where fΓ (bj) > 1 for each bin, while OPT = 2. This
example shows that even if all bins are “full” (relatively to fΓ ), it does not
provide a lower bound on the optimal number of bins. Moreover, as shown in
Theorem 4, none of the two orders considered in the previous section leads to a
constant ratio using Next-Fit.

Attempt 2: using the duality with makespan minimization Given input
I, we could guess k∗ = OPT(I), and then consider the input (I, k∗) as an
input of robust makespan minimzation (which was studied in [7]). Using any
ρ-approximation for the later problem (for example ρ = 3 in [7]), we could get in
polynomial time a solution with k∗ bins an such that fΓ (bj) ≤ ρ. The last step
would be to convert this solution into a solution of ΓRBP by unpacking each
bin (with fΓ (bj) ≤ 3) into several bins blj with fΓ (blj) ≤ 1. However, even if ρ
were arbitrarily close to 1, it is not possible to bound (for a fixed j) the number
of bins blj by a constant as showed in the instance containing n items ( εn , 1−

ε
n )

and Γ = 1. While all items fit into a single bin with capacity lower than 1 + ε,
they require n bins of capacity 1 to be packed.
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Attempt 3: guessing the profile of an optimal solution Let I be a input
of ΓRBP. Given a solution s = {bj , j ∈ [k]} for this input, we define P (s) =

{Γ (bj), j ∈ [k]} as the profile of s and P̃j(s) = {i | i ∈ Γ (b`) for some ` ∈ [j]}
as all deviating items in the first j bins. Let s∗ = {b∗j , j ∈ [k∗]} be an optimal
solution. To get some insight on the problem, let us assume that we know P (s∗)
(even if this cannot be guessed in polynomial time). We show how we can use
P (s∗) to get a 2-approximation algorithm. Without loss of generality, we can
always assume that |Γ (b∗j )| = Γ for any j, as otherwise we can add Γ − |Γ (b∗j )|
dummy items of size (0, 0) to b∗j . Remember that the items are sorted in non-
increasing order of their deviating values (âi ≥ âi+1). For any j ∈ [k∗], let i∗j =
max(Γ (b∗j )) be the smallest (in term of â value) deviating item of bin j (when
Γ = 1, {i∗j} = Γ (b∗j ) as in the previous section). Without loss of generality, let
us assume that bins are sorted such that i∗j ≥ i∗j+1. Now, given P (s∗), in the first
phase we construct a solution s by packing items of P (s∗) as they were packed
in s∗, meaning that we define bj = Γ (b∗j ) for j ∈ [k∗]. Let X = [n]\

⋃
j∈[k∗] Γ (b∗j )

be the set of remaining items. We now pack X in the following second phase,
starting with j = 1. Notice that in the description of the algorithm below, we
consider that for j ∈ [k∗], bj already contains Γ (b∗j ), whereas for any j > k∗, bj
is initially empty.

Step 1 pack items of X (by decreasing â values) in bj until fΓ (bj) > 1 or X = ∅
Step 2 if X 6= ∅, j = j + 1, and go to step 1.

Let j be the bin such that X is empty after filling bj . Let k′ be the number of
bins used by this algorithm. Notice that if j ≤ k∗ then k′ = k∗ (because of the
pre-packing of item of P (s∗)), and otherwise k′ = j.

Lemma 3. k′ ≤ k∗, implying a 2-approximation as we can convert the solution
of Next-Fit into a feasible solution of 2k′ bins by repacking the last added item
in each bin in a separate bin.

Proof. Assume by contradiction that k′ > k∗. Informally, as an item i ∈ [n] \
P̃k∗(s

∗) does not deviate in s∗, we need to ensure that this is also the case in s.
Let us prove by induction on j that the items packed greedily in Step 1 satisfy

âi ≤ âi∗j ,∀i ∈ bj \ P̃k∗(s
∗), j ∈ [k∗]. (5)

Let j = 1, and suppose there is i ∈ b1\P̃k∗(s∗) such that âi > âi∗1 . Then, because

âi∗1 ≥ âi∗j for j > 1, âi > âi∗j for each j so i ∈ P̃k∗(s∗), a contradiction. Now,

consider bin bj+1. By induction, we have that
∑
`∈[j] a(b`) + â(P̃j(s)) > j ≥∑

`∈[j] a(b∗` ) + â(P̃j(s
∗)), so P̃j(s) = P̃j(s

∗) implies∑
`∈[j]

a(b`) >
∑
`∈[j]

a(b∗` ). (6)

Let Xj be the set of items of X left after packing bin bj by the above procedure
and X∗j be the the set of items of X left after the optimal solution packs bin



Approximating robust bin packing with budgeted uncertainty 9

b∗j . Inequality (6) and the ordering used in Step 1 imply that λ ≥ λ∗, where

λ = min(Xj) and λ∗ = min(X∗j ). Therefore, if there exists i ∈ bj+1 \ P̃k∗(s∗)
such that âi > âi∗j+1

, then âλ∗ ≥ âλ ≥ âi > âi∗j+1
, and thus âλ∗ > âi∗` for any

l ∈ Jj + 1, k∗K, which is a contradiction as item λ∗ is in X and thus does not
deviate in the considered optimal.

Now that Property (5) is proved, let us get our contradiction from k′ > k∗.
Indeed, if k′ > k∗ then

∑
i∈[n] ai > k∗ − â(P̃k∗(s

∗)) ≥
∑
j∈[k∗] a(b∗j ) where

the first inequality follows from fΓ (bj) > 1 for j ∈ [k∗] and Property (5), and

the second one follows from
∑
j∈[k∗] a(b∗j ) + â(P̃k∗(s

∗)) ≤ k∗. This implies a
contradiction. ut

Even if the above procedure relies on a guessing step which is not polynomial,
its core idea has similarities with both the analysis of Next-Fit in the proof of
Theorem 2 (see [5]) and with the DP algorithm detailed later in this paper,
where we only guess the deviating item with the smallest deviation of each bin
(one at a time), and we pack Γ −1 items “better” than the one packed in P (s∗),
at the expense of a few extra bins.

4.2 Restricting our attention to small items.

We define ΓRBP with small values as the ΓRBP problem restricted to inputs
where for any i ∈ [n], âi ≤ 1

Γ and âi ≤ 1
Γ . Below we give a justification for

restricting our attention to ΓRBP with small values.

Lemma 4. Any polynomial ρ-approximation for ΓRBP with small values im-
plies a polynomial (ρ + ρbp)-approximation for ΓRBP, where ρbp is the best
known ratio of a polynomial time approximation for classical bin-packing.4

Proof. Given an instance I of ΓRBP, we define the small items S = {i ∈ [n] :
ai ≤ 1/Γ and âi ≤ 1/Γ} and the large item as B = [n] \ S. We use our ρ-
approximation algorithm to pack S into kS bins, implying kS ≤ ρOPT(S) ≤
ρOPT(I). Then, we observe that in any packing of B, each bin contains no
more than Γ items, so that all items deviate in these bins. Hence, ΓRBP for
instance (B, Γ ) is equivalent to the classical bin-packing problem for items B′
where the weight of each item i ∈ B′ is given by ai + âi. This implies that
OPTbp(B′) = OPT(B) (where OPTbp denotes the optimal value in classical bin-
packing), and that any solution for B′ is a solution of B. Thus, we use a ρbp-
approximation algorithm for classical bin-packing to pack B′ in kB bins, and use
the same packing for items in B. Note that kB ≤ ρbpOPTbp(B) = ρbpOPT(B) ≤
ρbpOPT(I). We obtain a packing of I with cost kS + kB ≤ (ρ+ ρbp)OPT(I). ut

Observation 1 Given an instance I to the ΓRBP with small values, any subset

X ⊆ [n] can be packed in d |X|Γ/2e bins.

4 In general, if we have a polynomial time additive approximation algorithm using
OPT + f(OPT ) bins and polynomial time ρ-approximation algorithm for ΓRBP
with small values then our algorithm uses OPT (ρ+ 1) + f(OPT ) bins for ΓRBP in
polynomial time.
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Notice that instances with small items are not easier to approximate by Next-
Fit because instance (4) from Section 3 uses small items.

4.3 Guessing of the full profile and considering only small items.

Let us now explain why mixing the two previous ideas is promising. As in at-
tempt 3 where we know the full profile, we want to construct for any j bins
{b1, . . . , bj} such that their total a is larger than the total value of a packed
by the first j bins of s∗ (the considered optimal solution), as in inequality (6).
Instead of guessing the full profile P (s∗), we want to design a DP algorithm
(that guesses ij∗ one at the time) with the following intuitive outline. Start with
j = 1.

– guess item i∗j , the smallest (in â value) deviating item of b∗j , and pack it in
bj

– then, as the Γ − 1 other deviating items in b∗j are unknown and we want to
pack more of the nominal size a, packs separately Γ − 1 items with larger
a values (among items with â values greater than âi∗j ). Consider that these

Γ − 1 items are put in the “trash” (at the very end we will pack all items of
the trash in a few additional bins)

– keep filling bin bj greedily (by non-increasing â values) until exceeding 1

– make a recursive call with j + 1

If s∗ uses k∗ bins, we wish to output a solution s with k∗ bins exceeding one,
and (Γ − 1)k∗ items in the trash. This almost feasible solution can be converted
into a regular one with 3k∗ bins by removing one item from each bin and adding
them to the trash, and packing the Γk∗ items of the trash into 2k∗ bins, which
is possible according to Observation 1. This sketches the core ideas of the DP.
However, the actual DP presented below needs to be more involved for the
following reasons. Consider j = 1 for convenience and let B = J1, i∗1 − 1K.

First, notice that items of B could be packed (as deviating items) in a bin
other than b∗1 in s∗, and we may have |B| > Γ − 1. Thus, instead of trashing
only Γ − 1 items of B, we have to trash all of them, and count the number of
trashed items to ensure that at the end at most (Γ − 1)k∗ items are trashed. To
summarize, the trash will represent the union of the (Γ − 1) larger (in â values)
deviating items of each bin. Moreover, we want to maintain that the accumulated
nominal (a) size of trashed items in s is larger than the accumulated nominal
size of deviating items in s∗.

Second, notice that in s∗, items of Ji∗1 + 1, i∗2 − 1K are either in b∗1 as non-
deviating items or in a b∗j , j ≥ 2 as deviating items (meaning that they are
trashed items in s). Thus, if we incorrectly pack some of these items in b1 instead
of trashing them, these items will not be available when considering b2, and we
may not be able to ensure then that trashed items in s have a larger a value
than the deviating items in s∗.

In the next section we describe the full version of the DP. To that end, we
first need to introduce formally the notion of trash.
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5 Approximating ΓRBP with small values

Bin-packing with trash For any X ⊆ [n], we define ãΓ (X) = Γ â1(X) (ãΓ (X)
is Γ times the largest deviating value of an item in X) and f̃(X) = a(X)+ãΓ (X).
We introduce next a decision problem ΓRBP-T related to ΓRBP.

ΓRBP-T (Robust bin-packing with trash)
Input: (I, k, t) where I is an input of ΓRBP (where each item (ai, âi)
satisfies âi ≤ 1/Γ and ai ≤ 1/Γ ), and k, t are two integers.
Output: Decide if a solution exists, where a solution is a partition of the set
of items into k + 1 sets b1, . . . , bk and T (called the trash) such that:
– f̃(bj) ≤ 1 for each j = 1, . . . , k
– |T | ≤ t

Notice that although each item is small in ΓRBP-T, it is possible to have
an item i such that f̃({i}) > 1, implying that i must be put in the trash. We
show below how deciding ΓRBP-T is enough to approximate ΓRBP.

Lemma 5. For any input I of ΓRBP and k∗ = OPT(I), (I, k∗, (Γ − 1)k∗) is
a yes input of ΓRBP-T.

Proof. Given an optimal solution of size k∗ of ΓRBP problem we create a so-
lution to ΓRBP-T problem as follows. Let b∗j be a bin of the considered op-
timum. Let Nj be the non-deviating items of b∗j , i.e., b∗j = Nj ∪ Γ (b∗j ). Let
X = max(Γ (b∗j )) (the smallest deviating item of b∗j ) if |Γ (b∗j )| = Γ and X = ∅
otherwise. We define b′j = Nj ∪X, and add items of Y = b∗j \ b′j into the trash.
Notice Y is either the set of Γ − 1 largest deviating object of b∗j , or is equal to
Γ (b∗j ) when |Γ (b∗j )| < Γ . This is a feasible solution for ΓRBP-T problem as

f̃(b′j) = a(b′j) + ãΓ (b′j), where a(b′j) ≤ a(b∗j ) and ãΓ (b′j) = ãΓ (X) ≤ âΓ (b∗j ), and
as there are at most (Γ − 1)k∗ items in the trash. ut

Lemma 6. For any input I of ΓRBP and integer k, given a solution of (I, k, Γk)
of ΓRBP-T, we can compute in polynomial time a solution of 3k bins for I.

Proof. Given a solution b1, . . . , bk, T for (I, k, Γk) of ΓRBP-T the bins remain
feasible in ΓRBP as fΓ (bj) = a(bj) + âΓ (bj) ≤ a(bj) + ã(bj) = f̃(bj). Then,
Observation 1 implies that the trash T can be packed into dkΓ/(Γ/2)e ≤ 2k
additional bins. ut

A DP algorithm for ΓRBP-T The objective of this section is to define a DP
algorithm that will be used to decide the ΓRBP-T problem. To this aim, we
define G-ΓRBP-T (generalized robust bin-packing with trash), an optimization
problem that the DP algorithm will solve in a relaxed way. To define G-ΓRBP-
T, we consider a fixed instance I of ΓRBP with items ordered according to (2)
and an integer k.
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G-ΓRBP-T (generalized robust bin-packing with trash)
Input: I = (q, t, `), where q ∈ [n]0, t ∈ [(Γ − 1)k]0, and ` ∈ [k + 1].
Output: A feasible solution s is a partition of Jq, nK into k − ` + 3 sets (bj
for j ∈ J`, kK, b0 and T ), such that
– for any j ∈ J`, kK, f̃(bj) ≤ 1 (the k− `+ 1 regular bins must respect the

constraint of ΓRBP-T)
– |T | ≤ t (we only allow t items in the trash)
– min(b`) = q (meaning that the deviating item of b` is q as items are

sorted in non-increasing order of â values)
Minimize: c(s) = a(b0) (in bin b0 we only count a values)

The objective of G-ΓRBP-T is to pack a part (defined by Jq, kK) of an ΓRBP-
T instance given a fixed budget of resources (the number of bins and the size of
the trash) while minimizing the total nominal size of items in the dummy bin
b0. The last constraint (the deviating item of b` is q) may appear artificial at
first sight, but comes from the fact that the DP will guess at each new bin the
largest items that should be packed in it, and therefore this constraint ensures
that every optimal solution must pack q in b` as well.

Definition 1 (almost feasible solution). We say that a bin b exceeds by at
most one item iff f̃(b) > 1 and f̃(b \ {i}) ≤ 1 where i = max(b). Given an
input (q, t, `) of G-ΓRBP-T, we say that a solution is almost feasible iff all
the above constraints of G-ΓRBP-T are respected, except that for any j ∈ J`, kK,
we allow that bj exceeds by at most one item instead of f̃(bj) ≤ 1.

The relation between G-ΓRBP-T and ΓRBP-T is characterized in the two
following lemmas whose proofs can be found in [5].

Lemma 7. (?) For any I input of ΓRBP and k such that (I, k, (Γ − 1)k) is a
yes input of ΓRBP-T, there exists q and t such that OPT(q, t, 1) = 0.

Lemma 8. (?) Let us fix I an input of ΓRBP and k an integer. For any
q ∈ [(Γ − 1)k], t = (Γ − 1)k − (q − 1), given an almost feasible solution of
I ′ = (q, t, 1) of cost 0 for G-ΓRBP-T, we can compute in polynomial time a
solution of (I, k, Γk) of ΓRBP-T.

Thus, Lemmas 6 and 8 show that providing an almost feasible solution for
(q, t, 1) of cost 0 for G-ΓRBP-T implies a solution of size 3k for ΓRBP.

Let us now define a DP algorithm DP (I) (I is an input of G-ΓRBP-T) that
provides an almost feasible solution s with c(s) ≤ OPT(I) (where OPT(I) is
by definition the optimal cost of a feasible solution). We provide below a gentle
description of the DP. Given an instance I = (q, t, `), the DP starts by guessing
(q∗, t∗), where
– q∗ = min(b∗l′) for a bin b∗l′ with l′ ∈ Jl + 1, k∗K of an optimal solution s∗

– t∗ is the number of items trashed from X∗ in s∗, where X∗ = Jq, q∗ − 1K
– Notice that in s∗ items of X∗ must by placed in b∗l , b

∗
0 or T ∗. We mimic the

optimal in the current call of the DP by packing X∗ in bl, b0 and T .
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– To that end, the DP:
• packs q in bl (as required by the corresponding constraint of G-ΓRBP-
T),

• packs the t∗ largest (in terms of a) remaining items of X∗ to the trash
• packs the remaining items of X∗ into b` until f̃(b`) > 1 or X∗ = ∅
• packs the remaining items of X∗ into b0 until X∗ = ∅

We discuss next where the other items (of Jq∗, nK) are packed. Notice that in s∗,
bin b∗l may contain items of Jq∗, nK, and thus the DP may also have to pack items
of Jq∗, nK into bl. The key is that the decision of which items of Jq∗, nK to pack
into bl is not taken at this step of the algorithm but only later (to avoid packing
in bl items of large a value that are in the trash in s∗). To allow this decision to
be taken later, let ∆b be the size of the empty space in bl after packing X∗ as
described above, and let bX

∗

0 = b0 ∩X∗. After the previous steps, the DP makes
a recursive call to get a solution s̃ that packs Jq∗, nK into regular bins, the trash,
and a dummy bin b̃0. So far solution s̃ has not used any of the empty space ∆b.
However, we can unpack items from b̃0 to b` while ensuring that these items do
not deviate in b` (as all these items have index greater than q).

The formal description of DP (q, t, `) and its correctness, stated formally in
the following two results, are provided in [5].

Lemma 9. (?) For any I input of G-ΓRBP-T, DP (I) provides an almost
feasible solution of cost at most OPT(I).

Lemma 10. (?) There is a 3-approximation for ΓRBP with small values run-
ning in O(n6log(n)).

By Lemma 4, the following theorem is now immediate using a 3
2 -approximation

for classical bin-packing (see for example in [16]) as a black box.

Theorem 5. There is a 4.5-approximation for ΓRBP running in O(n6log(n)).
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4. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A New and Improved
Algorithm for Online Bin Packing. In: Azar, Y., Bast, H., Herman, G. (eds.) ESA.
LIPIcs, vol. 112, pp. 5:1–5:14. Dagstuhl, Germany (2018)



14 A. Basu Roy et al.

5. Basu Roy, A., Bougeret, M., Goldberg, N., Poss, M.: Approximating the ro-
bust bin-packing with budget uncertainty (2019), full version available at
https://hal.archives-ouvertes.fr/hal-02119351

6. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1-3), 49–71 (2003)

7. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncer-
tainty. Discrete Applied Mathematics 261(31), 93–107 (2019)

8. Dexter, F., Macario, A., Traub, R.D.: Which algorithm for scheduling add-on elec-
tive cases maximizes operating room utilization? use of bin packing algorithms and
fuzzy constraints in operating room management. Anesthesiology 91, 1491–1500
(Nov 1999)

9. Goetzmann, K., Stiller, S., Telha, C.: Optimization over integers with robustness
in cost and few constraints. In: WAOA. pp. 89–101 (2011)

10. Gounaris, C.E., Wiesemann, W., Floudas, C.A.: The robust capacitated vehicle
routing problem under demand uncertainty. Operations Research 61(3), 677–693
(2013)

11. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing 3(4), 299–325 (1974)

12. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proc. 23rd Annual Symp. Foundations of
Computer Science (sfcs 1982). pp. 312–320 (Nov 1982)
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