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Abstract. In this paper we study the Multiple Strip Packing (MSP)
problem, a generalization of the well-known Strip Packing problem. For
a given set of rectangles, r1, . . . , rn, with heights and widths ≤ 1, the
goal is to find a non-overlapping orthogonal packing without rotations
into k ∈ N strips [0, 1]× [0,∞), minimizing the maximum of the heights.
We present an approximation algorithm with absolute ratio 2, which is
the best possible, unless P = NP, and an improvement of the previous
best result with ratio 2 + ε. Furthermore we present simple shelf-based
algorithms with short running-time and an AFPTAS for MSP. Since
MSP is strongly NP-hard, an FPTAS is ruled out and an AFPTAS is
also the best possible result in the sense of approximation theory.
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1 Introduction

In this paper we study the Multiple Strip Packing (MSP) problem, a generaliza-
tion of the well-known Strip Packing (SP) problem. For a given set of rectangles,
r1, . . . , rn, with heights and widths ≤ 1, the goal is to find a non-overlapping
orthogonal packing without rotations into k ∈ N strips [0, 1] × [0,∞), minimiz-
ing the maximum of the heights. As much as Strip Packing, its generalization
Multiple Strip Packing is not only of theoretical interest, but also has many appli-
cations to real-world problems as in computer grids, server consolidation and in
cutting problems. In computer grids for example, MSP is related to the problem
of finding a schedule for parallel tasks into different clusters of processors with
minimum makespan [12]. Consider an instance L = {r1, . . . , , rn} of MSP. The
value k always denotes the number of strips S1, . . . , Sk. For i ∈ {1, . . . , k} the
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value hi denotes the height of a feasible packing in strip Si. For an algorithmA for
MSP let A(L) be the output of the algorithm, in this case the maximum height
of the packing generated, i.e. maxi∈{1,...,k} hi. The optimal value is denoted with
OPT (L), in this case the minimal height that can be achieved. The quality of an
approximation algorithm is measured by its performance ratio. For a minimiza-
tion problem as MSP we say that A has absolute ratio α, if supL

A(L)/OPT (L) ≤ α,
and asymptotic ratio α, if α ≥ lim supOPT (L)→∞ A(L)/OPT (L), respectively. A
minimization problem admits an (asymptotic) polynomial-time approximation
scheme ((A)PTAS), if there exists a family of polynomial-time approximation
algorithms {Aε|ε > 0} of (asymptotic) (1 + ε)-approximations. We call an ap-
proximation scheme fully polynomial ((A)FPTAS), if the running-time of every
algorithm Aε is bounded by a polynomial in n and 1

ε . Zhuk showed in [16] that
there is no approximation algorithm for MSP with absolute ratio less than 2.
Since MSP can be reduced to 3-Partition, it is also strongly NP -hard. Therefore
a PTAS and an FPTAS are ruled out and an AFPTAS is asymptotically the best
possible.
A related problem is 3D Strip Packing (3SP), which also is a generalization of
Strip Packing. Here the goal is to find a packing of a given list of cuboids with
side lengths bounded by one into a 3-dimensional strip [0, 1] × [0, 1] × [0,∞),
minmizing the height of the packing. Multiple Strip Packing with k strips can
be reduced to 3SP by introducing a cuboid with depth 1/k for each rectangle
packing the strips next to each other.
Parallel Job Scheduling in Grids with identical machines is also a related prob-
lem. In the offline case we have m machines Mi with ` processors and jobs j ∈ J
with processing time pj , and a size sizej . The jobs must be executed on parallel
processors within one machine Mi, but not necessary on consecutive processors.
The machines can be seen as strips with width l and the jobs as vertically scis-
sile rectangles with width sizej and height pj . In Multiple Strip Packing we
have just the additional constraint that a job must be scheduled on consecutive
processors. Unfortunately this is the reason why approximation algorithms for
Parallel Job Scheduling cannot be applied to MSP maintaining their ratio.

Known Results. Multiple Strip Packing was first considered by Zhuk [16], who
showed that there is no approximation algorithm with abolute ratio better than
2, and later by Ye et. al. [15]. Both concentrated on the online case. Additonally
an approximation algorithm for the offline case with ratio 2 + ε was achieved in
[15]. For Strip Packing Coffman et al. gave in [8] an overview about performance
bounds for shelf-orientated algorithms as NFDH (Next Fit Decreasing Height)
and FFDH (First Fit Decreasing Height). Those adopt an absolute ratio of
3, and 2.7, respectively. Schiermeyer [11] and Steinberg [13] presented indepen-
dently an algorithm for SP with absolute ratio 2. A further important result is
an AFPTAS for SP with additive constant O(1/ε2) of Kenyon and Rémila [9].
This constant was improved by Jansen and Solis-Oba, who presented in [7] an
APTAS with additive constant 1. For 3SP Jansen and Solis-Oba obtained an
algorithm with ratio 2 +ε in [6] as an improvement of the formerly known result
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by Miyazawa and Wakabayashi [10], who presented an algorithm with asymp-
totic ratio at most 2.64. Bansal et al. presented in [2] an algorithm for 3SP with
a ratio of T∞ ≈ 1.69, which is the best known result. Schwiegelshohn et al. [12]
achieved ratio 3 for a version of Parallel Job Scheduling in Grids without release
times, and ratio 5 with release times. Tchernykh et al. presented in [14] an algo-
rithm with absolute ratio 10 for the case of machines with different numbers of
processors and without release times. However, this algorithm cannot be applied
directly to MSP because of the non-contiguity.

Our Results. In this paper we present an approximation algorithm with absolute
ratio 2, which is an improvement of the former result of 2 + ε by Ye et al. [15]
and best possible, unless P = NP. We also introduce an AFPTAS for Mutiple
Strip Packing, which is a generalization of the algorithm of Kenyon and Rémila
[9]. Our algorithm achieves an additive constant of O(1), if the number of strips
is sufficient large, otherwise an additive constant of O(1/ε2). Furthermore we
show how to use the simple shelf-based heuristics NFDH and FFDH to ob-
tain approximation algorithms for MSP with the same asymptotic ratio as for SP.

Organisation of the Paper. In the next section we introduce two shelf-based
algorithms, using Next Fit and First Fit policies. In Section 3 we present a 2-
approximation for MSP. Here we distinguish between different sizes for k. For
k = 1 we use the 2-approximation of Steinberg [13] or Schiermeyer [11]. If k = 2
or bounded by a specified constant c we make use of a result by Bansal et
al. [1] for Rectangle Packing with Area Maximization (RPA). For k ≥ c we
use an approximation algorithm for 2D bin packing with asymptotic ratio 1.69
of Caprara [3]. In the last section we present an AFPTAS for MSP. Here we
generalize the algorithm by Kenyon and Rémila [9]. Interestingly, the additive
constant in our AFPTAS can be reduced from O(1/ε2) to O(1), if the number k
of strips is large enough.

2 Shelf-based algorithms

In this section we modify the shelf-based heuristics NFDH and FFDH. [8]. A shelf
is a row of items placed next to each other left-justified. The baseline of a shelf is
either the bottom of the bin or the extended upper edge of the tallest item packed
in the shelf below. NFDH generates for a given list of rectangles L = {r1, . . . , rn}
a packing into a strip with height at most 2OPTSP (L)+hmax, FFDH produces a
packing of height at most 1.7OPTSP (L)+hmax, whereOPTSP (L) is the optimum
value of Strip Packing for the instance L and hmax is the height of the tallest
item in L. Via this modification we obtain approximation algorithms for Multiple
Strip Packing with the same asymptotic ratios. Furthermore, we present another
algorithm, that computes for rectangles with widths bounded by ε < 1 a packing
of height at most 1/(1−ε)OPT (L) + 2hmax.
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Theorem 1. Let A be one of the shelf-based Strip Packing algorithms NFDH
or FFDH with asymptotic ratio α > 1, that creates for an instance L a packing
of height less than αOPTSP (L) +hmax. For any k ∈ N there exists an algorithm
Ak that packs a list of rectangles L into k strips with Ak(L) ≤ αOPT(L)+hmax.

Proof. For any instance L of MSP we define the algorithm Ak as follows

1 Pack the sorted rectangles with A into one strip S. (In particular the rect-
angles are first sorted by non-increasing height.) Let A(L) denote the height
of S.

2 Cut out the first shelf and pack it into the first strip S1.
3 Divide the residual strip S into k parts:

3.1 For each ` ∈ {0, 1, . . . , k} draw a horizontal line across S at height
`(A(L)− hmax)/k.

3.2 For ` ∈ {0, 1, . . . , k − 1} pack all items intersecting the `th line and all
items between the `th and (`+ 1)th line into strip S`+1.

We show now that for any instance L of MSP the output of Ak is less than
αOPT(L) + hmax. Let t ∈ N be the number of shelves produced by A in Step
1 and Hj , j ∈ {1, . . . , t}, the height of the jth shelf. Since there are no items
intersecting the 0th line (see Fig 1), the height h1 of the first strip S1 is bounded
by hmax + 1

k

(∑t
j=1Hj − hmax

)
after the last step of the algorithm. For a strip

Si, i ∈ {2, . . . , k}, containing the items between the (i − 1)th and the ith line

and the ones intersecting the (i−1)th line, we have hi ≤
Pt

j=1 Hj−hmax

k +hmax =
A(L)−hmax

k + hmax. We conclude

hmax + H−hmax
k

hmax

0

H1

H2

H3

H4

H5

Fig. 1. Dividing strip S.

Ak(L) = max
i∈{1,...,k}

hi ≤
A(L)− hmax

k
+ hmax

≤ αOPTSP (L) + hmax − hmax

k
+ hmax =

αOPTSP (L)
k

+ hmax.

Since 1/kOPTSP (L) is a lower bound for OPT(L) the proof is complete.
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The running-time of the above algorithm is O(n log n).

Corollary 1. Let L be an instance of MSP. In a packing generated by the above
algorithm Ak we have maxi∈{1,...,k} |hi − Ak(L)| ≤ 2hmax, where hi denotes the
height of strip Si.

Another way to pack a set of rectangles with a modified version of the NFDH
heuristic into k strips is the following:

Algorithm 2

1 Sort the rectangles by non-increasing height.
2 For each i ∈ {1, . . . , k} pack one shelf according to the NFDH heuristic into

strip Si, that means starting in the lower left corner pack the rectangles next
to each other on the baseline of strip Si, until the next rectangle does not fit.
Draw a new baseline at the top edge of the tallest rectangle (that clearly is
the first one).

3 Take the strip S− with the current lowest height h− and pack one shelf
according to the NFDH heuristic on top of the shelves.

4 Repeat Step 3 until all rectangles are packed.

The packing generated by the above algorithm is very smooth, in the sense
that the heights of the strips only differ by hmax.

Lemma 1. For a set of rectangles L = {r1, . . . , rn} Algorithm 2 with output
A(L) generates a packing into k strips, so that maxi∈{1,...,k} |A(L)−hi| ≤ hmax.

This leads to a further result about rectangles with bounded width. Coffman et
al. showed in [8] that FFDH applied to an instance L of rectangles with widths
bounded by 1/m for some integer m generates a packing into a strip of height
at most (1 + 1

m )OPTSP (L) + hmax. Our result for packing into k strips is the
following:

Theorem 3. For a set of rectangles L = {r1, . . . , rn} with widths bounded by
ε > 0 we obtain by the Algorithm 2 with output A(L) a packing into k strips
with height less than 1

1−εOPT (L) + 2hmax.

For ε = 1
m this is equal to A(L) ≤

(
1 + 1

m−1

)
OPT(L) + 2hmax.

3 A two-approximation for MSP

In this section we construct a polynomial-time approximation algorithm for MSP
with absolute ratio 2. Since there is no approximation algorithm for MSP with
ratio smaller than 2 (unless P=NP), this is the best possible result. To handle
different sizes of k we use, besides the well-known algorithms of Steinberg [13]
or Schiermeyer [11], a result of Bansal et al. [1] for Rectangle Packing with Area
Maximization (RPA) and a of Caprara [3].
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3.1 One or two strips

The case k = 1 is trivial, because we can use the algorithm of Steinberg [13] or
Schiermeyer [11] with absolute performance bound 2.

Theorem 4 (Steinberg [13]). Let L = {r1, . . . , rn} be a set of rectangles with
heights hi and widths wi and Q be a rectangle with width u and height v. Let
h := maxi∈{1,...,n} hi and w := maxi∈{1,...,k} wi. If the following inequalities hold,

w ≤ u, h ≤ v, 2SIZE(L) ≤ uv − (2w − u)+(2h− v)+ (1)

then it is possible to pack L into the rectangle Q.(As usual, x+ = max(x, 0).)

Therefore let us first consider the case for k = 2. Here we use the PTAS
found by Bansal et al. [1] for RPA. In RPA we are given a set of rectangles
L = {r1, . . . , rn} with widths wi and heights hi and a bin of unit size. The goal
is to find a feasible packing of a subset L′ ⊂ L of the rectangles and to maximize
the area of the rectangles in L′.

Algorithm 5

1 Guess the height of an optimal solution for MSP and denote it with v.
2 Scale the heights of the rectangles in L by 1/v so that the corresponding pack-

ing fits into one bin of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv), where SIZE(Lv) is the total area of all
rectangles in Lv. Apply the algorithm in [1] with accuracy ε = 1/2 and find
a packing of a subset L′v ⊂ Lv with total area at least (1− ε)SIZE(Lv). By
rescaling the rectangles of L′v get a packing for the first strip with height at
most v.

4 Since SIZE(Lv) ≤ 2 the remaining items in Lv\L′v have total area
SIZE(Lv\L′v) ≤ εSIZE(Lv) ≤ 1. Therefore we can pack them with Stein-
berg’s algorithm into a strip of height at most 2. Rescaling gives us a second
strip of height at most 2v.

The running-time of the algorithm is polynomial in n:
In the first step we can assume that the heights of the rectangles are rational, so
by multiplying with a common denominator they become integer values. Then
the optimum height v of MSP is also integer and equals a sum of heights of the
rectangles in L, so we have hmax ≤ v ≤ nhmax. Thus Binary Search takes at
most log(nhmax) iterations to find the value v. Step 3 is also polynomial, since
we apply the algorithm in [1] for a fixed accuracy ε = 1/2.

3.2 A bounded number of strips

In the case of a constant number of strips we can use an extended version of the
PTAS for RPA in [1] called kRPA. Another helpful tool is the next lemma. The
proof can be obtained applying Steinberg’s algorithm for h,w, u = 1 and v = k/2
in equation 1.
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Lemma 2. If L is an instance of 2DBP with total area SIZE(L) ≤ k/4 and
k ≥ 3, then there exists a packing of L into k bins.

Algorithm 6

1 Guess an optimal height for MSP and denote it with v.
2 Scale the heights of the rectangles in L by 1/v so that the corresponding pack-

ing fits into k bins of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv). Apply kRPA to k bins of unit size and
find for an accuracy ε ≤ 1/4 a packing for a subset L′v ⊂ Lv with total area
(1 − ε)SIZE(Lv). By rescaling the rectangles of L′v we get k bins of height
v.

4 For the total area of the remaining rectangles in Lv\L′v we have
SIZE(Lv\L′v) = εSIZE(Lv) ≤ k/4. Pack those rectangles according to
Lemma 2 into k bins and rescale the rectangles. This results again in k
bins of height at most v.

5 Stack every two bins on top of each other and get a solution with k bins of
height at most 2v.

3.3 A large number of strips

Caprara presented in [3] a shelf algorithm for 2DBP that produces a solution
whose asymptotic ratio can be made arbitrarily close to T∞ = 1.69.... Clearly if
the number of strips is large enough (≈ 104) applying this algorithm we get a two-
approximation for MSP stacking every two bins on each other. Alternatively,
we can use the recently published two-approximation for 2DBP by Jansen et al.
[5] to achieve this result. Along with the previous sections we have the following:

Theorem 7. For any k ∈ N there is a polynomial-time algorithm for MSP with
absolute ratio two.

4 An AFPTAS for MSP

In this section we present an AFPTAS for MSP. The algorithm is a generaliza-
tion of an AFPTAS found by Kenyon and Rémila [9] for Strip Packing. For an
instance L of Strip Packing and an accuracy ε > 0 their algorithm generates
a packing with height (1 + ε)OPTSP (L) +O(1/ε2)hmax. Our algorithm achieves
the same ratio for Multiple Strip Packing. For instances with k sufficient large,
namely k ∈ Ω(1/ε3), our algorithm adopts an improved additive constant ofO(1).
More precisely for an accuracy ε and k ≥ d128/ε3e we get an approximation ratio
of (1 + ε)OPT(L) + 6hmax.
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4.1 The regular case

As in Section 2 we divide a packing into one strip into k parts of nearly the same
height and distribute them to k strips.

Theorem 8 (Kenyon & Rémila [9]). For a list L = {r1, . . . , rn} of rectangles
and an accuracy ε > 0 the algorithm AKR

ε in [9] generates a packing into one
strip with height at most (1 + ε)OPTSP (L) + (4( 2+ε

ε )2 + 1)hmax.

Our result is the following:

Theorem 9. For a list L = {r1, . . . , rn} of rectangles with widths and heights
≤ 1 and an accuracy ε > 0 there exits an algorithm Aε that generates a packing
into k strips, so that Aε(L) ≤ (1 + ε)OPT (L) + (2( 2+ε

ε )2 + 2)hmax.

4.2 Instances with a large number of strips

In this section we consider the case k ≥ d128/ε3e. In this case it is possible to
improve the additive constant to O(1)hmax by balancing the configurations.

Rounding. We choose ε′ = ε/4 (w.l.o.g. 1/ε′ integral) and divide the list of rect-
angles L into a list of narrow rectangles Lnarrow := {ri ∈ L|w(ri) ≤ ε′} and
a list of wide rectangles Lwide := {ri ∈ L|w(ri) > ε′}. Then we round Lwide

to an instance Lsup with only M := (1/ε′)2 different widths. For the rounding
step we put the wide rectangles sorted by non-increasing widths left-aligned on
a stack. Let STACK(L) denote the total area of the plane covered by this stack
and let H denote its height. Moreover, for arbitrary lists L′′, L′ we define a
relation ≤g, so that L′′ ≤g L

′, if and only if STACK(L′′) ⊆ STACK(L′). We
draw M − 1 horizontal lines through STACK(L) with distance H/M starting at
the bottom. Therefore we get M so-called threshold rectangles. A rectangle is a
threshold rectangle if it either with its interior or with its lower edge intersects
a line at height iH/M, i ∈ {1, . . . ,M − 1}. For i ∈ {1, . . . ,M − 1} we round up
the width of each rectangle between the lines iH/M and (i+1)H/M to the width of
the ith threshold rectangle. The widths of the rectangles below the first line are
rounded up to the width of the undermost rectangle in the stack. So we get at
most M groups of different widths (see Fig 2). Furthermore, we get a list Lsup of
rectangles with widths larger than ε′ and only M different widths, in particular
we have Lwide ≤g Lsup.

Fractional Packing. Our first objective is to create a fractional packing for the
wide rectangles into k strips. To do this we introduce configurations. A con-
figuration is a non-empty multiset of widths, which sum up to less than one.
Denote with q the number of different configurations Cj with height xj . Let αij

be the number of occurence of width wi in configuration Cj and let βi be the
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H/M

2H/M

3H/M

4H/M

Group 1

Group 2

Group 3

Group 4

Fig. 2. Rounding the rectangles in Lsup.

total height of all rectangles of width wi. Based on the solution of the following
Linear Program

min

∑q
j=1 xj

k

s.t.
q∑

j=1

αijxj ≥ βi for all i ∈ {1, . . . ,M}

xj ≥ 0 for all j ∈ {1, . . . , q},

(LP(Lsup))

by distributing the configurations to k strips we get the requested fractional
packing for the rectangles in Lsup. Note that rank(αij)ij ≤M and hence a basic
solution x of LP (Lsup) has at most M nonzero entries. In the next section we
show how to transform a fractional packing into a feasible packing for Lsup. Later
the rectangles in Lnarrow are packed into the idle space in a Greedy manner.
For a list L of rectangles let LIN(L) denote the height of an optimum fractional
packing for L. Let h0 := LIN(Lsup) and note that h0 ≤ OPT (L).

Lemma 3. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m ≤
M nonzero entries x1, . . . , xm. For k ≥ d128/ε3e we get a fractional packing
into k strips with height at most (1 + ε′)h0 and at most m′ ≤ 2M different
configurations.

Proof. First we fractionally pack the rectangles into the configurations. Imagine
each configuration Cj as a bin with height xj and width cj and divide it into αij

columns of widths wi and height xj . Pack the rectangles in Lsup of width wi in a
Greedy manner fractionally into the columns of width wi until exactly height xj ,
starting with j = 1. In this way each column contains a sequence of rectangles,
which completely fits inside the column, and possibly the top part of a rectangle,
that started in a previous column, and the bottom part of a rectangle, that is
too tall to fit into this column. Since

∑m
j=1 αijxj ≥ βi, there will be maybe more

than enough space for the rectangles of width wi in the configurations. In this
case we distribute the rectangles among the columns and delete the additional
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space. So we split a configuration Cj into two parts, one of the old type where
the columns of width wi are completely filled and one without columns of width
wi. This case may happen only M times. So we have in total m′ = m+M ≤ 2M
configurations C1, . . . Cm′ with nonzero heights x1, . . . , xm′ .
Notice that there exist configurations with height larger or equal h0, since if not

we conclude
∑m′

j=1 xj < m′h0 ≤ 2Mh0
ε′=ε/4

= 32h0
ε2 < kh0, which is a contradic-

tion. Consider a configuration Cj , j ∈ {1, . . . ,m′}. If xj ≥ h0 we allocate bxj/h0c
empty strips with height h0 for Cj . If then xj/h0−bxj/h0c ≤ ε′h0, we assign to Cj

additional space with height (xj/h0 − bxj/h0c) in a strip, that has already height
h0. If xj/h0 − bxj/h0c > ε′h0, we divide (xj/h0 − bxj/h0c) into at most 1/ε′ stripes
with height less or equal ε′h0. So assign to Cj additional space of height ε′h0 in
no more than 1/ε′ strips, which are already occupied until height h0. In the same
way as the remaining stripes we handle configurations of height less than h0.
Since there are at most 2M configurations with nonzero height, we get at most
2M/ε′ = 2/ε′3 ≤ 2·43

/ε3 ≤ k additional assignments of height ε′h0, which can be
distributed to k strips. Thus by this assignment policy, where the configurations
are balanced, each strip has allocated area of height at most (1 + ε′)h0 for at
most 2 different configurations.

0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Cj

C`

Fig. 3. Si with Cj and C`.

Integral Packing. The next Lemma shows how to get from a fractional packing
to a feasible integral packing. A proof is given in the full paper.

Lemma 4. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m′ ≤
2M nonzero entries x1, . . . , xm′ . For k ≥ d128/ε3e we can convert x to a feasible
packing for the wide rectangles with height at most (1 + ε′)h0 + 2hmax and at
most 2 different configurations per strip.

Since we can guarantee that there are at most 2 different configurations per strip,
the additive constant will be improved, while the running-time is still polynomial
in n and 1/ε.
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0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Fig. 4. Si after packing the narrow rectangles.

Our last step is to pack the narrow rectangles. We use a modified version
of the NFDH algorithm: For strip Si as above we pack narrow rectangles with
NFDH into the empty space next to the configurations until the total height is at
most (1+ε′)h0+2hmax. After that we repeat the process for strip Si+1. When all
strips are filled in this way, we draw a horizontal line at height (1+ε′)h0 +2hmax

in each strip and pack the remaining narrow rectangles with Algorithm 2 on top
(see Fig 3 and 4). Thus we can ensure by Lemma 1 that the maximum difference
of the heights of two arbitrary strips is at most hmax (see Fig 4). Let hfinal

denote the height of the packing after packing the narrow rectangles.

Lemma 5. Let k ≥ d128/ε3e. If hfinal ≥ (1 + ε′)h0 + 2hmax, then we have
hfinal ≤ SIZE(Lsup∪Lnarrow)

k(1−ε′) + 6hmax + ε′h0.

For details we refer to the full paper. The next lemma is shown in [9] for the
Linear Program corresponding to Strip Packing, but obviously also holds for our
linear program LP (Lsup).

Lemma 6. [9] For the rounded instance Lsup and Lwide the inequalities
LIN(Lsup) ≤ LIN(Lwide)

(
1 + 1

Mε′

)
and SIZE(Lsup) ≤ SIZE(Lwide)

(
1 + 1

Mε′

)
hold.

The entire algorithm is now defined as follows:

Algorithm 10

1 Set ε′ := ε/4 and M := (1/ε′)2.
2 Partition L into Lwide and Lnarrow.
3 Construct Lsup, so that Lwide ≤g Lsup and there are only M different widths

in Lsup.
4 Solve the linear program LP (L).
5 Construct a feasible solution for Lsup by balancing the configurations.
6 Use modified NFDH to pack the rectangles in Lnarrow into the remaining

space and on top of the strips.

Theorem 11. If k ≥ d128/ε3e the Algorithm 10 generates for an instance L of
MSP a packing of height at most (1 + ε)OPT(L) +O(1)hmax.
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