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Abstract. Motivated by the yield optimization problem in semi-conductor
manufacturing, we model the wafer to wafer integration problem as a
multi-dimensional assignment problem and study it from an approxi-
mation point of view. We give approximation algorithms achieving an
approximation factor of 3

2
and 4

3
for WWI-3. We show that a special

case of yield optimization problem can be solved in polynomial time.
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1 Introduction

Consider the following problem. Given are m sets Vi, i = 1, ...,m. Each set
contains n p-dimensional vectors; each entry of each vector is a nonnegative
integer. We define the cost of vector u = (u1, u2, . . . , up) as follows: c(u) =∑p

i=1 ui. Given a pair of vectors u, v, we can construct the vector u ∨ v by
defining the operation ∨ as follows:

u ∨ v = (max(u1, v1),max(u2, v2), . . . ,max(up, vp)).

Notice that (u ∨ v) ∨ w = u ∨ (v ∨ w).

Consider now an m-tuple, ie, a set of m vectors u1, u2, . . . , um ∈ V1 × V2 ×
. . .×Vm. The cost of an m-tuple equals c(u1 ∨u2 ∨ . . .∨um). Our problem, that
we denote by WWI (see Section 1.1), is to find n disjoint m-tuples such that
each vector is used exactly once, while total cost is minimum. In the figure below
an instance with m = 3, n = p = 2 is depicted; notice that this instance has the
property that each vector is a 0-1 vector; the value of an optimal solution to this
instance equals 2.

We were motivated to look at this optimization problem by an application
in the semi-conductor industry, that we now proceed to describe.
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Fig. 1. WWI instance; m = 3, n = p = 2

1.1 The application

Our understanding of the semi-conductor industry, and in particular the wafer-
to-wafer production process is primarily based upon ... In the semi-conductor
industry, TSV based 3D-SIC is an emerging technology that provides large ben-
efits: a smaller footprint, a higher interconnect density between stacked dies,
higher performance, and lower power consumption due to shorter wires when
compared to planar IC’s. One of the key steps in the production of 3D-SIC’s
is stacking. There are three different ways of stacking: (1) wafer to wafer (2)
die to wafer (3) die to die (see [5]). Of these three approaches, wafer to wafer
stacking offers the highest manufacturing throughput coupled with other advan-
tages. However, wafer to wafer stacking approach suffers from a drawback that
it may have a low yield. The main motivation of this paper is to study this yield
optimization problem in the wafer to wafer integration process.

The yield optimization problem in the semi-conductor industry can be infor-
mally described as follows: there are m lots of wafers called wafer lots, with each
wafer lot consisting of n wafers. A wafer consists of a string of bad dies and good
dies; in our context this translates to a ’0’ in case of a good die, and a ’1’ in case of
a bad die (such a string corresponds to a vector in the description of WWI). The
objective is to form n stacks (a stack corresponds to an m-tuple) by integrating
one wafer from each lot (a set Vi) while maximizing the yield i.e., maximizing
the total number of good dies in the resulting stacks (or equivalently, minimizing
the total number of bad dies in the resulting stacks). Integrating two wafers can
be seen as superimposing the two corresponding strings; in this operation the
position in the merged string is only ’good’ when the two corresponding entries
are good, otherwise it is ’bad’. Due to this reason we call the above problem
wafer to wafer integration (WWI) problem. We refer to it as WWI-m, where is
m is the number of wafer-lots.

Notice that the yield optimization problem described here is a special case of
WWI, since instances of the yield optimization problem have 0-1 vectors (instead
of vectors with arbitrary integral entries). However, since the approximation
results that we derived are valid for this more general setting, we opted to focus
on the case of arbitrary vectors.
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Dimensions of typical instances occurring in the semi-conductor industry
have m = 10, n = 50, p = 1000 [5][8].

1.2 Goal and Related work

Our main intention in this paper is to formulate the WWI-m as a combinatorial
optimization problem and study it from an approximation point of view. Usu-
ally, the yield optimization problem is formulated as a maximization problem,
however, we feel that studying the minimization problem is especially relevant
from approximation point of view. Indeed, owing to the fact that in the yield
optimization instances, the number of bad dies in each wafer is typically much
less than the number of good dies, it make sense to be able to approximate the
(smaller) minimization optimum instead of the (larger) maximization optimum.

There is increasing attention for the yield optimization in the literature. One
example is the contribution [5]. In [5] the problem is formulated as an multi-index
assignment problem; further, computational performance with straightforward
heuristics is reported. Some recent work on this problem is also reported in [7] [8].
As we will show, WWI can be seen as a multi-index assignment problem where
the costs have a certain structure. Research on this type of problems is reported
in [2]. Similar type of Multi-index assignment problems with decomposable costs
are studied in [3],[1]. An survey on multi-dimensional assignment problems can
be found in [6].

1.3 Our results

Our results can be summarized as follows:

– We present an IP-formulation that is an alternative to the traditional for-
mulation given in [5]. This alternative formulation contains fewer variables,
and may be more suited from a computational perspective (see Section 2).

– We prove that the yield optimization problem is NP-hard (see Section 3).
– We give two simple approximation algorithms for WWI-3, one with a 3

2
performance guarantee, and one with a 4

3 performance guarantee (see Sec-
tion 4.1). We also show that natural extensions of these algorithms to the case
of arbitrary m fail to provide a constant-factor guarantee (see Section 4.2).

– We show that, in case of a fixed m and a fixed p, the yield optimization
problem is solvable in polynomial time (see Section 5).

2 Problem Formulation

In subsection 2.1 we give a straightforward formulation of the yield optimization
problem in wafer to wafer integration as a m-dimensional axial assignment prob-
lem, see also [5]. Section 2.2 presents an alternative IP-formulation that may be
more suited from a computational perspective.
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2.1 IP formulation

We set K = V1 × V2 × . . .× Vm, ie, K corresponds to the set of m-tuples. Next,
for each a ∈ K, there is a binary variable xa indicating whether m-tuple a is
selected (xa = 1) or not (xa = 0). The formulation is now as follows (see also
[5])

min
∑

a∈K w(a) · xa (1)∑
a: u∈a xa = 1 for each u ∈ ∪mi=1Vi, (2)

xa ∈ {0, 1} for each a ∈ K. (3)

Observe that constraints (2) ensure that each vector u is in an m-tuple.

2.2 Alternative IP formulation

In this section we give an IP formulation that is different from the classical
formulation and contains fewer variables.

In this formulation, we model the problem by treating V1 as the hub. Each
node in ∪mi=2Vi is assigned to a node in V1; this decision is modelled by a binary
variable as follows. There is a variable zu,v, where u ∈ V1 and v ∈ ∪mi=2Vi, such
that:

zu,v = 1 if vectors u and v are contained in the same m-tuple,

= 0 otherwise.

In addition, we introduce variables yu,` as follows.

yu,` = the value in the `-th position of the m-tuple containing vector u ∈ V1.

min
∑
u∈V1

p∑
`=1

yu,` (4)

∑
u∈V1

zu,v = 1 (5)

∑
v∈Vi

zu,v = 1 (6)

yu,` ≥ max(u`, v`) · zu,v (7)

zu,v ∈ {0, 1} (8)

(5) is for each v ∈ ∪mi=2Vi; (6) is for each u ∈ V1, for each i = 2, . . . ,m,; (7) is
for each u ∈ V1, for each v ∈ ∪mi=2Vi, 1 ≤ ` ≤ p; (8) is for each u ∈ V1, for each
v ∈ ∪mi=2Vi.

Observe that this alternative formulation has very few variables (O(mn2 +
np)) when compared to the number of variables in classical assignment formu-
lation (O(nm)). Even for reasonably small instances it will be difficult to solve
the resulting problem with IP solvers using the classical formulation, whereas
we might be able to solve them using (4)-(8).
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3 Complexity of WWI

In this section we describe a reduction from MAX-3DM to WWI. Recall that for
a given pairwise disjoint sets X,Y,Z, and a set of ordered triples T ⊆ X×Y ×Z, a
matching in T is a subset of M ⊆ T in which no two ordered triples in M agree
in any coordinate. The goal of the MAXIMUM 3-DMENSIONAL MATCHING
problem (shortly, MAX-3DM) is to find a matching in T of maximum cardinality.

Kann [4] showed that the 3-bounded MAX-3DM is Max SNP-complete (hence
also APX-complete).

Reduction. Consider an arbitrary instance I of MAX-3DM with three sets
X = {x1, ..., xq}, Y = {y1, ..., yq}, and Z = {z1, ..., zq}, and a subset T ⊆
X×Y ×Z. Let the number of triples be denoted by |T |. Further, let the number
of triples in which element xi occurs, be denoted by #occ(xi), i = 1, . . . , q.

Starting from the instance I of MAX-3DM, we now build a corresponding
instance I ′ of WWI-3 by specifying Vi (i = 1, 2, 3), as follows:

– for each element in xi ∈ X there is a vector v1i ∈ V1

– for each element in yj ∈ Y there is a vector v2j ∈ V2

– for each element in zk ∈ Z there is a vector v3k ∈ V3

– each vector has length |T | i.e., p = |T |
– for each triple e = (xi, yj , zk) ∈ T , there is a position in each vector corre-

sponding to that triple. The three vectors v1i, v2j , and v3k corresponding to
triple (xi, yj , zk), have a ’0’ in that position, all other vectors have a ’1’ in
that position.

This completes the description of WWI-3 instance.
It is easy to see that a solution to an instance of MAX-3DM with value k

corresponds to a solution to the corresponding instance of WWI-3 with value
pq − k. Hence NP-hardness of WWI-3, even for yield maximization, follows.

4 Approximation algorithms for WWI-m

In this section we first prove that a straightforward algorithm (called heuristic
H) for WWI-3 is a 3

2 approximation algorithm. We the show how a simple
modification of this heuristic allows us to improve the worst-case ratio to 4

3 .
We then show that natural extension of heuristic H to WWI-m can perform
arbitrarily bad.

4.1 The Case m = 3

Theorem 1. Heuristic H is a 3
2 -approximation algorithm for WWI-3. This

bound is tight.
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Algorithm 1 Heuristic H

1. Solve an assignment problem between V1 and V2, based on costs c(u ∨ v), u ∈
V1,v ∈ V2. Call the resulting matching M .
2. Solve an assignment problem between M and V3 based on costs c((u ∨ v) ∨ w),
u ∨ v ∈ M , w ∈ V3.

Proof. We first introduce some notation. Let OPT denote the value of an optimal
solution, and let cost(H) refer to the value of the solution found by H. Let c(Vi)
equal total cost of the vectors in Vi, ie, c(Vi) =

∑
u∈Vi

c(u), for i = 1, 2, 3. Let

cOPT
12 denote the value of a partial optimal solution restricted to V1 × V2, ie,

when we remove from the optimal solution the vectors from V3; the total weight
that remains equals cOPT

12 . Recall that M refers to matching found by H in the
first step, and let cH12 be the value of the partial solution obtained after Step 1
of the heuristic H.

Let us call x (y) the amount with which the value of a partial optimal (heuris-
tic) solution increases when vectors from V3 are matched optimally to the optimal
(heuristic) pairs from V1 × V2, ie, x = OPT − cOPT

12 .
The following inequality is valid:

c(V3) ≤ OPT

c(V3)− x ≤ cOPT
12 .

Consider a set U consisting of n p-dimensional vectors with total cost c(U) =∑
u∈U c(u). In addition, consider a set V , also consisting of n p-dimensional

vectors. Let us now assign the vectors from V to the vectors of U using as a cost
c(u∨v) for each (u, v) ∈ U×V . Let the value of the resulting optimal solution be
denoted by c(U ×V ). We say that an amount equal to c(V )− (c(U ×V )− c(U))
from V is covered by U (or equivalently, we say that U is able to cover an amount
of c(V ) + c(U)− c(U × V ) from V ).

Consider now the partial heuristic solution found after Step 1, ie, consider
M .

Lemma 1. There exists a feasible assignment of the vectors in V3 to the pairs
from M such that at least the amount 1

2 (c(V3)− x) from V3 is covered by M .

Argument: To argue that the lemma is true, consider the partial optimal solution
restricted to V1×V2. Apparently, these are able to cover from V3 an amount equal
to c(V3) − x when assigning the strings from V3 to these pairs (since OPT =
cOPT
12 +x). However, each vector in V1×V2 consists of p numbers, each one arising

from either V1 or V2. Thus, we can partition the amount covered c(V3)− x into
two parts: one part covered by numbers from V1, one part covered by numbers
from V2. It follows that if one considers the following two assignments: one where
you assign the vectors from V3 to the vectors from V1 as in the optimal solution,
and one where you assign the vectors from V3 to the vectors from V2 as in the
optimal solution, at least one of these solutions will cover 1

2 (c(V3) − x). This
proves the lemma.
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We can now derive

cost(H) = cH12 + y

≤ cH12 + c(V3)− (
1

2
c(V3) +

1

2
x)

= cH12 +
1

2
c(V3) +

1

2
x

≤ cOPT
12 +

1

2
c(V3) +

1

2
x

≤ cOPT
12 +

1

2
[cOPT

12 + x] +
1

2
x

≤ 3

2
cOPT
12 +

3

2
x =

3

2
OPT.

The first inequality follows from Lemma 1, the second inequality follows from
the fact that the heuristic, in Step 1, computes an optimum assignment between
sets V1 and V2 whose costs cannot exceed cOPT

12 , and the final inequality follows
from the definition of x. Tightness follows from the instance depicted in Figure
1: observe that, for this instance, OPT = 2, whereas heuristic H might find a
solution with value 3. ut

A minor modification of heuristic H (denoted by Hheavy) allows us to improve
the worst-case ratio without actually increasing the computational effort. Indeed,
let us slightly modify H by ensuring that in Step 1 the heaviest set Vi is present,
ie, we ensure that the set Vi for which c(Vi) is maximal, is assigned to some
Vj , j 6= i in the first step.

Algorithm 2 Heuristic Hheavy

0. Let j = arg maxi=1,2,3c(Vi).
1. Solve an assignment problem between Vj and some Vi, i 6= j, based on costs
c(u ∨ v), u ∈ Vj ,v ∈ Vi. Call the resulting matching M .
2. Solve an assignment problem between M and the remaining set Vk, k 6= j, k 6= i
based on costs c((u ∨ v) ∨ w), u ∨ v ∈ M , w ∈ Vk.

Theorem 2. Heuristic Hheavy is a 4
3 -approximation algorithm for WWI-3. This

bound is tight.

Proof. Let us assume, without loss of generality, that set V1 is the heaviest set.
Thus, we have c(V1) ≥ c(V2) as well as c(V1) ≥ c(V3). Even more, let us assume
(again wlog) that in Step 1 of Hheavy sets V1 and V2 are assigned to each other.
We distinguish three cases.

Case 1: 0 ≤ c(V1) ≤ 1
3OPT.

This case is trivial since any feasible solution is in fact optimal: cost(Hheavy) ≤
c(V1) + c(V2) + c(V3) ≤ 3 · 13OPT = OPT.



8 Trivikram Dokka, Marin Bougeret, Vincent Boudet, and Frits C.R. Spieksma

Case 2: 1
3OPT < c(V1) ≤ 2

3OPT.
This case is similar to the analysis in Theorem 1. We derive:

cost(Hheavy) = c
Hheavy

12 + y

≤ c
Hheavy

12 + c(V3)− (
1

2
c(V3) +

1

2
x)

= c
Hheavy

12 +
1

2
c(V3) +

1

2
x

≤ OPT +
1

2
c(V3) ≤ 4

3
OPT.

The last inequality follows from the assumption in this particular case, and
the fact that c(V3) ≤ c(V1).

Case 2: 2
3OPT < c(V1) ≤ OPT.
We denote by Q the weight from V3 that is covered by V1 when we solve an
assignment problem between V1 and V3. The following is true:

c(V1) + c(V3)−Q ≤ OPT. (9)

We now derive:

cost(Hheavy) = c
Hheavy

12 + y ≤ c
Hheavy

12 + c(V3)−Q

≤ cOPT
12 + c(V3)−Q

≤ cOPT
12 + OPT− c(V1)

≤ OPT +
1

3
OPT =

4

3
OPT.

The first inequality follows from Step 2 of Hheavy, the second from Step 1 of
Hheavy, the third inequality follows from (9), and the last inequality follows
from the assumption in this particular case.

Tightness follows from the instance depicted in Figure 2: observe that, for
this instance, OPT = 6, whereas heuristic Hheavy might find a solution with
value 8.

ut

An obvious improvement to heuristic H and Hheavy would consist of a heuris-
tic that runs H for all possible pairs in the first step, add the remaining set in
the last step, and then choosing the best of the three feasible solutions found.
Interestingly, this heuristic (which involves solving 6 assignment problems) does
not have a lower worst case ratio than Hheavy (which only solves two assignment
problems). This also follows from the example depicted in Figure 2.

Notice that heuristic H, in contrast to Hheavy can be seen as an online
algorithm for a natural, online variant of WWI-3. Indeed, consider the setting
where the sets V1, V2, and V3 arrive sequentially over time, and that, before
the arrival of a next set, the just arrived set Vi must be assigned to the partial
tuples. Results given above imply directly:
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Fig. 2. Hheavy bad example; OPT = 6, SH = 8

Corollary 1. Heuristic H is a 3
2 competitive algorithm.

Clearly, in this framework, Hheavy is not an online algorithm.

4.2 The Case of arbitrary m

A natural extension of heuristic H to the case of arbitrary m is as follows. We
iteratively assign set Vi to the existing partial tuples from V1×V2×. . .×Vi−1. Let
us call the resulting heuristic Hseq. The performance of Hseq can be arbitrarily
bad as can be seen from the description of the following instances. To understand
these instances, it can be helpful to see each vector as a circle with p positions; in
such a circle, the 1s, as well as the 0s, will appear consecutively. Let vi,j denote
the j-th vector from Vi. Formally, the instances are described as follows:

Choose m such that there exists a value of p with m = p(p− 1) + 1 (thus, in
these instances, the length of a vector increases with m), and set n = p.

– for each k ∈ {1, . . . , p − 1}, there are 1s in position i − (k − 1)p to position
i− (k− 1)p+ k− 1 (modulo p) in vector vi,1, for each i ∈ {(k− 1)p+ 1, kp}.

– There is a 1 in each position of the vector v(p(p−1)+1,1.
– Each other vector is an all-zero vector.

Notice that the cost of an optimal solution equals p, whereas Hseq may find
a solution with cost m = p(p− 1) + 1. Therefore, the worst-case ratio of Hseq is
at least O(

√
m). An instance with p = 3 is depicted in Figure 3.

Another natural heuristic to consider is the so-called Multiple Hub-Heuristic
(see [1]), which can be informally described as in Algorithm (3):

The performance of the multiple hub heuristic MH can be arbitrarily bad.
Indeed, consider the following instance. The length of each vector equals 2, ie,
p = 2, and consider some even value for the number of sets m. let n = m

2 + 1.
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Fig. 3. Hseq: a bad example; OPT = 3, MH = 7

Algorithm 3 Multi-Hub-Heuristic MH

for h = 1 to m do
for i = 1 to m do

1. Solve an assignment problem between Vh and Vi, i 6= h, based on costs
c(u ∨ v), u ∈ Vh,v ∈ Vi. Call the resulting matching Mhi.

end for
Combine all Mhi, to construct Mh.

end for
Output the min-cost solution of all Mh.

The first vector of each of the sets Vi, i = 1, 2, . . . , m
2 is specified as follows: For

i = 1, 2, . . . , n, put vi,1 = (1 0); for i = m
2 + 1, . . . ,m put vi1 = (0 1). All other

vectors in the instance are equal to (0 0). It can be seen that OPT = 2 whereas
cost(MH) = m

2 + 1.
Notice that this performance is in contrast with the performance of the

multiple hub-heuristic for other variants of decomposable minimum cost m-
dimensional assignment problems, see [1].

5 Fixed p

In this section we consider the yield optimization problem, i.e., we consider
instances that feature 0-1 vectors only. We will argue that instances of the yield
optimization problem with a fixed p can be solved in polynomial time (for each
fixed m).

Consider a solution of the yield optimization problem. It consists of n 0-1
vectors. Thus, we can classify these n 0-1 vectors as belonging to at most 2p

different types (each type corresponding to a distinct 0-1 vector of length p). We
use the symbol t to index these types.
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We say that a vector from type t is compatible with a vector from type s if
the vector of type t has a ’1’ in each of the positions where the vector of type
s has a ’1’. We write type t is compatible with a vector from type s as t � s.
Further, given an instance of the yield optimization problem, we let kis denote
the number of 0-1 vectors of type s in set Vi, s = 1, . . . , 2p, i = 1, . . . ,m.

We construct the following formulation that features variables xt:

xt = number of 0-1 vectors of type t in the final solution, t = 1, . . . , 2p.

We also need “transportation” type variables; for each i = 1, . . . ,m, s, t =
1, . . . , 2p:

zis,t = number of 0-1 vectors of type s from set Vi assigned to class t.

The formulation (with parameter ct referring to the number of ’1’s in a vector
from type t):

min

2p∑
t=1

ctxt (10)∑
s: t�s

zis,t = xt for each t = 1, . . . , 2p, i = 1, . . . ,m, (11)∑
t: t�s

zis,t = kis for each s = 1, . . . , 2p, i = 1, . . . ,m, (12)

xt, z
i
s,t integer for each s, t = 1, . . . , 2p, i = 1, . . . ,m, (13)

The objective funcion (10) minimizes the total cost. (11)-(12) resemble the
familier transportation constraints. Constraints (12) enforce that each vector in
Vi is assigned to some type t. Constriants (11) enforce that each vector of type t
such that xt > 0 is assigned to exactly one vector in Vi. Given a feasible solution
to (10)-(13) one can construct a feasible solution to WWI-m as follows: (1)
Create a set X of n vectors with xt vectors of type t, (2) Solve an assignment
problem between X and Vi, for each i = 1, . . . ,m, (3) Construct m-tuples of
vectors by matching m vectors one from each Vi together in an m-tuple if they
all are matched to same vector in X in (2).

Observe that this formulation involves O(m22p) variables, and O(m2p) con-
straints.

Lemma 2. Formulation is correct.

Proof. Consider a feasible solution to the yield maximization problem. This so-
lution prescribes for each type of vector in each set Vi how many of these vectors
are assigned to a vector of type t. This determines the zis,t values; clearly, these
values will satisfy constraints (10)-(13), since our solution is valid. Vice versa,
consider zis,t values that satisfy (10)-(13). This corresponds directly to a feasible
solution. ut
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When we fix p and m the above formulation has a fixed number of variables and
constraints. Thus we can use Lenstra’s algorithm to solve this IP in polynomial
time. This implies:

Corollary 2. For each fixed p, and for each fixed m, the yield maximization
problem can be solved in polynomial time.
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