
On the complexity of Wafer-to-Wafer Integration

M. Bougereta,b,∗, V. Boudeta,b, T. Dokkac, G. Duvilliéb,a,∗∗, R. Giroudeaua,b

aLIRMM, 161 rue Ada, 34095 Montpellier Cedex 5
bUniversité de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier

cDept. of Management Science, Lancaster University Management School, Lancaster, LA1
4YX, UK

Abstract

In this paper we consider the Wafer-to-Wafer Integration problem. A wafer
can be seen as a p-dimensional binary vector. The input of this problem is
described by m multisets (called "lots"), where each multiset contains n wafers.
The output of the problem is a set of n disjoint stacks, where a stack is a set of
m wafers (one wafer from each lot). To each stack we associate a p-dimensional
binary vector corresponding to the bit-wise AND operation of the wafers of the
stack. The objective is to maximize the total number of "1" in the n stacks.
We provide m1−ε and p1−ε non-approximability results even for n = 2, f(n)
non-approximability for any polynomial-time computable function f , as well
as a p

r -approximation algorithm for any constant r. Finally, we show that the
problem is FPT when parameterized by p, and we use this FPT algorithm to
improve the running time of the p

r -approximation algorithm.

Keywords: wafer-to-wafer integration problem, approximability,
computational complexity, parameterized complexity, multidimensional binary
vector assignment

1. Introduction

1.1. Problem definition
In this paper we consider Wafer-to-Wafer Integration problems. In these

problems, we are given m multisets V 1, . . . , V m, where each set V i contains n
binary p-dimensional vectors. For any j ∈ [n] 1, and any i ∈ [m], we denote by
vij the jth vector of the multiset V i, and for any l ∈ [p] we denote by vij [l] ∈ {0, 1}
the lth component of vij .

∗Corresponding author
∗∗Principal corresponding author

Email addresses: bougeret@lirmm.fr (M. Bougeret), boudet@lirmm.fr (V. Boudet),
t.dokka@lancaster.ac.uk (T. Dokka), duvillie@lirmm.fr (G. Duvillié), rgirou@lirmm.fr
(R. Giroudeau)

1The notation [n]j stands for {j, . . . , n} and to lighten the notation, we will use the classical
notation [n] instead of [n]1.

Preprint submitted to Discrete Optimization July 27, 2016

1 INTRODUCTION 2

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c (vs1) = 3

c (vs2) = 0

c (vs3) = 2

c (vs4) = 2

s1

s2

s3

s4

Figure 1: Example of max
∑

1 instance with m = 3, n = 4, p = 6 and of a feasible solution S
of profit fΣ1(S) = 7.

Let us now define the output. A stack s = (vs1, . . . , v
s
m) is an m − tuple of

vectors such that vsi ∈ V i, for any i ∈ [m]. An output of the problem is a set
S = {s1, . . . , sn} of n stacks such that for any i and j, the vector vij is contained
exactly in one stack. An example of input and output is depicted in Figure 1.

These problems are motivated by an application in IC manufacturing in
semiconductor industry, see [?] for more details about this application. A wafer
can be seen as a string of bad dies (0) and good dies (1). Integrating two wafers
corresponds to superimposing the two corresponding strings. In this operation,
a position in the merged string is only ’good’ when the two corresponding dies
are good, otherwise it is ’bad’. The objective of Wafer-to-Wafer Integration is
to form n stacks, while maximizing the overall quality of the stacks (depending
on the objective function).

Let us now define several objective functions, and the corresponding opti-
mization problems. We consider the operator ∧ which maps two p-dimensional
vectors to another one by performing the logical and operation on each compo-
nent of entry vectors. More formally, given two p−dimensional vectors u and v,
we define u ∧ v = (u[1] ∧ v [1], u[2] ∧ v [2], . . . , u[p] ∧ v [p]). We associate to any
stack s = (vs1, . . . , v

s
m) a binary p-dimensional vector vs =

∧m
i=1 v

s
i . Then, the

profit of a stack s is given by c (vs), where c (v) =
∑p
l=1 v [l]. Roughly speaking,

the profit of a stack is the number of good bits in the representative vector of
this stack, where a good bit (in position l) survives if and only if all the vectors
of the stack have a good bit in position l.

We are now ready to define the two following optimization problems:

Set of problems 1 max
∑

1 and min
∑

0

Input m multisets of n binary p-dimensional vectors

Output a set S = {s1, s2, . . . , sn} of n disjoint stacks
Objective
functions

max
∑

1: maximize f∑ 1(S) =
∑n

j=1 c
(
vsj
)
, the total number of good bits

min
∑

0: minimize f∑ 0(S) = np−
∑n

j=1 c
(
vsj
)
, the total number of bad bits

Instances of these problems will be denoted by I[m,n, p]. The notation
f(S) (instead of f∑ 0(S), f∑ 1(S), . . .) will be used when the context is non

1 INTRODUCTION 3

ambiguous. Note that we use multisets to modelize the sets of wafers since two
different wafers can share the same representative vector. In the following, we
refer to multisets as sets and consider two copies of a same vector as two distinct
elements.

1.2. Related work
In this paper we consider results in the framework of approximation and

fixed parameter tractability theory. We only briefly recall the definitions here
and refer the reader to [? ?] for more information. For any ρ > 1, a ρ-
approximation algorithm A (for a maximization problem) is such that for any
instance I, A(I) ≥ Opt(I)

ρ , where Opt(I) denotes the optimal value. The input
of a para-meterized (decision) problem Π is a couple (X,κ), where X ⊆ Σ∗ is a
classical decision problem, and κ : Σ∗ −→ N is a parameterization. Deciding Π
requires to determine for any instance I ∈ Σ∗ if I ∈ X. Finally, we say that an
algorithm A decides Π in FPT time (or that Π is FPT parameterized by κ) if
and only if there exist a computable function f and a constant c such that for
any I, A(I) runs in O(f(κ(I))|I|c).

The max
∑

1 problem was originally defined in [?] as the “yield maxi-
mization problem in wafer-to-wafer 3-D integration technology”. Authors of [?
] point out that "the classical NP-hard 3-D matching problem is reducible to
the max

∑
1 problem". However, they do not provide the reduction and they

only conclude that max
∑

1 is NP-hard without stating consequences on the
approximability. They also notice that max

∑
1 is polynomial for m = 2 (as

it reduces to finding a maximum profit perfect matching in a bipartite graph,
solved by Hungarian Method), and design the "iterative matching heuristic"
(IMH) that computes a solution based on (2D) matchings.

In [?] and [?] we investigated the min
∑

0 problem by providing a 4
3 -

approximation algorithm for m = 3 and several f(m)-approximation algorithms
for arbitrary m (and for a more general profit function c). Furthermore, we also
noticed in [?] that the natural ILP formulation implied that min

∑
0 and

max
∑

1 are polynomial for fixed p. Concerning negative results, the implicit
straightforward reduction from k-Dimensional Matching in [?] and made
explicit in Section 2, shows that min

∑
0 is NP-hard, and max

∑
1 is O(m

lnm)
non-approximable. The more complex reduction of [?] shows that min

∑
0 is

APX-hard even for m = 3, and thus is very unlikely to admit a PTAS.

1.3. Contributions
In this paper we mainly study the max

∑
1 problem, with a particular focus

on parameter p. In Subsection 2.2, we provide a strict reduction from Max
Clique. Such a reduction proves that, even for n = 2, for any ε, there is
no ρ(m, p)-approximation algorithm for max

∑
1 for any function ρ satisfying

ρ(x, x) = x1−ε unless P = NP (this implies in particular no p1−ε and no m1−ε

ratios). This reduction implies that, for any polynomial-time computable func-
tion f , max

∑
1 is hard to approximate within a factor of f(n). These negative

2 NEGATIVE RESULTS 4

max
∑

1 min
∑

0

[?] NP-hard

[? ?]
O(m

lnm) inapproximability
for m = 3, 4

3 -approximation

APX-hard

polynomial for fixed p
f(m) approximation for

general m

polynomial for fixed p
for any ε > 0, p1−ε and m1−ε

non-approximation, even for
n = 2

This
paper

f(n) non-approximabtion for
any polynomial-time computable

function f
FPT/p

p/r-approximation in
O(f(r)poly(m+ n+ p))

Table 1: Overview of results on Wafer-to-Wafer Integration

results show that the simple p-approximation presented in Section 3.1 is some-
how the best ratio we can hope for. Nevertheless, looking for better positive
results we focus on p

r -approximation algorithm for any constant r. It turns out
that any exact algorithm with a running time O(f(n,m, p)) for max

∑
1 can

be used to derive a p
r -approximation running in time O(p × f(n,m, r)), using

a classical shifting technique. This motivates our main result: determining the
complexity of the max

∑
1 problem when parameterized by p. The natural

ILP in [?] implied that max
∑

1 (and min
∑

0) is polynomial for fixed p.
We provide in Section 3.2 another ILP formulation proving that max

∑
1 (and

min min 0) is FPT when parameterized by p, using the Frank et al. [?] im-
provement of the Kannan algorithm [?], and thus improving the complexity of
the p

r -approximation.
The contributions presented in this paper are summarized in the Table 1.
This paper is a extended version of [?] where we also provide an EPTAS

for max
∑

1 with fixed n and an exact result for max max 1 for n = 2.

2. Negative Results

In order to obtain negative results for max
∑

1, let us first introduce two
related problems defined in the Set of Problems 2.

Roughly speaking, we will see that approximating max
∑

1 is harder than
approximating these two problems, and that these problems are themselves non-
approximable.

2 NEGATIVE RESULTS 5

Set of problems 2 max max 1 and max 6=0

Input m multisets of n binary p-dimensional vectors
Output a set S of n disjoint stacks
Objective
functions

maxmax 1: maximize fmax 1(S) = maxj∈[n] c
(
vsj
)
, the profit of the best stack

max 6=0: maximize f 6=0(S) = |{j|c
(
vsj
)
≥ 1}|, the number of non null stacks

To show that approximability is preserved we will provide strict reductions [?
]. Indeed, if there is a strict reduction from Π1 to Π2, then any polynomial ρ-
approximation for Π2 yields to a ρ-approximation for Π1. To avoid the technical
conditions in the definition of the strict reductions, we will consider a subset of
the latter. We will indeed provide reductions that satisfy conditions 1 and 2 of
the following property.

Property 1. Let Π1 and Π2 be two maximization problems with their given
objective functions m1 and m2. Let f be a polynomial function that given any
instance x of Π1 associate an instance f(x) of Π2. Let g be a polynomial function
that given any instance x of Π1, and feasible solution S2 of f(x), associates a
feasible solution g(x, S2) of Π1. If f and g verify the two following conditions:

1. Opt(x) = Opt(f(x))

2. m1(g(x, S2)) ≥ m2(f(x))

then (f, g) is a strict reduction.

2.1. Relation between max 6=0, max max 1 and max
∑

1

Observation 1. There exists a strict reduction from max max 1 to max
∑

1.

Proof. Let us construct (f, g) as in Property 1. Consider an instance I ′[m′, n′, p′]
of max max 1. We construct an instance I[m,n, p] of max

∑
1 as follows: we set

p = p′, n = n′, m = m′ + 1. The m′ sets of I ′[m′, n′, p′] remain unchanged in
I[m,n, p]: ∀i ∈ [m′], V i = V ′i and the last set V m

′+1 contains (n − 1) "zero
vectors" (i.e. vectors having only 0) and one "one vector" (i.e. vector having
only 1).

Informally, the set V m
′+1 of I behaves like a selecting mask: since all stacks

except one are turned into zero stacks when assigning the vectors of last set,
the unique “one vector” of set V m

′+1 must be assigned to the best stack, and
maximizing the sum of the stacks is equivalent to maximizing the best stack.

More precisely, it is straightforward to see that the following statement is
true: ∀x, ∃ a solution S′ of max max 1 of profit fmax 1(S′) ≥ x ⇔ ∃ a so-
lution S of max

∑
1 of profit f∑ 1(S) = x. Thus, we get Optmaxmax 1(I ′) =

Optmax
∑

1(I). As the previous reduction is polynomial, and a solution of I ′ can
be deduced from a solution of I in polynomial time, we get the desired result.

Observation 2. There exists a strict reduction from max 6=0 to max
∑

1.

2 NEGATIVE RESULTS 6

Proof. Consider an instance I ′[m′, n′, p′] of max 6=0. We construct an instance
I[m,n, p] of max

∑
1 as follows. The number of components of each vector is left

unchanged (p = p′), the number of vectors per set is multiplied by p′ (n = n′p′)
and the number of sets is increased by one (m = m′ + 1). ∀j = 1, . . . ,m′, the
sets V j are constructed as follows: V i = V ′i

⋃
X, where X contains n− n′ null

vectors, and V m
′+1 contains n′ times the following sets of vectors (this is the

reason why n = n′p′):

{1000 . . . 000︸ ︷︷ ︸
p=p′

, 0100 . . . 000, 0010 . . . 000, . . . , 0000 . . . 010, 0000 . . . 001}

As an example, the following instance I ′[3, 2, 4] of max 6=0

V ′11 = 1010 V ′21 = 0001 V ′31 = 1111

V ′12 = 1001︸ ︷︷ ︸ V ′22 = 0100︸ ︷︷ ︸ V ′32 = 1000︸ ︷︷ ︸
V 1 V 2 V 3

is turned into the following one I[4, 8, 4] of max
∑

1:

v11 = 1010 v21 = 0001 v31 = 1111 v41 = 1000

v12 = 1001 v22 = 0100 v32 = 1000 v42 = 0100

v13 = 0000 v23 = 0000 v33 = 0000 v43 = 0010

v14 = 0000 v24 = 0000 v34 = 0000 v44 = 0001

v15 = 0000 v25 = 0000 v35 = 0000 v45 = 1000

v16 = 0000 v26 = 0000 v36 = 0000 v46 = 0100

v17 = 0000 v27 = 0000 v37 = 0000 v47 = 0010

v18 = 0000︸ ︷︷ ︸ v28 = 0000︸ ︷︷ ︸ v38 = 0000︸ ︷︷ ︸ v48 = 0001︸ ︷︷ ︸
V 1 V 2 V 3 V 4

Informally, as the set V m of I turns any non zero stack of I ′ into a stack of
value 1 (by choosing an appropriate vector), maximizing the total number of 1
in I requires to maximize the number of non null stacks in I ′.

Let us first check that "∀ solution S′ of max6=0, ∃ a solution S of max
∑

1
of value f∑ 1(S) = f 6=0(S′)". Let {s′1, . . . , s′x} be the x non null stacks of S′,
and {s′x+1, . . . , s

′
n′} be the null stacks of S′. Let us now construct S. For any

i, 1 ≤ i ≤ x, let li be a non null bit in s′i. We extend s′i to a stack si by adding a
vector vmj of set m such that vmj [li] = 1. Notice that such a vector always exists
as for any position l, 1 ≤ l ≤ p there are n′ wafers in the set V m whose bit in
position l is equal to 1. Thus, even if the x stacks of S′ have the same non null
position l, the previous construction is possible. Finally, the n′ − x remaining
null stacks of S′ are extended arbitrarily, and we complete the construction of S
by adding n− n′ arbitrary stacks (as these stacks use in each of the first m− 1
set the set X of null vectors, the value of these stacks is zero). Thus, we get
f∑ 1(S) = x.

Let us now check that "∀ solution S of max
∑

1, ∃ a solution S′ of max6=0

of value f 6=0(S′) ≥ f∑ 1(S). As any vector of set m has only one good bit (i.e.,

2 NEGATIVE RESULTS 7

equal to 1), the profit of any stack of S is at most 1, and thus there are exactly
x non null stacks {s1, . . . , sx} in S. By removing the vector in the set V m in
each of these x stacks, we get x non null stacks of I ′. Finally, we complete the
construction of S′ by creating arbitrarily the n′ − x remaining stacks, and we
get f 6=0(S′) ≥ x (notice that the value of S′ can be greater than x, as we could
have a null stack si ∈ S whose restriction to the first (m − 1) set is a non null
stack of I ′).

Thus, we get Optmax6=0
(I ′) = Optmax

∑
1(I). As the previous reduction is

polynomial, and as a solution of S of I can be translated back in polynomial time
into a solution S′ of I ′ with f6=0(S′) ≥ f∑ 1(S), we get the desired result.

According to Observations 1 and 2, any non-approximability result for max6=0

or max max 1 will transfer to max
∑

1. This motivates the next section.

2.2. Hardness of max6=0 and max max 1

The reduction from k-Dimensional Matching (k-DM) provided by Dokka
et al. in [?] for min

∑
0 can be used as such for max 6=0. In the following,

we present the reduction of [?] and slightly adapt the proof of this article
to max6=0, showing that, unlike the case of min

∑
0, the reduction preserves

approximability.

Theorem 1 (implicit in [?]). There is a strict reduction from k-DM to max 6=0.

Proof. Let us describe the reduction provided in [?]. Let I be an instance of
k-DM described by k sets Xi, 1 ≤ i ≤ k (where Xi are pairwise disjoint) such
that |Xi| = n, and x k-tuples tl ∈ X1 × · · · × Xk, 1 ≤ l ≤ x. We denote by
aji , 1 ≤ j ≤ n the elements of set Xi.

From this instance, we construct an instance of max 6=0 composed of k sets,
each containing n vectors. The number of bits per vector is equal to x. The
jth vector of set i represents the set of k-tuples that use element aji . Thus, we
define vij as a string of size x, where the lth bit is set to 1 if and only if aji is
used in tl.

Hence, the lth bit of a stack is 1 if and only if each element of tuple l is
selected (by selecting corresponding vector), and then if and only if tuple tl
belongs to solution of k-DM instance. Notice that the value of any stack is at
most 1, since a stack represents a tuple.

An example of the reduction is depicted in Figure 2.

As it is NP-hard to approximate k-DM within a factor of O(k
ln(k)) [?], we

get the following corollary:

Corollary 1. It is NP-hard to approximate max 6=0 within a factor of O(m
ln(m)).

We can also notice that any m
r -approximation ratio (for a constant r ≥ 3)

for max 6=0 or max
∑

1 would improve the currently best known ratio for k-DM
set to k+1+ε

3 in [?].
Let us now consider a new reduction which provides inapproximability results

according to parameter p even for n = 2.

2 NEGATIVE RESULTS 8

a11

a21

a31

a12

a22

a32

a13

a23

a33

1100

0010

0001

1000

0110

0001

0100

1010

0001

0000

0010

0001

V 1 V 2 V 3 S

Figure 2: Example of reduction from an instance I of k-DM with k = 3, X1 =
{
a1

1, a
2
1, a

3
1

}
,

X2 =
{
a1

2, a
2
2, a

3
2

}
, X3 =

{
a1

3, a
2
3, a

3
3

}
, T =

{
(a1

1, a
1
2, a

2
3), (a

1
1, a

2
2, a

1
3), (a

2
1, a

2
2, a

2
3), (a

3
1, a

3
2, a

3
3)
}

and a solution of profit 2 to an instance of max 6=0 with m = k = 3, n = |X1| = 3, p = |T | = 4
and a solution S of profit 2.

Theorem 2. There is a strict reduction from the Max Clique problem to
max max 1 for n = 2.

Proof. Let us construct (f, g) as in Property 1. Let us consider an instance G =
(V,E) of the Max Clique problem. The corresponding instance of max max 1
is constructed as follows. We consider m = |V | sets, each having two vectors.
All the vectors have p = |V | bits. For each vertex i of V , we create the set
V i = (vi1, v

i
2). For any i, we define vi1 = (vi1[1], vi1[2], . . . , vi1[p]), where vi1[l] = 1

if and only if (i, l) ∈ E or i = l, and vi2 = (vi2[1], vi2[2], . . . , vi2[p]), where vi2[l] = 1
if and only if i 6= l. In other words, vi1 corresponds to the ith row of the adjacency
matrix of G, with a self loop.

The idea is that selecting vi1 corresponds to selecting vertex i in graph, and
selecting vi2 will turn the ith component to 0, which corresponds to a penalty
for not choosing vertex i.

We first need to state an intermediate lemma. For any stack s = {vs1, . . . , vsm},
let Xs = {i|vsi = vi1} be the associated set of vertices in G. Recall that vs is the
p dimensional vector representing s.

Lemma 1. ∀i ∈ [p], vs[i] = 1⇔ ((i ∈ Xs) and (∀x ∈ Xs \ i, (x, i) ∈ E)).

M Let us first prove Lemma 1. Suppose ith component of vs is 1. This implies
that vi1 ∈ s, and thus i ∈ Xs. Now, suppose by contradiction that ∃x ∈ Xs \ i
such that {x, i} /∈ E. x ∈ Xs implies that vx1 ∈ s. Moreover, vs[i] = 1 implies
that vx1 [i] = 1, and thus {x, i} ∈ E, which leads to a contradiction. Suppose
now that i ∈ Xs, and ∀x ∈ Xs \ i, {x, i} ∈ E. Let us prove that ∀i′, vsi′ [i] = 1.
Notice first that for i′ = i we have vsi [i] = vi1[i] = 1. Moreover, ∀i′ 6= i such that
i′ /∈ Xs we have vsi′ [i] = vi

′

2 [i] = 1. Finally, ∀i′ 6= i such that i′ ∈ Xs, we have
vsi′ [i] = vi

′

1 [i] = 1 as {i′, i} ∈ E. M

It is now straightforward to prove that ∀x, "∃ solution S for max max 1 of
value fmax 1(S) = x ⇔ ∃ a clique X in G of size x." Indeed, suppose first that
we have a solution S such that fmax 1(S) = x. Let s = (vs1, . . . , v

s
m) be the

stack in S of value x, and let Gs = {l|vs[l] = 1} be the set of good bits in the
representative vector of s. We immediately get that the vertices corresponding

3 POSITIVE RESULTS 9

1

2 3

4 5

11100

01111

11110

10111

11111

11011

01111

11101

00111

11110

V 1 V 2 V 3 V 4 V 5

00011

11100

Figure 3: Illustration of the reduction from an instance of the Max Clique problem defined by
graph G = ({1, 2, 3, 4, 5} , {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}) admitting a solution
of profit 3 to an instance of maxmax 1 with m = p = |V | = 5, n = 2 admitting a solution S
of cost c (S) = 3.

to Gs form a clique in G, as ∀i and j ∈ Gs the previous property implies that
i ∈ Xs, j ∈ Xs, and thus {i, j} ∈ E. Suppose now that there is a clique X∗ in
G, and let s be a stack such that Xs = X∗. The previous property implies that
∀i ∈ Xs, vs[i] = 1.

Thus, Optmaxmax 1(I) is equal to the size of the maximum clique in G. As the
previous reduction is polynomial, and as a solution of S of I can be translated
back in polynomial time into the corresponding clique in G (of same size), we
get the desired result.

An example of this reduction is depicted in Figure 3.

Zuckerman shows in [?] that, for any ε there is no |V |1−ε-approximation
for the Max Clique problem (with the set of vertices V) unless P =NP. Since
in the previous reduction m = p = |V |, we get the following corollary:

Corollary 2. Even for n = 2, for any ε, there is no ρ(m, p)-approximation
for any function ρ satisfying ρ(x, x) = x1−ε, ∀x, for max max 1 and thus for
max

∑
1. Notice that in particular, p1−ε and m1−ε are not possible, but for

example (pm)
1
2 is not excluded.

Since n = 2, we can also deduce from this reduction the following negative
result:

Corollary 3. There is no f(n)-approximation algorithm for any polynomial-
time computable function f for max max 1 and thus for max

∑
1.

To summarize, the main negative results for max
∑

1 are no p1−ε-approx-
imation and no m1−ε approximation for n = 2, and no O(m

lnm)-approximation
for arbitrary n (using the reduction from k-DM of [?]). Notice that it does
not seem obvious to adapt the previous reductions to provide the same non-
approximability results for min

∑
0. Thus, the question of improving the f(m)

ratios provided in [?] is still open.

3. Positive Results

In this section, we develop a polynomial-time approximation algorithm for
max

∑
1. Then, we show that max

∑
1 and min

∑
0 are FPT parameterized

by p.

3 POSITIVE RESULTS 10

V 1 V 2 V 3 V 4 V 5 V 6 S

011 011 101 111 111 111 001

101 110 110 011 101 110 010

011 011 101 011 101 110 100

Figure 4: Counter-example showing that Algorithm 1 for r = 2 remains a p-approximation.
The depicted stacks correspond to an optimal solution of profit 3 whereas the algorithm
outputs a solution of profit 1.

3.1. p
r -approximation

Given the previous negative results, it seems natural to look for ratio p
r ,

where r is a constant. Let us first see how to achieve a ratio p with Algorithm 1.

Algorithm 1: p-approximation for max
∑

1

x = 0;
while ∃l such that it is possible to create a stack s such that vs[l] = 1 do

Add s to the solution;
x = x+ 1;

if x < n then
Add n− x arbitrary (null) stacks to the solution;

Property 2. Algorithm 1 is a p-approximation algorithm for max
∑

1.

Proof. Let S = S6=0

⋃
S0 be the solution computed by the algorithm, where

S6=0 is the set of non zero stacks, and S0 is the set of the remaining null stacks.
Since S6=0 and S0 are disjoint, we have S0 = S \ S6=0. Let n1 = |S6=0|, and ∀i,
let V

′i = V i
⋂
S0. Let n2 = |S0| = |V

′i| (all the V ′i have the same size). Notice
that n = n1 + n2.

As the algorithm cannot create any non null stack at the end of the loop,
we know that for any position l ∈ [p], there is a set i(l) such for any vector
w ∈ V ′i(l), w[l] = 0. In other words, we can say that there is a column of n2
zeros in the set V

′i(l). Notice there may be several columns of zeros in a given
set. Thus, we deduce that there are at least p columns (of n2 zeros) in the
vectors of V

′i(l). Moreover, as none of these zeros can be matched in a solution,
we know that these n2p zeros will appear in any solution.

Thus, given S∗ an optimal solution, we have f(S∗) ≤ np − n2p = n1p. As
f(S) ≥ n1, we get the desired result.

Given a fixed integer r (and targeting a ratio p
r), a natural way to extend

Algorithm 1 is to first look for r-tuples (i.e. find (l1, . . . , lr) such that it is
possible to create s such that vs[l1] = · · · = vs[lr] = 1), then (r − 1)-tuples,
etc. However, even for r = 2 this algorithm is not sufficient to get a ratio p

2 , as
shown by the example depicted in Figure 4.

3 POSITIVE RESULTS 11

In this example it is not possible to create any stack of value strictly greater
than 1 since set V 1 kills positions {1, 2} (we say that a set kills positions {l1, l2}
if and only if there is no vector in the set such that w[l1] = w[l2] = 1), set V 2

kills positions {1, 3}, and set V 3 kills positions {2, 3}.
Thus, in this case (and more generally when no stack of value greater than 1

can be created), the solution computed by the algorithm for r = 2 is the same as
one computed by Algorithm 1. In the worst case, the algorithm creates only one
stack of value 1 (by choosing the first vector of each set). However, as depicted
in Figure 4, the optimal value is 3, and thus the ratio p

2 is not verified. In
other words, knowing that no stack of profit 2 can be created does not provide
better results for Algorithm 1. This motivates the different approach we follow
hereafter.

Property 3. Suppose that there exists an exact algorithm for max
∑

1 running
in f(n,m, p). Then, for any r ∈ [p] we have a p

r -approximation running in
O(p× f(n,m, r)).

Proof. The idea is to use a classical “shifting technique” by guessing the subset
of the r most valuable consecutive positions in the optimal solution, and run
the exact algorithm on these r positions.

Let S∗ be an optimal solution for max
∑

1. Let us write f(S∗) =
∑p
l=1 al,

where al = |{s ∈ S∗|vs[l] = 1}| is the number of stacks in S∗ that save position
l. ∀l ∈ [p− 1]0, let Xl = {l, . . . , (l + r − 1) mod p}, and σl =

∑
t∈Xl at. Notice

that we have
∑p
l=1 σl = r

∑p
l=1 al = rf(S∗), as each value al appears exactly r

times in
∑p
l=1 σl. This implies maxl σl ≥ r

pf(S∗).
For any l, let Il be the restricted instance where all the vectors are truncated

to only keep positions in Xl (there are still nm vectors in Il, but each vector is
now a r-dimensional vector). By running the exact algorithm on all the Il and
keeping the best solution, we get a p

r -approximation running in O(pf(n,m, r)).

The previous property motivates the exact resolution of max
∑

1 in polynomial-
time for fixed p. It is already proved in [?] that min

∑
0 can be solved in

O(m(n2
p

)). As this result also applies to max
∑

1, we get a p
r -approximation

running in O(pm(n2
r

)), for any r ∈ [p]. Our objective is now to improve this
running time by showing that max

∑
1 (and min

∑
0) are even FPT parame-

terized by p (and not only polynomial for fixed p).

3.2. Faster algorithm for fixed p for max
∑

1

Definition 1. For any t ∈ [2p − 1]0, we define configuration t as Bt: the
p-dimensional binary vector that represents t in binary. We say that a p-
dimensional vector v is in configuration t if and only if v = Bt.

First ideas to get an FPT algorithm
. Let us first recall our previous algorithm in [?] for fixed p. This result is
obtained using an integer linear programming formulation of the following form.

3 POSITIVE RESULTS 12

The objective function is min
∑2p−1
t=0 xtc̄t (recall that in [?] the considered

objective function is min
∑

0), where xt ∈ [n]0 is an integer variable representing
the number of stacks in configuration t, and c̄t ∈ [p]0 is the number of 0 in
configuration t.

This is a good starting point to get an FPT algorithm. Indeed, if we note
nvar (resp. mctr) the number of variables (resp. number of constraints) of an
ILP, for any A ∈ Qnvar×mctr , b ∈ Qmctr , the algorithm of Frank et al. [?] allows
us to decide the feasibility of an ILP, under the form ∃?x ∈ Znvar |Ax ≤ b, in
time O(nvar

2.5nvarL logL), where L is the length of the input. Thus, a classical
technique to get an FPT algorithm parameterized by p is to write min

∑
0 (and

max
∑

1) as an ILP using f(p) variables.
However, it remains now to add constraints that represent the min

∑
0 prob-

lem. In [?], these constraints are added using zijt variables (for i ∈ [m], j ∈
[n], t ∈ [2p − 1]0)), where zijt = 1 if and only if vij is assigned to a stack of type
t. Nevertheless these new O(mn2p) variables prevent us to use [?]. Indeed,
the use of these variables leads to a resolution of the ILP formulation in time
O(((mn+ 1)2p)2.5(mn+1)2pL logL).

Thus, we now come back to the max
∑

1 problem, and our objective is to
get rid of these z variables and to express the constraints using only the {xt}
variables.

Presentation of the new ILP for max
∑

1
. For any t ∈ [2p − 1]0, we define an integer variable xt ∈ [n]0 representing the
number of stacks in configuration t. Let also ct ∈ [p]0 = c(Bt) be the number
of 1 in configuration t.

Definition 2. A profile is a tuple P = {x0, . . . , x2p−1} such that
∑2p−1
t=0 xt = n.

Definition 3. The profile Pr(S) = {x0, . . . , x2p−1} of a solution S = {s1, . . . , sn}
is defined by xt = |{i|vsi is in configuration t}|, for t ∈ [2p − 1]0.

Definition 4. Given a profile P , an associated solution S is a solution such
that Pr(S) = P . We say that a profile P is feasible if and only if there exists
an associated solution S that is feasible.

Notice that the definition of associated solutions also applies to a non feasible
profile. In this case, any associated solution will also be non feasible.

Obviously, the max
∑

1 problem can be formulated using the following ILP:

max

2p−1∑
t=0

xtct subject to
2p−1∑
t=0

xt = n

∀0 ≤ t < 2p, xt ∈ N
P = {xt} is feasible

Our objective is now to express the feasibility of a profile by using only these
2p variables. Roughly speaking, the idea to ensure the feasibility is the following.

3 POSITIVE RESULTS 13

10 •
01 •
11 •
11 •

V 1 P

01•
10•
10•
11•

Figure 5: Example showing that satisfying demands of profile P with set 1 requires to find a
perfect matching. Edges represent domination between configuration.

Let us suppose (with p = 2 and n = 4 for example) that there exists a feasible
solution of fixed profile x0 = 0, x1 = 1, x2 = 2, x3 = 1. Suppose also that the
first set is as depicted in Figure 5. To create a feasible solution with this profile,
we have to “satisfy” (for each set V i) the demands xt for all configurations t.
For example in the set V 1, the demand x2 can be satisfied by using one vector
in configuration 2 and one vector in configuration 3, and the demand 3 can
be satisfied using the remaining vector of 3 (the demand x0 is clearly satisfied).
Notice that a demand of a given configuration (e.g. configuration 2 here) can be
satisfied using a vector that “dominates” this configuration (e.g. configuration
3 here). The notion of domination will be introduced in Definition 5. Thus, a
feasible profile implies that for any set i there exists a perfect matching between
the vectors of V i and the profile {xt}.

Let us now define more formally the previous ideas.

Definition 5 (Domination). A p-dimensional vector v1 dominates a p-dimen-
sional vector v2 (denoted by v1 � v2) iff ∀l ∈ [p], v2[l] = 1⇒ v1[l] = 1.

A configuration t1 ∈ [2p−1]0 dominates a configuration t2 ∈ [2p−1]0 (denoted
by t1 � t2) if and only if Bt1 � Bt2 (recall that Bt is the p-dimensional binary
representation of t).

A solution S′ dominates a solution S (denoted by S′ � S) if and only if ∃
a bijection φ : [n] → [n] such that for any i ∈ [n], vs′i � vsφ(i) (in other word,
there is a one to one domination between stacks of S′ and stacks of S).

A profile P ′ dominates a profile P (denoted by P ′ � P) if and only if there
exists solutions S′ and S such that Pr(S′) = P ′, P r(S) = P and S′ � S.

Definition 6. For any i ∈ [m] and any t ∈ [2p − 1]0, let bit be the number of
vectors of set V i in configuration t.

Definition 7 (Graph GiP). Let P be a profile not necessarily feasible. Let
GiP = ((∆P ,Λ

i), E�), where Λi = {λi,lt , 0 ≤ t ≤ 2p − 1, 1 ≤ l ≤ bit}, and
∆P = {δlt, 0 ≤ t ≤ 2p − 1, 1 ≤ l ≤ xt}. Let us fix an application f : ∆P ∪ Λi 7→
[2p − 1]0, that associates to each vertex λi,lt and to each vertex δlt the vector in
configuration t. Λi (resp. ∆P) represents the set of vectors of V i (resp. the
demands of profile P) grouped according to their configurations. Notice that
|Λi| = |∆P | = n. Finally, we set E� = {{a, b}|a ∈ ∆P , b ∈ Λi, f(a)� f(b)}.

We are now ready to show the following proposition.

3 POSITIVE RESULTS 14

1101 •λ1,113

0110 •λ1,16

1110 •λ1,114

V 1 Λ1

0101•λ3,15

1110•λ3,113

0110•λ3,16

V 3Λ3

0111

•
λ2,17

1111

•
λ2,115

1110

•
λ2,114

V 2

Λ2

1010

•
δ110

0110

•
δ16

0101

•
δ15

P

∆P

1101

0110

1110

V 1

0101

1110

0110

V 2

0111

1111

1110

V 3

0110

0101

1110

Pr(S′)

1010�

0110�
0101�

P

Figure 6: Illustration of Proposition 1 with m = n = 3 and p = 4. Left: The three Gi
P

graphs (edges are depicted by solid and dotted lines), and three matchings (in solid lines)
corresponding to S′. Right: Solution S′ s.t. Pr(S′)� P .

Proposition 1. For any profile P = {x0, . . . , x2p−1},

(∃P ′ feasible, with P ′ � P)⇔ ∀i ∈ [m],∃a matching of size n in GiP

Before starting the proof, notice that the simpler proposition “for any P , P
feasible⇔ ∀i ∈ [m], there is a matching of size n in GiP ” does not hold. Indeed,
⇒ is correct, but ⇐ is not: consider P with x0 = n (recall that configuration 0
is the null vector), and an instance with nm "1 vectors" (containing only 1). In
this case, there is a matching of size n in all the GiP , but P is not feasible. This
explains the formulation of Proposition 1. An example of the correct formulation
is depicted in Figure 6.

Proof. Let P be a profile.
(⇒) Let P ′ be a feasible profile that dominates P . Let S = {s1, . . . , sn} and

S′ = {s′1, . . . , s′n} be two solutions such that S′ is feasible, Pr(S) = P , Pr(S′) =
P ′ (notice that S and P are not necessarily feasible), and S′ � S. Without
loss of generality, let us assume that ∀j, vs′j � vsj (i.e. the bijection φ of
Definition 5 is the identity), and let us assume that for any j, s′j = (v1j , . . . , v

m
j).

Since vij ∈ s′j , then for any i, we know that vij � vs′j � vsj , ∀j ∈ [n]. This
implies a matching of size n in all the graphs GiP .

(⇐) Let us suppose that ∀i ∈ [m], there is a matchingMi of size n in GiP .
W.l.o.g. let us rename {δ1, . . . , δn} the vertices of ∆P , and {λi1, . . . , λin} the

vertices of Λi such that for any i, Mi = {{λi1, δ1}, . . . , {λin, δn}}. This implies
f(λi1) � f(δ1), . . . , f(λin) � f(δn). Let us define S = {s1, . . . , sn}, where
∀j ∈ [n], sj = (f(λ1j), . . . , f(λmj)). Notice that for any j, sj � f(δj), as all the
f(λij) � f(δj), and combining two vectors f(λi1j) � f(δj) and f(λi2j) � f(δj)
creates another vector that dominates f(δj). Thus, S is feasible, and Pr(S)�
P , and we set P ′ = Pr(S).

Now, we can use the famous Hall’s Theorem to express the existence of a
matching in every set.

Theorem 3 (Hall’s Theorem). Let G = ((V 1, V 2), E) a bipartite graph with
|V 1| = |V 2| = n. There is a matching of size n in G if and only if ∀σ ⊆ V 1,
|σ| ≤ |Γ(σ)|, where Γ(σ) = {v2 ∈ V 2|∃v1 ∈ σ such that {v1, v2} ∈ E}.

3 POSITIVE RESULTS 15

Remark 1. Notice that we cannot use Hall’s Theorem directly on graphs GiP ,
as we would have to add the 2n constraints of the form ∀S ⊆ V i. However,
we will reduce the number of constraints to a function f(p) by exploiting the
particular structure of GiP .

Proposition 2 (Matching in GiP). ∀i ∈ [m], ∀P = {x0, . . . , x2p−1}:
(∀σ ⊆ ∆P , |σ| ≤ |Γ(σ)|) ⇔ (∀σcfg ⊆ [2p − 1]0,

∑
t∈σcfg xt ≤

∑
t∈dom(σcfg)

bit)

where dom(σcfg) = {t′|∃t ∈ σcfg such that t′ � t} is the set of configurations
that dominate σcfg.

Proof. (⇒) Let σcfg = {t1, . . . , tα}. Let σ = {δlti , 1 ≤ i ≤ α, 1 ≤ l ≤ xti}
be the vertices of ∆P corresponding to the demands in σcfg. Observe that∑
t∈σcfg xt = |σ|. Notice also that Γ(σ) = {λi,lt , t ∈ dom(σ), 1 ≤ l ≤ bit} by

construction. Thus, |σ| ≤ |Γ(σ)| implies
∑
t∈σcfg xt ≤

∑
t∈dom(σcfg)

bit.
(⇐) Let σ ⊆ ∆P . ∀t ∈ [2p − 1]0, let Xt = {δlt, 1 ≤ l ≤ xt}, let σt = σ

⋂
Xt.

Let σcfg = {t1, . . . , tα} = {t|σt 6= ∅}. Let X =
⋃
t∈σcfg{Xt}. Notice that

|σ| ≤ |X| =
∑
t∈σcfg xt.

Let us first prove that Γ(σ) = Γ(X). Γ(σ) ⊆ Γ(X) is obvious. Now, if there
is a λi,l

′

t′ ∈ Γ(X), it means that there is a t ∈ σcfg such that λi,l
′

t′ ∈ Γ(Xt),
and thus there exists l such that {δlt, λ

i,l′

t′ } ∈ E (which implies that t′ � t). As
σt 6= ∅, there exists l′ such that δl

′

t ∈ σt, and {δl
′

t , λ
i,l′

t′ } ∈ E as t′ � t.
Finally, the hypothesis with our set σcfg leads to

|σ| ≤ |X| =
∑
t∈σcfg xt ≤

∑
t∈dom(σcfg)

bit = |Γ(X)| = |Γ(σ)|

Using Propositions 1 and 2, we can now write that for any profile P =
{x0, . . . , x2p−1}:

∃P ′ feasible, with P ′ � P ⇔ ∀i,∀σcfg ⊆ [2p − 1]0,
∑
t∈σcfg

xt ≤
∑

t∈dom(σcfg)

bit.

Thus, we use now the following ILP to describe the max
∑

1 problem:

max

2p−1∑
t=0

xtct

subject to ∀i ∈ [m] : ∀σcfg ⊆ [2p − 1]0,
∑
t∈σcfg

xt ≤
∑

t∈dom(σcfg)

bit

∀t ∈ [2p − 1]0, xt ∈ N

This linear program has 2p variables and (m22
p

+ 2p) constraints. Thus, we
can solve it using [?] in time f(p)× poly(n+m) (the poly(n+m) factor comes
from the L logL dependency as stated at the beginning of Section 3.2, with L
being the size of the input), we get the following theorem:

3 POSITIVE RESULTS 16

Theorem 4. max
∑

1 and min
∑

0 are FPT when parameterized by p.

Notice that the objective here is not to optimize the dependence in p, but to
highlight a parameter concentrating the hardness of the problem. The depen-
dence of the algorithm in p is huge, the algorithm runs indeed in time Ω((2p)2

p

).
Using Property 3 this ILP leads to the following corollary:

Corollary 4. max
∑

1 admits a p
r -approximation algorithm running in time

f(r)poly(n+m+ p).

3.3. Additional results
In this section we first provide an EPTAS for a variant of max

∑
1 such that

the maximum number of zeros per vector is bounded by a constant r. We will
denote the latter as (max

∑
1)#0≤r. In a second time, we provide an algorithm

for max 6=0 when n = 2 based on the resolution of the Maximum Independent
Set problem.

Let us first show how the previous FPT-algorithm can be used to design an
EPTAS for (max

∑
1)#0≤r.

Theorem 5. For any fixed m, (max
∑

1)#0≤r admits an EPTAS.

Proof. Let us consider a (max
∑

1)#0≤r instance I[m,n, p]. Let k > 1 be an
arbitrary constant. We distinguish between the two following possibilities:

• If p ≤ krm, the problem is solved optimally using previous ILP based
FPT-algorithm. Since the latter runs in time f(p)poly(n+m), thus I can
be solved in time f(k)poly(n+m).

• If p > krm, the profit of every vector v ∈
⋃m
i=1 V

i satisifies c (v) ≥ p− r.
Thus, every possible stacks s satisfies c (s) ≥ p − rm > 0. It follows that
any greedy algorithm returns a solution S of profit c (S) ≥ n(p− rm).

On the other hand, the profit of every optimal solution S∗ is upper
bounded by np.

Since (max
∑

1)#0≤r is a maximization problem, the ratio ρ is defined as:

ρ =
c (S∗)

c (S)
≤ p

p− rm
= 1 +

rm

p− rm
< 1 +

rm

(k − 1)rm
= 1 +

1

k − 1

Therefore every polynomial time algorithm is a 1 + 1
k−1 -approximation

algorithm.

We consider now max max 1. The latter can be trivially solved in time
O∗(2p). To achieve this, it is enough to test, for every configuration t, if a
feasible stack s in configuration ts � t does exist and, among these feasible
stacks, to return the one with the best profit. A natural question arising is to

3 POSITIVE RESULTS 17

know whether an algorithm with improved running time does exist. We show
now that, when considering the special case where n = 2, a simple reduction
from max max 1 to Independent Set answers positively to this question.

Theorem 6. Let r be a constant such that there is an algorithm solving Inde-
pendent Set in time rn. Then for n = 2, max max 1 can be solved in time
rp.

Proof. We show that there is a strict reduction from max max 1, when n = 2,
to Independent Set.

Let I[m,n = 2, p] be a max max 1 instance. W.l.o.g., we consider instances I
such that two vectors of a same set vi1, vi2 cannot have both the same component
l set to zero. Otherwise every solution S would satisfy vsj [l] = 0,∀j = 1, 2. Thus
removing this component from all the vectors of I does not alter the profit of
any solution.

A Max Independent Set instance G = (V,E) can be constructed as
follows:

• we set V = [p],

• for each couple (l1, l2) ∈ [p]2, we create an edge (l1, l2) ∈ E if and only if
there exists a set V i such that vi1[l1] = 0 and vi2[l2] = 0.

We claim now that finding a solution S for I of profit c (S) = k is equivalent
to finding an independent set IS in G = (V,E) of size |IS| = k.

⇐ Let IS be an independet set in G = (V,E). Thus for each l ∈ IS, we
assign to the stack s1, every vector of any set V i that satisfies vij [l] = 0.
If needed, s1 is completed greedily with vectors of remaining sets.

Note that two vectors of a same set cannot both be assigned to s1. Let us
indeed suppose that there exists a set V i such that vi1 and vi2 are assigned
to s1. By construction, there exists l1 ∈ vi1 and l2 6= l1 ∈ vi2 such that
l1, l2 ∈ IS. However, such a pair of components implies an edge in G, thus
IS is not an independent set.

The second stack s2 ∈ S is such that ∀l ∈ IS, vs2[l] = 1. Thus c (S) =
max (c (s1) , c (s2)) ≥ |IS|.

⇒ Let S be a solution of I of profit c (S). Thus there exists a stack, let us
say s1, such that vs1 contains c (S) component set to one.

If we call Z = {l/vs11 [l] = 1} the set of component set to one in the
representative vector of s1, we claim that ∀(l1, l2) ∈ Z2, there does not
exist a set V i such that vi1[l1] = 0 and vi2[l2] = 0. Such a set would imply
that either vs1[l1] = 0, vs1[l2] = 1 or vs1[l1] = 1, vs1[l2] = 0.

Hence, by construction, ∀(l1, l2) ∈ Z2, (l1, l2) 6∈ E and Z defines a inde-
pendent set of size |IS| = c (S).

4 CONCLUSION 18

1

2 3

4 5

10011

01101

11001

10111

11101

11010

11001

10110

V 1 V 2 V 3 V 4

10010

01001

Figure 7: Illustration of the reduction from an instance I[m = 4, n = 2, p =
5] of maxmax 1 admitting a solution S of profit c (S) = 2 to an instance G =
({1, 2, 3, 4, 5} , {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}) of Independent Set admitting
a solution IS = {1, 4} of profit two.

Theorem 7 ([?]). Max-IS can be solved in O∗(1.2738|V |).

Corollary 5. For n = 2, max max 1 can be solved in O∗(1.2738p).

4. Conclusion

In this article, we establish that max
∑

1 does not admit any f(n)-approx-
imation algorithm and is also m1−ε and p1−ε non-approximable for n = 2. On
the positive side, we provide an FPT algorithm for max

∑
1 leading to a p

r -
approximation algorithm running in f(r)poly(m+ n+ p), which is the best we
can hope for. The existence of an f(m)-approximation algorithm for max

∑
1,

and even for max max 1, remains open.

