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1 Introduction

We present in this work a technique for designing approximation schemes and its application
to the discrete resource sharing problem (dRSSP ). We use the (classical) oracle formalism,
in which a reliable oracle provides some information (usually called “a guess”) that helps to
construct a good approximated solution. This oracle technique is sometimes called “partial
enumeration” [ST07] or “output structuring” [SW00]. Generally, this oracle design technique
consists of two steps: construct an algorithm that, given the oracle guess, provides the approx-
imated solution, and then simply enumerates the set of all the possible guesses. The bigger
the guess length (number of bits), the better the approximated solution. However the set of
all possible guesses is also larger. The goal is to find an “efficient” guess, that is a small guess
containing a lot of information. Thus, we are interested in finding a compact way to encode
the guess. This (natural) idea has already been addressed [HS89] by mixing two techniques
(structuring the input, and apply partial enumeration on this simplified input). We propose in
this paper a slightly different solution by approximating the guess itself through a contraction
function. We believe that this refinement may lead to non trivial guesses, and enable to use
guesses which were too long before the contraction. Moreover, approximation schemes derived
from this technique have a complexity depending on two parameters (the complexity indeed
depends on the length of the guess, and the roughness of the guess approximation), which allows
a more flexible tradeoff between quality of the approximation and computational complexity.

In the second section, we present the targeted problem (dRSSP ) and some associated results
(NP completeness, approximations algorithms and a worst case); in section three, we define
the guess approximation technique and apply it to the dRSSP .

2 Targeted problem: dRSSP

The discrete Resource Sharing Scheduling Problem (dRSSP ) consists in allocating a set of
discrete resources to heuristics to solve given instances in minimum time. The idea in this
problem is to find an efficient partition of resources to deploy the set of heuristics on the
resources. This problem can formally be described as follows:
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Definition 1 (discrete Resource Sharing Scheduling Problem (dRSSP ))
Input: A finite set of instances I = {I1, . . . , In}, a finite set of heuristics H = {h1, . . . , hk}, a
set of m identical resources, a cost C(hi, Ij , p) ∈ R+ for each Ij ∈ I, hi ∈ H and p ∈ {1, . . . ,m}
Output: Find a partition of resources S = (S1, . . . , Sk), Si ∈ {0, . . . ,m}, 0 <

∑k
i=1 Si ≤ m

which minimizes
∑n

j=1 min
1≤i≤k

{C(hi, Ij , Si)|Si > 0}

The individual instance cost ( min
1≤i≤k

{C(hi, Ij , Si)}) introduced by Sayag et al. [SFM06] and

used here, stems from the fact that for each instance, all the different heuristics are executed
with the defined share and then stop their execution when at least one heuristic finds a solution.
We focus on the linear version, where the execution cost is anti-proportional to the number of
resources used (C(hi, Ij , p) = C(hi,Ij ,m)m

p ). This problem has been studied in the continuous
case in [SFM06]. It has been shown in [BDG+09] that the discrete version has no polynomial
approximation algorithm within a constant factor unless P = NP . Thus we tackle a restriction
of this problem in which each heuristic must use at least one processor (Si ≥ 1). In [BDG+09],
several approximation schemes were provided for this restriction including a k

g+1 approximation
in O((km)gkn), for any g ∈ {1, . . . , k − 1}. We complete this work by providing a tight worst
case for this algorithm, and the proof of the NP completeness of this restriction of dRSSP ,
which was still opened in [BDG+09]. In the next section, we introduce the guess approximation
technique and we apply it to our problem, improving drastically the previous approximation
schemes.

3 The guess approximation technique

We start by introducing the appropriate oracle formalism. The two steps process (provide a
solution given a fixed guess, and enumeration) described previously can by formalized as follows.
A ρ oracle approximation is an algorithm A that given an instance I, a question q(I), and a
oracle response r∗ ∈ R (such that a particular property P (q(I), r∗) is true), delivers a feasible
solution S(r∗) ≤ ρ Sopt, where Sopt is the optimal value for the instance I. Then, the set
R is enumerated to find such an r∗. The standard notion of guess corresponds here to the
couple (q(I), r∗). This formalism is close to the “outline scheme” introduced in [HS89], but
it seems more general to use an arbitrary property P rather than a labelling function. The
guess approximation technique consists in finding a contraction function f : R → f(R) and
an algorithm A′ delivering S(f(r∗)) ≤ ρ′ Sopt, knowing that P (q(I), r∗) is true. Thus, it is
sufficient to only enumerate the set f(R), which should be smaller than R.

We now focus on an application of the guess approximation technique to dRSSP . Recall
that a solution S for this problem is described by a k dimensional vector S = (S1, . . . , Sk).
The k

g+1 oracle approximation in [BDG+09] is achieved using an algorithm denoted by A0,
an empty question q(I), and a response r∗ = [(i∗1, . . . , i

∗
g), (r∗1, . . . , r

∗
g)] satisfying the following

property P (q(I), r): ∃S∗ such that (i1, . . . , ig) are the index of the most used heuristics, and
(S∗i1 , . . . , S

∗
ig

) = (r1, . . . , rg). We mean by “the most used heuristics” that T (hi1) ≥ .. ≥ T (hig) ≥
T (hi), ∀i /∈ {i1, . . . , ig}, where T (hi) is the sum of the execution time of all the instances j solved
by heuristic i. The length of the response is |r∗| = g(log(k) + log(m)).

We now look for an appropriate contraction function f . The oracle provides two types of
information: index of heuristics (which verify particular properties) and number of processors.
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The first type of information seems to be hard to approximate. Indeed, the information here
is intrinsically binary, that is a given heuristic satisfies or not a given property. Thus, we
are more interested in approximating the second part of the oracle information: the number
of processors allocated to particular heuristics (in an optimal solution). Given any response
r = [(i1, . . . , ig), (r1, . . . , rg)] ∈ R, we consider a mantissa-exponent representation for the ri,
with a fixed size j1 ∈ {1, .., dlog(m)e} of mantissa. Thus, we write ri = ai2ei + bi, where ai

is encoded on j1 bits, 0 ≤ ei ≤ dlog(m)e − j1, and bi ≤ 2ei − 1. Then, we define f(r) =
[(i1, . . . , ig), (a1, e1), . . . , (ag, eg)]. Notice that |f(r)| = Σg

j=1(|ij |+ |aj |+ |ej |) ≤ g(log(k) + j1 +
log(log(m)). Using this contraction function and the same algorithm A0 it is straightforward
to derive a β + k−g

g+1 (1− 1
2j1−1 ) approximation (with β = 1 + 1

2j1−1 ) in O((k2j1 log(m))gkn), for
any g ∈ {1, . . . , k − 1} and j1 ∈ {1, . . . , log(m)}.

The guess approximation technique enabled to make usable a guess that contained a lot of
information. Moreover, the obtained approximation schemes can be adjusted according to two
parameters g and j1. The technique proposed in this work was applied to a specific scheduling
problem (dRSSP ), improving previous existing approximation schemes. Remark that these
approximation schemes are even PTAS when k (the number of heuristics) is fixed. We intend
to use this technique for other problems, including multi-organization scheduling problem.
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