
Notes on PCP based inapproximability results

Notes de cours motivées par les 15ème JCALM
contact: marin.bougeret@lirmm.fr

Abstract The objective of this document is to present the PCP based proofs of the optimal inapproximability
results of several important problems (vertex cover, independent set, max cut, max 3 SAT, ..). The angle we
adopt here is to blackbox the very technical proofs of the PCP theorems (like NP ⊆ PCP (..., ...)), but to make
as explicit as possible all the "combinatorial" remaining part. In Section 1 we recall some definitions, Section 2
is devoted to vertex cover and independent set, and Section 3 is devoted to constraint satisfaction problems.
This document is still a draft, any comment is welcome!

1 Definitions

1.1 General Definitions

Definition 1 (Promise problem [14]). A promise problem L is a pair of non-
intersecting sets denoted L = (LY ES, LNO); that is, LY ES, LNO ⊆ {0, 1}∗, and LY ES ∩
LNO = ∅.

As explained in [14], we need promise problem for gap problems, and for any other
situation where we need that the input verifies a certain given property (which could be
hard to check), in particular in Theorem 4. We say that an algorithm A decides L is given
x ∈ LY ES ∪ LNO (i.e. the algorithm is allowed to suppose that x is either in LY ES or
LNO, even if it could be hard to decide it), for any x ∈ LY ES (resp. LNO), A(x) = 1 (resp.
0) Then, all the definitions of complexity classes can be adapted in a straightforward
manner1. For example, P is the class of promise problem L = (LY ES, LNO) such that
there exists a polynomial algorithm A deciding L.

Definition 2 (gap problem [1]). Let Π be an optimization problem, I the set of
instances of Π, and a, b two functions from I to Q with a > b. We denote by gapa,bΠ the
promise problem where LY ES = {I ∈ I|OPT (I) ≤ b(I)} and LNO = {I ∈ I|OPT (I) ≥
a(I)}.

The motivation behind gap problem is that if gapa,bΠ is NP-hard, then for any ε > 0
there is no a

b
− ε polynomial approximation for Π unless P=NP.

Karp reductions between promise problems are also defined in a straightforward way:
instances of LY ES (resp. LNO) are mapped to instances of L′Y ES (resp. L′NO). We also
say that f is a randomized karp reduction ([5], chapter 7) between L and L′ (that are
promise problems) (and we denote L ≤R L′) iff for any x, P (1L

′

f(x) = 1Lx) ≥ 2
3
, where

1Lx = 1 if x ∈ LY ES and 0 if x ∈ LNO. We extend this notation to L ⊆R L′ for two
sets of languages L and L′. Notice that L ≤R L′, f polynomial (meaning polynomial
whatever the random choices) and L′ ∈BPP implies L ∈BPP.

1 However, some "structural" relations between classes no longer hold for promise problems, as explained for example in
[14,21]

1.2 PCP Definitions

The following definition was introduced in [7] and is stated as in [6].

Definition 3 (PCP (r(n), q(n)) Verifier). A PCP (r(n), q(n)) verifier V for a langage
L is a randomized deterministic turing machine which for any input x of size n, and
any proof y of size polynomial in n:
– generates a random string τ of r(n) bits (I suppose that each bit is set independently
to 0 with probability 1

2
, see Remark 2)

– computes in polynomial time (in n) a sequence S(x, τ) = (p1(x, τ), . . . , pk(x, τ))
(denoted sometimes S for short) of k ≤ q(n) positions (without reading y, we say
that the verifier is non adaptative)

– reads bits yS = (yp1(x,τ), . . . , ypk(x,τ)) of the proof y (for example if y = (010010),
S = (4, 0, 1), yS = (1, 0, 1))

– computes in polynomial time in n a boolean f(V,x,τ)(yS), where f(V,x,τ) is a function
from {0, 1}k to B.

Definition 4 (FV and V (x, y, τ)). Given a PCP (r(n), q(n)) verifier V and an input
x of size n, we define F(V,x) = {f(V,x,τ), τ ∈ {0, 1}r(n)} the set of functions used by the
verifier on x. All these functions have arity at most q(n). Let FV = ∪xF(V,x) be the set
of functions used by the verifier.
Notice that given a fixed input x, proof y and random string τ , the verifier V always
gives the same answer. Thus, we define V (x, y, τ) = f(V,x,τ)(yS(x,τ)).

Remark 1. In [6] authors define S as a set, whereas in [7] S is defined as a sequence. We
chose here to define S as a sequence as in [6], the elements of S are in fact "explicitly
named" (i.e. [6] says that "the verifier computes a set S = {p1(x, τ), . . . , pk(x, τ)}, and
then reads the bits yS = (yp1(x,τ), . . . , ypk(x,τ))", and thus I think that S behaves like a
sequence and not a set.

I chose to introduce the following definition as I need it later (Proposition 3 provides
reduction from a commutative verifier to commutative restrictions of CSP problems, and
we need these commutative restrictions of CSP problems to have the correspondences
in Remark 11).

Definition 5. A PCP verifier is commutative iff for any f ∈ FV , f is commutative.

For example, as explained in [23], the famous 3 bits PCP verifier for Max 3SAT of
[17] "uses it randomness to pick three entries i, j, k in the witness and a bit b, and it
accepts iff i+ j + k = b". Using our formalism, this verifier V has FV = {f0, f1} where
fi(x, y, z) returns x+ y + z = i. Thus, the random string τ will determine the function
to use, and the bits of the proofs to read. Notice that in this case the f(V,x,τ) do not
depend on x, and the verifier is commutative.

Remark 2. I didn’t find a definition where the "uniformity" of the random string is
clearly mentioned (maybe as it may be implicit in the definition of "random coin" in
any probabilistic Turing machine) but it seems that this property is required. Indeed we
will use the following argument (which becomes clearly false if τ is not chosen uniformly)
several times. Suppose a verifier has soundness s and uses r random bits. Then, for any
x and proof y, there is at most s2r random strings that make the verifier accept (i.e.
|{τ |V (x, y, τ) = T}| ≤ s2r).

Definition 6 (PCP(c,s)(r(n), q(n)) Verifier for a langage L). For any c, s ∈ [0, 1], a
PCP(c,s)(r(n), q(n)) verifier for a langage L is a PCP (r(n), q(n)) verifier V such that
there exists a polynomial p such that
– for any x ∈ L (with |x| = n), there exists y, |y| ≤ p(n) such that Prτ [V (x, y, τ) =
T] ≥ c (c is called the completeness)

– for any x /∈ L (with |x| = n), for y |y| ≤ p(n), Prτ [V (x, y, τ) = T] ≤ s (s is called
the soundness)

Remark 3. If we are given a PCP(c,s)(r(n), q(n)) verifier V , we can assume that we
explicitly know c, s, r, q. 2

Definition 7 (PCP(c,s)(r(n), q(n))). We denote by PCP(c,s)(r(n), q(n)) the set of lan-
guages having a PCP(c,s)(r(n), q(n)) verifier.

Definition 8 (Free bits, Amortized free bits, [10]). The free bit complexity of V
is f iff for any input x, and random string τ , |{y|V (x, y, τ) = T}| ≤ 2f . The amortized
free bit complexity f̄ = f

log(g)
, where g = c

s
is the gap of the verifier. We define also

– FPCP(c,s)(r(n), q(n), f) verifier for a langage L as a PCP(c,s)(r(n), q(n)) verifier
having a free bit complexity of f

– FPCP(c,s)(r(n), f) as previously but where q(n) is assumed to be constant
– ¯FPCP (c,s)(r(n), q(n), f̄) verifier for a langage L as a PCP(c,s)(r(n), q(n)) verifier
having an amortized free bit complexity of f̄

– ¯FPCP (c,s)(r(n), f̄) as previously but where q(n) is assumed to be constant

Remark 4. The free bit complexity simply upper bound the number of accepted proofs.
Obviously we have f < q(n). The intuition of the term "free" can be explained as
follows (from [16]). Suppose V reads three bits y1, y2, y3, and accepts iff y3 = f(y1, y2)
for some function f (+ for example). Thus, sometimes V has no idea of what the value
of the bit should be (when reading y1 and y2), and sometimes V is in "checking mode"
and knows what to expect (when reading y3). In this situation, there are only 2 free
bits (y1 and y2), and for any f there is here at most 4 accepted proofs.

Remark 5. Notice that in ¯FPCP , the soundness and the number of free bits are not
specified. Thus, if we are given a ¯FPCP 1(r, f̄) verifier V , we only know that there
exists s such that V is a FPCP1,s(r, f̄ log(s−1)) verifier.

1.3 UGC Definitions

We follow definitions and remarks from [20]. We only recall here basic definitions related
to UGC to make the document self contained.

Definition 9 (Input of the (bipartite weighted) Label Cover Problem). Input:
a tuple Φ = (X, Y,R, Ψ,W). X (resp. Y) is the set of "left" (reps. "right") vertices,
and R is a set of integers called labels. For each x ∈ X, y ∈ Y , Ψ contains one
relation ψxy ⊆ R × R and W contains its weight wxy ≥ 0. A labeling is a function
L mapping X ∪ Y to R. A constraint ψxy is said to be satisfied by a labeling L iff
(L(x), L(y)) ∈ ψxy. We denote by wL(Φ) the sum of the weights of the constraints
satisfied by L, and w(Φ) = sumx∈X,y∈Ywxy.

2 This hypothesis is required in many proofs, but I didn’t find yet a formal definition where it is explicitly mentioned (maybe
trivial?).

Theorem 1 ([6,7,22]). For any γ > 0, there exists an integer r such that the following
is NP-hard. Given a bipartite weighted label cover instance Φ with a label set R, |R| = r,
and w(Φ) = 1, distinguish between the two following cases:
– (YES case) There exists a labeling L such that wL(Φ) = 1
– (NO case) For any labeling L, wL(Φ) ≤ γ.
Definition 10 (Input of the (bipartite weighted) Unique Label Cover prob-
lem). An input of the (bipartite weighted) Unique Label Cover problem is an input Φ
of the bipartite weighted label cover problem where for any x, y, ψxy is a bijection from
R to R.
We can now formulate the Unique Game Conjecture of [18]
Conjecture 1. For any ζ, γ > 0, there exists an integer r such that the following is
NP-hard. Given a bipartite weighted unique label cover instance Φ with a label set R,
|R| = r, and w(Φ) = 1, distinguish between the two following cases:
– (YES case) There exists a labeling L such that wL(Φ) = 1− ζ
– (NO case) For any labeling L, wL(Φ) ≤ γ.
Before turning to the inapproximability results, notice that the global idea when using
PCP (combined or not with UGC) is always the same:
– the objective is to create a gap reduction from a (typically NP − hard) decision

problem Π to an optimization problem Π ′

– to that end, given an instance I of Π and a PCP verifier V of Π, we create an
instance I ′ = f(I, V) of Π ′

Thus, "using UGC" in these PCP based reductions simply means that we only know
that Π is NP − hard when assuming UGC.
Let us now turn to inapproximability results. Results marked with a ? are optimal
in the sense where the inapproximability result matches the ratio of the best known
algorithm. Results marked with ?ar (for "approximation resistant", see for example in
[2]) correspond to those problems where upper and lower bound match AND the corre-
sponding algorithm is simply the (derandomized) random assignment. For example for
Max-E3-SAT, if on assigns independently each variable to "true" with probability 1

2
,

each clause is satisfied with probability 7
8
, and by linearity of expectation, the expecta-

tion of the solution is 7
8
m (where m is the number of clauses). As this kind of algorithm

can be derandomized, this leads to a 7
8
approximation.

2 Independent Set and Vertex Cover via the FGLSS reduction

2.1 FGLSS reduction

Let V be a FPCP(c,s)(r(n), q(n), f) verifier for a langage L. Let ΠL be the problem of
deciding if an input x ∈ L. Let x be an input ΠL. We construct an instance GIS(V, x) =
(V IS, EIS) of the MIS problem as follows. For each τ with |τ | = r(n) and each y with
|y| ≤ q(n), we run f(V,x,τ)(y) and create one vertex denoted (x, τ, y) iff f(V,x,τ)(y) returns
true. Notice that by definition of f , for each τ we have at most 2f such y, and thus the
total number of vertices |V IS| is at most 2r(n)+f (but the running time to create the
graph is still inO∗(2r(n)+q(n))). Given (x, τ, y) and (x, τ ′, y′), let S(x, τ) = (i1, . . . , ik) and
S ′(x, τ ′) = (i′1, . . . , i

′
k′). We create an edge between (x, τ, y) and (x, τ ′, y′) iff there exists

i = ij = i′j′ (with ij ∈ S(x, τ) and i′j′ ∈ S(x, τ ′)) such that yj 6= y′j′ (see Figure 1). Such
an edge means that these two vertices are incoherent as bit i of the underlying proof y
is not the same in the two states of the vertifier. Notice that GIS is a "layered graph":
for any τ , the set {(x, τ, y), y with |y| ≤ q(n)} is a clique. This ends the description of
GIS.

0 0 0

1 1 1

0 0

τ = (0, 0) τ = (0, 1) τ = (1, 0) τ = (1, 1)

0 0 0 0 0 0

1 1 11 1 11 1

S(x, τ) = (0, 1, 3) S(x, τ) = (4, 3)

0 0 1 0 1

Figure1: Example of the FGLSS reduction with r = 2, q = 3, f = 2. Notice that we only add vertices (represented by
black dots) for the (x, τ, y) which are accepted. An edge is depicted between (x, (0, 0), (0, 0, 1)) and (x, (0, 1), (0, 1))
as bit 3 (circled) of the proof is different in the two vertices.

2.2 Independent Set

Proposition 1 (gap for IS in the FGLSS reduction). We can prove (see for ex-
ample [3], lecture 7) that
– for any proof y which is accepted with probability c, there exists an independent set
I of GIS of size |I| = c2r(n) (for each τ ∈ R we pick the vertex (x, τ, yS(x,τ))) (recall
that for any S, yS dnotes the restriction of y to bits in S)

– conversely, for any independent set I, there is a proof y which is accepted with
probability at least |I|

2r(n)

Thus, if x ∈ L, Opt ≥ c2r(n), and if x /∈ L, Opt ≤ s2r(n). To conclude we get a gap of
c
s
in a graph with 2r(n)+f vertices.

Theorem 2. There is no constant approximation for MIS unless P=NP.

Proof. The original PCP theorem says that NP = PCP1, 1
2
(O(log(n)), O(1)). Using

the FGLSS reduction, this provides a reduction from an NP hard problem to the MIS
problem running in polynomial time, with a graph of size polynomial in n, and a gap
of 2. We can boost this gap by repeating3 k times the verifier for any constant k. This
implies that NP = PCP1, 1

2k
(O(klog(n)), O(k)). The gap becomes 2k, and the reduction

remains polynomial for fixed k (the graph has nO(k) vertices).
ut

Our objective is now to prove the optimal inapproximability of Theorem 5. The next
Lemma show that if we can boost the soundness of the verifier to 1

2k
using significantly

less than rk random bits (but kf free bits is ok), we get an optimal inapproximability
result.

Proposition 2 ([10], p11/12). If for any k and f̄ > 0 we have a FPCP1,2−k(r +
k, (r + k + 2)f̄) verifier V (with r = O(log(n))), then the FLGSS reduction remains
polynomial and provides a gap of n1−ε for any ε > 0. Notice that the amortized free bit
complexity of such verfier is f̄(1 + r+2

k
), and thus this hypothesis implies that we can

produce verifier with arbitrarily small amortized free bit complexity.
3 another simple way to boost the gap using graph vocabulary is to reduce gapc,sIS to gapc2,s2IS by taking the graph
product

Proof. The gap in the reduction is 2k, and the number of vertices is N = 22f̄+(r+k)(1+f̄) =

2k(
r(n)(1+f̄)+2f̄

k
+1+f̄). Thus, the gap can be written N

1
r(n)(1+f̄)+2f̄

k
+1+f̄ . As we can have a

verifier for any k and f̄ , and the only constraint is that N remains polynomial in n, we
can take k = r(n)

ε′
and f̄ = ε′′. Notice that we couldn’t take a too big k (like k = poly(n)),

as the graph would not have a polynomial number of vertices.
ut

Our goal is now to achieve a n1−ε gap, but only under NP != BPP (the derandomization
has only been proved later in [25]). The good news is that (according to free bits, pcp
, p11) [16] provided verifier with arbitrary small amortized free bit complexity. The
following theorem is usually referred as the article proving that independent set is hard
to approximate within n1−ε.

Theorem 3. [16] For any f̄ , NP ⊆ ¯FPCP 1(O(log(n)), f̄).

Remember that as stated in Remark 5, when having a verifier in ¯FPCP 1(r, f̄), we
only know that there exists s such that V is a FPCP1,s(r, f̄ log(s−1)) verifier, and
thus the soundness and free bits do not necessarily respect the hypothesis we need in
Proposition 2. Thus, it remains now to show how from a ¯FPCP 1(log(n), f̄) verifier
we can get an FPCP verifier as required in Proposition 2. This is where we loose
determinism (implying only the NP != BPP), as the following reduction is randomized.

Theorem 4 ([10], corollary 11.3). For any f̄ > 0 and integer k, ¯FPCP 1(O(log(n)), f̄) ⊆R
FPCP1,2−k(r + k, (r + k + 2)f̄) (with r = O(log(n))). This result can be seen as, given
any ¯FPCP 1(r, f̄) verifier V (for a given f̄), we can chose (according to k) how we
boost the gap of V .

Proof. This proof follows [12] (lemma 5.4). Before proving this theorem, we need the
following lemmas and definitions.

Lemma 1. ∀f̄ , s and integer r, R, FPCP1,s(r, f) ⊆R FPCP1,2r−R(R, df), where d =
R+2

log(s−1)
(here we can chose R to adjust the gap)

Proof. The idea to allow k repetitions without having kr random bits is explained
in [12] as follows: "Zuckerman [23] used a probabilistic construction to in some sense
recycle randomness. His construction uses R random bits to simulate a number of runs
each using r random bits. In his paper, the parameters s and f were constants and
r logarithmic, but we make no such assumptions in this section. Instead we establish
that Zuckerman’s construction works even in the general case, and we prove a general
theorem where the parameters involved appear. The idea is to pick a random bipartite
graph with 2R vertices on the left side, 2r vertices on the right side, and where the
degree of the vertices on the left side is d. From this graph construct a new probabilistic
machine, which uses the R random bits to select a vertex v on the left side, and then runs
the verifier in the proof system d times, letting the verfier’s random bits be determined
by the vertices adjacent to v. If we obtain only accepting runs, we accept our input,
otherwise we reject. Obviously, it may happen that we incorrectly accept an input which
is not in the language. Since our original proof system for NP has soundness s, an s
fraction of all r-bit random strings may cause the verifier to accept. Thus, we must
bound the probability that a large subset of the vertices on the left side has only such
neighbors."

Definition 11 (as stated in [12]). A bipartite graph H = (E, V1∪V2) is a (d, n1, n2)-
disperser if all vertices in V1 have degree d, all vertices in V2 have expected degree d|V1|

|V2| ,
and no sets S1 ⊆ V1 and S2 ⊆ V2 of cardinality n1 and n2, respectively, have the property
that every vertex in S1 is connected only with vertices in S2.

Remark 6. It seems that the property "expected degree" is not used here, and moreover
this property is not mentioned in other definitions of disperser.

Lemma 2 (as stated in [12]). Let H = A(R, r, s) be a random bipartite graph H =
(E, V H

1 ∪ V H
2) where |V H

1 | = 2R, |V H
2 | = 2r < 2R, and the edge set E ⊆ V H

1 × V H
2

is chosen as follows: for each v ∈ V H
1 , pick d neighbors independently and uniformly

among the vertices in V H
2 . We allow multiple edges in H. If d = (R + 2)/logs−1 for

some s < 1, the graph H is a (d, 2r, s2r)-disperser with probability at least 1− 2−2r .

Definition 12. Let L1 ∈ FPCP1,s(r, f) (with V 1 the corresponding verifier). Let R >
r, and suppose H is a (d, 2r, s2r) disperser of Lemma 2. Let us define a verifier V 2

H,V 1

as follows. Given an input x, V 2
H,V 1(x) behaves as follows. It first picks uniformly a

random v ∈ V H
1 (using R random bits). Let u1, . . . , ud be the neighbors of v in V H

2 .
Given a proof y, run f(V 1,x,ui)(ySi) for any i ∈ [d] (where Si = S(x, ui) is the sequence
of positions computed when using random string ui in V1), and accept iff the d runs
accept.

Lemma 3. Let R > r, and suppose H is a (d, 2r, s2r) disperser, and that V1 is a
FPCP1,s(r, f) verifier. Then V 2

H,V 1 is a FPCP1,2r−R(R, df) verifier.

Proof (of Lemma 3). If x ∈ L1, then there exists a proof y such that all f(V 1,x,τ)(yS(x,τ)
)

accept, and thus V 2
H,V 1 accepts. Let us suppose now that x /∈ L1. Let y be a proof. Let

S2 ⊆ V2 (resp. S1 ⊆ V1) be the set of random strings that make V 1 (resp. V 2) accept.
Since V 1 has soundness s we have |S2| ≤ s2r, and by definition of a disperser we have
|S1| < 2r. Thus, the soundness of V 2

H,V 1 is 2r−R as there is at most 2r random strings
that make it accept among the 2R possible, the number of random bit used in R, and
the number of free bits is at most df .

ut

Remark 7. Notice that V 2
H,V 1 follows the definition of a non adaptative PCP verifer: we

can first compute for all i the sequences {ySi} of positions to read in the proof, and
then run the f(V 1,x,ui)(ySi).

It remains now to prove Lemma 1 (FPCP1,s(r, f) ⊆R FPCP1,2r−R(R, df)). In Lemma 3
we supposed that H was a disperser, but we are only able to create a disperser with
good probability. Notice that we cannot add the "disperser creation" to the role of the
verifier, as otherwise the amounts of random bits used to create the disperser would be
too large (and we only want to use R random bits).
To clarify the distinction between the two sources of randomness (one to create the dis-
perser, and the other in the pcp verifier), let us rewrite lemma 3 in terms of randomized
karp reduction between L1 and a langage L2, where L2 is a promise problem.4 L2 is
simply L1 with an additional input which is supposed to be a disperser, and thus we de-
fine L2

Y ES = {(x,H)| ∈ L1
Y ES and H is a (d, 2r, s2r) disperser} and L2

NO = {(x,H)| ∈
4 I have never seen the result explicitly written as a randomized karp reduction, but it seems reasonable that we need a
promise problem, as [14] confirms p16 that "the randomness in a PCP can be reduced [..], but the actual result is a
randomized karp reduction of any problem having a PCP to a *promise* problem having a PCP with [..].

L1
NO and H is a (d, 2r, s2r) disperser}. Then, we see that f(x) = (x,A(R, r, s)) is a

randomized karp reduction as we have P (1L
2

f(x) = 1L
1

x) ≥ 1 − 2−2r ≥ 2
3
. Moreover, the

previous verifier V 2
H,V 1 is a verifier for L2, as given an instance (x,H), we can suppose

by definition of the promise problem that H is a disperser. end of
proof of Lemma 1

ut
We can now prove theorem 4. Let L in ¯FPCP 1(O(log(n)), f̄). By definition, there
exists s such L ∈ FPCP1,s(O(log(n)), f̄ log(s−1)). Applying the previous result, we get
a FPCP1,2r−R(R, (R + 2)f̄) for any R. It suffices now to chose R = r + k.

ut

Remark 8. The parameters of the verified obtained in Theorem 4 do not exactly match
the result stated in [10] in corollary 11.3, where they prove that for any f̄ , for every ε > 0,
there exists a constant c such that ¯FPCP 1(O(log(n), f̄) ≤R FPCP1,2−t((1 + ε)t, f̄ t)

(where t(n) = clog(n)). Indeed, if we replace k by r(n)
ε

= O(log(n))
ε

in Theorem 4, we
get ¯FPCP 1(O(log(n), f̄) ≤R FPCP1,2−k((1 + ε)k, f̄(k + ε + 2). However, this leads
to the same innaproximability result for independent set, and the motivation was to
prove Theorem 4 following [12] (lemma 5.4), where the role of the disperser is clearly
mentioned.

Using Theorem 4 and 3, we get the following result (the derandomization leading to
the conditional result under NP 6= P has only been proved in [25]).

Theorem 5 (?). For any ε > 0, there is no n1−ε approximation algorithm for MIS
unless NP 6= BPP .

2.3 Vertex Cover

Let us now consider the gap created for VC in the FLGSS reduction. According to
Proposition 1, if x ∈ L, then OPTV C ≤ 2r(n)+f − c2r(n), and otherwise OPTV C ≥
2r(n)+f − s2r(n). Thus, we get a gap of 2f−s

2f−c , and thus we see the importance of the
parameters of the verifier on the approximability of V C.
Thus, for a long time the best inapproximability result (under P 6= NP) was the
following.

Theorem 6. For any ε > 0 there is no 7
6
− ε polynomial approximation algorithm for

VC unless P = NP .

Proof. In [17] (Theorem 8.1), authors provide a PCP verifier for Max−E3− lin2 (an
NP-hard problem) with 2 free bits, completeness 1− ε, and soundness 1

2
+ ε, implying

the desired result.
ut

The previous result was improved to 1.36 (as explained in [20]), but this is only recently
that, thanks to UGC, this result has been improved.

Theorem 7 ([20] ?). Under UGC, for any ε > 0 there is no 2− ε polynomial approx-
imation algorithm for VC.

Proof. As explained in [9], assuming UGC, authors of [20] provide for any ε, δ a FPCP 1
2
−ε,δ(log, 0)

verifier for an NP hard langage5, implying the desired result. Another way to prove
5 I think that "assuming UGC" means that they provide a FPCP 1

2
−ε,δ(log, 0) verifier for the unique label cover problem,

which is only known to be NP hard when assuming UGC

(where the role of UGC is more clear) is the result of [9]. In this paper (thm 1.3),
authors provide for any ε, δ a FPCP1−ε,δ(log, 1) verifier for the unique game problem
(whose NP-hardness is assumed by the definition of UGC!), leading also to a 2 − ε
inapproximability result.

ut

3 CSP problems

[17] provides inapproximatiliby for several problems of the flavor of max-3-sat, mo-
tivating thus the definition of the general wMax-CSP-F problem, inspired from [5],
definition 18.11, or [2].

Definition 13. Let k be an integer and F (also called a "constraint language") be a
set of function F : Bk → B, with F = {f1, . . . , f|F|}, such that for any i, j, fi 6= fj. The
problem wMax-CSP-F of arity k is defined as follows:
– input: a set of variables X = {xj, j ∈ [n]}, a set of constraints {Ci, i ∈ [m]} , where
Ci = (Ci, ui, wi), were Ci = (li1, . . . , l

i
k) is a k-tuples of literals, (lij is of the form xt

or x̄t), ui ∈ [|F|] is the index of a function in F , and wi > 0.
– output: a boolean assignment a of variables of X (and we denote by a(Ci) ∈ Bk

k-tuples when substituting according to a)
– objective function: maximizes 1∑

i wi

∑
i∈[m]|fui (a(Ci))=T

wi the weighted fraction of con-
straints that are satisfied by a

Moreover, we suppose that no pair of constraints are identical, where Ci = Cj iff ui = uj
and Ci = Cj (and Ci = Cj iff for any t, lit = ljt , where two litterals are equal iff they
correspond to the same variable in the same form).

Definition 14. We define the problem Max-CSP-F as wMax-CSP-F when w = 1.

Definition 15. Following the notation of [8], we denote by wMax-CSP+-F the restric-
tion of wMax-CSF-F where all Ci are k-tuples of variables (i.e. the lij is of the form xt
only).

I chose to introduce the following definition (see Remark 9).

Definition 16. We denote by (w)Max-CSPc(+)-F the restriction of (w)Max-CSP(+)-
F where all functions in F are commutative. In this case, the Ci become sets Ci =
{li1, . . . , lik}. We still impose that no pair of constraints are identical but the definition
of identical remains Ci = Cj iff ui = uj and Ci = Cj.

Remark 9. Up to now I have never seen the definition 16, but I think we need it to
have the correspondences mentioned in Remark 11 (which are mentioned everywhere).
For example, Max-CSP+-F with F = {f}, f(x, y) 7→ x 6= y does not correspond to
Max-CUT (whereas Max-CSP+

c -F do), but only to wpolyMAXCUT , as we could have
C1 = ((x, y), f, 1) and C2 = ((y, x), f, 1), leading to an edge of weight 2.

Remark 10. The constraints that all the functions in F are distincts and that no pair
of constraints are identical are generally not mentioned (for example in [11]) , but I
think we need them as otherwise, Theorem 8 would become straightforward. Indeed,
the first and easy part of the proof of [11] shows that we can always restrict ourselves to
wpolyMax-CSP+-F where weights are polynomially bounded(w ≤ p(n+m)), while the
hard part of the proof is to show that wpolyMax-CSP+-F ≤αAP Max-CSP+-F . However,

if we allow to have equivalent constraints (or identical functions), we could simply du-
plicate the constraints to get the unweighted version (this duplication being polynomial
as weights are polynomially bounded). Thus, I assume (and it seems) that Theorem 8
still works for the version of Max-CSP where identical constraints are forbidden AND
for both versions (i.e. commutative or not).

We will use several time the following theorem. Indeed, the techniques showed here
generally provide negative results for the weighted versions only. As the following the-
orem tells us that unweighted versions are as hard to approximate as their weighted
counterpart, the inapproximability results transfer to unweighted versions.

Theorem 8 ([11]). For any F that does not contains a unary constraint, for any
α > 1,
– wMax-CSP+-F ≤αAP Max-CSP+-F
– wMax-CSP+

c -F ≤αAP Max-CSP+
c -F

Remark 11. As expected, this generalizes many well known problems (recall that I
assume in the definition of SAT problems (or graphs problems) that we cannot repeat
clauses (or edges))
– (w)Max-CSPc-F with F = {f}, f(x, y, z) 7→ x ∨ y ∨ z is (w)Max-3-SAT
– (w)Max-CSP+

c -F with F = {f}, f(x, y) 7→ x 6= y is (w)Max-CUT (each Ci corre-
sponds to an edge)

– (w)Max-CSP+
c -F with F = {f}, f(x, y) 7→ x = y is (w)Max-UNCUT (each Ci

corresponds to an edge)
– (w)Max-CSP+

c -F with F = {f0, f1}, fi(x, y, z) 7→ x+ y + z = i is (w)Max-E3-LIN

The following proposition is the reformulation of [4], lemma 2.2, but using our CSP
vocabulary.

Proposition 3. If V if a PCP(c,s)(r(n), q(n)) verifier for a language L for r(n) =
O(log(n)) and q(n) = O(1), then there is a polynomial reduction from L to gapc,s
wMax-CSP+-FV . It the verifier is commutative, the reduction is even to gapc,s wMax-
CSP+

c -FV .

Proof. Given an input x to decide, let us create an instance of wMax-CSPc-FV . For
each j ∈ p(n) (recall that p(n) is the upper bound on the size of the proof submitted
to the verifier), we create a variable yj that represents the jth bit of the proof. For
each τ ∈ {0, 1}r(n), we set C(x,τ) = yS(x,τ), and f(x,τ) = f(V,x,τ) (computing this remains
polynomial as r(n) = O(log(n))).
Thus, if x ∈ L, and according to Remark 2, then there exists an assignment of the yj
variables such that at least c2r(n) of random strings lead to an accepting state, and thus
there are also at least c2r(n) satisfied constraints. Otherwise, for any assignment, using
the same argument, at most s2r(n) constraints are satisfied.
Finally, we first rewrite the instance by removing idential functions (but brute force
testing if for any τ, τ ′ if f(x,τ) = f(x,τ ′), which is polynomial as q(n) = O(1)), and
then removing identical constraints and introducing weights accordingly, getting thus
an equivalent instance of wMax-CSP+-FV , or wMax-CSP+

c -FV if V is commutative.
ut

Remark 12. As soon as FV does not contains unary constraint, Proposition 3 and The-
orem 8 lead a reduction from L to gapc,s Max-CSP+-FV (or Max-CSP+

c -FV if V is
commutative).

Let us now state the main theorem on PCP verifiers.

Theorem 9 (PCP Theorem, [6]). NP = PCP(1, 1
2

)(O(log(n)), O(1))

Using Proposition 3, we immediately get
Corollary 1. gap1, 1

2
Max-CSP+ FV is NP-hard.

Let us now review some inapproximability result for specific Max-CSP problems.

3.1 3 variables CSP

Theorem 10. There exists a constant ε > 0 such that gap1,1−ε Max E3SAT is NP-hard.

Proof. The proof is just a gap preserving reduction from gap1, 1
2
Max-CSP+ FV . With-

out loss of generality, we can suppose that for any random string τ , the verifier makes
exactly k = q(n) queries. We can traduce each f ∈ Fv (of arity q(n)) into 2q(n) dis-
junctive clauses. Then, given an assignment a, if a given fi(a(Ci)) is satisfied, then
the 2q(n) corresponding clauses are satisfied. Otherwise, at most 2q(n) − 1 clauses are
satisfied. Thus, if x ∈ L, then all the clauses are satisfied, then the 2r(n)2q(n) clauses
are satisfied. If x /∈ L, then any assignment satisfies at most 2r(n)−1 of the fi, and
thus at most 2r(n)−1(2q(n) − 1) + 2r(n)−12q(n) clauses are satisfied. Thus, we get that
gap1,1−ε′MAXEq(n)SAT is NP-hard, where 1 − ε′ = 2q(n)+1−1

2q(n)+1 is constant as q(n) =
O(1).
Then, we can also write a gap preserving reduction from gap1,1−ε′MAXEq(n)SAT to
gap1,1−εMAXE3SAT by using standard technique to traduce each q SAT clause into
a set of 3 SAT clauses.

ut
Let us now improve the gap for MAX E3 SAT by directly using Proposition 3 on a
verifier that makes very few queries.

Theorem 11 (from [17], but stated as in [23]). For every ε > 0, NP = PCP1−ε, 1
2

+ε(O(log(n)), 3).
Furthermore, the verifier behaves as follows: it uses its randomness to pick three entries
i,j,k in the witness proof and a bit b, and accepts iff yi + yj + yk = b (i.e. FV = {f0, f1}
where fi(x, y, z) 7→ x+ y + z = i).

Corollary 2 (?ar). For any ε, gap1−ε, 1
2

+εMAXE3LIN is NP-hard

Proof. Theorem 11 gives us a verifier with FV = {f0, f1}, fi(x, y, z) 7→ x + y + z = i.
Thus, as V is commutative, according to proposition 3 and remark 12, gap1−ε, 1

2
+ε Max-

CSP+
c -FV = gap1−ε, 1

2
+ε MAX E3 LIN is NP-hard.

ut
Corollary 3 (?ar). For any ε, gap1, 7

8
−εMAXE3SAT is NP-hard

Proof. This is a direct consequence of corollary 2. Indeed, let us write a reduction
from gap1−ε, 1

2
+εMAXE3LIN to gap1, 7

8
−ε′MAXE3SAT . To any predicate on the form

x + y + z = 0 we associate the three clauses (x ∨ y ∨ z̄), (x ∨ ȳ ∨ z), (x̄ ∨ y ∨ z),
and (x̄ ∨ ȳ ∨ z̄) (and to any predicate on the form x + y + z = 1 we associate the
same clauses by replacing each literal by its opposite). If a given equation is satisfied
then the 4 corresponding clauses are also satisfied, and otherwise at most 3 clauses are
satisfied. Thus, if at least x equations are satisfiable in MAX E3 LIN, then 4x clauses
are satisfiable. Otherwise, if at most x

2−ε equations are satisfiable in MAX E3 LIN, then
at most 3(x

2−ε) + 4(x− x
2−ε) clauses are satisfiable, leading to the desired gap.

ut

3.2 2 variables CSP

A first way to derive inapproximability results for 2 variables CSP is to construct gap
preserving reduction from the previous 3 variables CSP to 2 variables CSP. For example,
we can reduce from MAX E3 SAT to MAX 2 SAT by replacing a clause Ck = x1∨x2∨x3

by the following set of ten clauses (called "gadget") on variables x1, x2, x3 and a new
variable yk: x1, x2, x3, (̄x1) ∨ (̄x2), (̄x2) ∨ (̄x3), (̄x1) ∨ (̄x3), yk, x1 ∨ (̄yk), x2 ∨ (̄yk), x3 ∨
(̄yk). The property satisfied by this gadget is that is Ck is satisfied, then 7 of the 10
clauses can be satisfied, and otherwise only 6 are satisfiable. Thus, we would get a
gap preserving reduction from gap 8

7
−εMAXE3SAT to gap 56

55
−ε′ . An important work

on the construction of "optimal gadget" has been done in [24] where authors present
a computed assisted method (based on linear programming) to find gadgets used in a
large classe of reductions.
Another way to derive inapproximability results for 2 variables CSP is to directly look
for PCP reading only 2 bits of proofs. Again, depending on the form of the test that the
verifier makes, we will get hardness result for the corresponding constraint language F .
Theorem 12 ([18], theorem 3). For any t, 1

2
< t < 1, for any sufficiently small

constant ε > 0, there exists a PCP1−ε,1−εt(O(log(n)), 2) verifier V for the unique game,
where V makes a linear test on the two bits, and more precisely6 FV = {f} where
fi(x, y) 7→ x = y.

As Max-CSP+
c -FV for the previous verifier V is a special case of MAXE2LIN , the

reduction of Proposition 3 immediately provide the following corollary.
Corollary 4. Under UGC, for any t, 1

2
< t < 1, for any sufficiently small constant

ε > 0, gap1−ε,1−εtMAXE2LIN is NP-hard.
Let us now turn to max cut, which is the restriction of MAXE2LIN where all the
equations have the form x+ y = 1.
Theorem 13 ([19], section 8.4, or theorem 1). Assuming that gap1−ηγUGC is
NP hard for any sufficiently small constant η and γ, for any constant −1 < ρ < 0 and
ε > 0, there is a PCP(1

2
− 1

2
ρ),arccosρ

π
+ε(O(log(n)), 2) verifier V for the unique game where

FV = {f} where f(x, y) 7→ x 6= y.
As Max-CSP+

c -FV for the previous verifier V corresponds exactly to MAXCUT , the
reduction of Proposition 3 immediately provide the following corollary.
Corollary 5 (?). Under UGC, for any −1 < ρ < 0 and ε > 0, gap(1

2
− 1

2
ρ),arccosρ

π
+εMAXCUT

is NP-hard, and by choosing ρ appropriately, we get that the αGW − ε inapproximability
result.

Remark 13. The reduction of Proposition 3 for the case where FV = {f} where f(x, y) 7→
x 6= y is sometimes directly written as producing a graph: for every position i ≤ p(n)
in the proof we create a vertex vi, and the weight of each edge {vi, vj} is equal to
|{τ ∈ {0, 1}r(n)|S(x, τ) = {vi, vj}}|.
The stame story holds for Max 2 SAT: A first way to derive inapproximability result for
Max 2 SAT is via gap preserving reduction and gadgets (for example, replacing x+y = 0
by x ∨ ȳ, ȳ ∨ x as mentioned in [18]), but we can also directly the appropriate shaped
verifier of [19] (p20)that have FV = {f1, f2} where f1(x, y) 7→ x∨y and f2(x, y) 7→ x̄∨ ȳ.

6 The fact that we even have FV = {f} where fi(x, y) 7→ x = y (and not only FV = {f0, f1} where fi(x, y) 7→ x + y = i,
which is the direct traduction of making a linear test on two bits) is not explicitly mentioned is [18], but when looking at
the verifier p5, it seems that they are only tests of the form "x=y"

Acknoledgment

Merci aux Jcalm 2015!

References

1. http://www-cc.cs.uni-saarland.de/media/oldmaterial/advcct.pdf.
2. http://www.cs.cmu.edu/ venkatg/talks/csp-approx-tutorial.pdf.
3. www.cs.nyu.edu/ khot/pcp-course.html.
4. Sanjeev Arora. Probabilistic checking of proofs and hardness of approximation problems. PhD thesis,

Princeton University, 1994.
5. Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University

Press, 2009.
6. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and

the hardness of approximation problems. Journal of the ACM (JACM), 45(3):501–555, 1998.
7. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of np. Journal

of the ACM (JACM), 45(1):70–122, 1998.
8. Per Austrin. Towards sharp inapproximability for any 2-csp. SIAM Journal on Computing, 39(6):2430–

2463, 2010.
9. Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Foundations of Computer

Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 453–462. IEEE, 2009.
10. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability—towards tight

results. SIAM Journal on Computing, 27(3):804–915, 1998.
11. Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs unweighted versions of combi-

natorial optimization problems. Information and Computation, 167(1):10–26, 2001.
12. Lars Engebretsen and Jonas Holmerin. Towards optimal lower bounds for clique and chromatic number.

Theoretical Computer Science, 299(1):537–584, 2003.
13. Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the

hardness of approximating cliques. Journal of the ACM (JACM), 43(2):268–292, 1996.
14. Oded Goldreich. On promise problems. memory of Shimon Even (1935–2004). ECCC, TR05-018 (January

2005), 2005.
15. Oded Goldreich. Using the fglss-reduction to prove inapproximability results for minimum vertex cover

in hypergraphs. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 88–97. Springer, 2011.

16. Johan Hrastad. Clique is hard to approximate within n 1-&epsiv. In Foundations of Computer Science,
1996. Proceedings., 37th Annual Symposium on, pages 627–636. IEEE, 1996.

17. Johan Hrastad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–859,
2001.

18. Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 767–775. ACM, 2002.

19. Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results
for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357, 2007.

20. Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε. Journal of
Computer and System Sciences, 74(3):335–349, 2008.

21. Mohammad Mahmoody and David Xiao. On the power of randomized reductions and the checkability of
sat. In Computational Complexity (CCC), 2010 IEEE 25th Annual Conference on, pages 64–75. IEEE,
2010.

22. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, 1998.
23. Luca Trevisan. Inapproximability of combinatorial optimization problems. The Computing Research

Repository, 2004.
24. Luca Trevisan, Gregory B Sorkin, Madhu Sudan, and David P Williamson. Gadgets, approximation, and

linear programming. SIAM Journal on Computing, 29(6):2074–2097, 2000.
25. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 681–690. ACM,
2006.

