
An extention of the 5/2-approximation algorithm using
oracle

Marin bougeret‡, Pierre-François Dutot, and Denis Trystram

LIG, Grenoble University, France
bougeret,dutot,trystram@imag.fr

‡This work is supported by DGA-CNRS

Research report

Abstract

In this paper we consider the Multiple Cluster Scheduling Problem
(MCSP). The objective is to schedule parallel jobs on cluster having dif-
ferent sizes (i.e. number of processors) or different speeds. We provide
a 5

2
-approximation algorithm (using an oracle guess), improving thus the

result of [Bougeret et al., 2010a] that requires the assumption that all the
jobs fit on all the clusters. Moreover, this result also hold for clusters hav-
ing same size but different speeds. Notice that our algorithm even apply
for ”contiguous scheduling”, where jobs must be allocated on contiguous
indexes of processors (i.e. jobs are rectangles).

1 Introduction

In the grid computing paradigm, several clusters share their computing resources in
order to distribute the workload. Each cluster is a set of identical processors connected
by a local interconnection network. Jobs are submitted in successive packets called
batches. The objective is to minimize the time when all the jobs of a batch are
completed, then, the next batch of jobs can be processed. Many such computational
grid systems are available all over the world, and the efficient management of the
resources is a crucial problem.

Let us now introduce the Multiple Cluster Scheduling Problem (MCSP) more
formally. We are given n parallel jobs J = {J1, . . . , Jn} and N clusters Cl1, . . . , ClN .
Each job Jj is described by a processing time pj and a width qj (the number of required
processors). The area of a job Jj is qjpj , consequently the total area of a set of jobs
X is defined as A(X) :=

P

Jj∈X
pjqj . In the same way we define Q(X) :=

P

Jj∈X
qj

and P (X) :=
P

Jj∈X
pj . A cluster Clℓ has mℓ identical processors, each of them

running with speed sℓ. A job Jj is only allowed to be scheduled within one cluster,
its processing time in cluster Clℓ is pℓ

j :=
pj

sℓ
if qj ≤ mℓ else pℓ

j = ∞. We assume

the clusters to be sorted by non-decreasing order of their number of processors (or
machines), i.e. m1 ≤ m2 ≤ . . . ≤ mN . Furthermore we assume minℓ sℓ = 1 and define
pmax :=

maxj pj

minℓ sℓ
= maxj pj . The objective is to find a non-preemptive schedule of the

jobs into the clusters minimizing the makespan, i.e. the latest finishing time of a job.
MCSP is closely related to Multiple Strip Packing (MSP) problem where a cluster

can be seen as a strip and a job as a rectangle. However, there is an additional con-
straint in MSP, since packing a rectangle corresponds to schedule a job in MCSP using
consecutive addresses of processors (in other words, the allocation must be contigu-
ous). Thus, results for MCSP do not necessarily apply to MSP as the schedule may
be not contiguous. Obviously, a solution for MSP is a (feasible) solution for MCSP.
However, approximation ratios are not preserved because the optimal value for MSP
is an upper bound of the optimal value for MCSP.

Related work

In the case if N = 1 the problem is identical to scheduling n parallel jobs on m
identical machines. Here the contiguous case corresponds directly to strip packing.
For the case that the number of machines is polynomially bounded in the number of
jobs a (1.5 + ǫ)-approximation for the contiguous case and a (1 + ǫ)-approximation
for the non-contiguous case where given in [Jansen and Thöle, 2008]. For strip pack-
ing Coffman et al. gave in [Coffman Jr et al., 1980] an overview about performance
bounds for shelf-orientated algorithms as NFDH (Next Fit Decreasing Height) and
FFDH (First Fit Decreasing Height), that have an absolute ratio of 3, and 2.7,
respectively. Schiermeyer [Schiermeyer, 1994] and Steinberg [Steinberg, 1997] pre-
sented independently an algorithm for strip packing with absolute ratio 2. This re-
sult was recently improved by Harren et al., in [Harren et al., 2010] they presented
an algorithm with absolute ratio 5/3 + ǫ. A further important result is an AFP-
TAS for strip packing with additive constant O(1/ǫ2hmax) of Kenyon and Rémila
[Kenyon and Rémila, 2000], where hmax denotes the height of the tallest rectangle
(i.e. the length of the longest job). This constant was improved by Jansen and Solis-
Oba, who presented in [Jansen and Solis-Oba, 2007] an APTAS with additive constant
hmax.

For MCSP with clusters of identical sizes and speeds, i.e. sℓ = 1 and mℓ =
m for all ℓ ∈ {1, . . . , N}, Zhuk [Zhuk, 2006] showed that MSP has no polynomial

2

time approximation algorithm (unless P = NP) with abolute ratio better than 2.
The remark of [Ye et al., 2009] that consists in applying a PTAS to balance the
area of the jobs among the clusters, provide a 2 + 2ǫ-appoximation algorithm whose
complexity is in O(f(ǫ)g), where f is the complexity of a PTAS for the classical
P ||Cmax problem with precision ǫ, and g the complexity of Steinberg’s algorithm
[Steinberg, 1997]. For the non-contiguous case, we proposed recently a low cost 5/2-
approximation in [Bougeret et al., 2010b].

For MCSP with clusters of different sizes but identical speeds, Schwiegelshohn et
al. [Schwiegelshohn et al., 2008] achieved ratio 3 for a version of parallel job scheduling
in grids without release times, and ratio 5 with release times. We recently get a fast
5/2-approximation in [Bougeret et al., 2010a] that only apply when all the jobs fit in
all the clusters, i.e. when maxj qj ≤ minℓ mℓ. As explained in [Bougeret et al., 2010a],
the previous remark to get a 2+2ǫ ratio can be extended (using a PTAS for Q||Cmax)
for MCSP with clusters of different sizes but identical speeds only under this hypothesis
maxj qj ≤ minℓ mℓ. For the general problem where a job may not fit into a cluster,
we would have to use a PTAS for the problem of scheduling jobs with inclusive
processing set restrictions where machines have different speeds. However there is
up to now (see the survey [Leung and Li, 2008]) only PTAS for scheduling nested
jobs when the machines have the same speed [Li and Wang, 2010] (or FPTAS for
the Rm||Cmax problem [Horowitz and Sahni, 1976]). Thus, there is up to now no
polynomial algorithm with ratio better than 3 for the MCSP problem where clusters
have the same speed.

To the best of our knowledge, there are no specific results for MCSP with clus-
ters of same sizes and different speeds. Notice however that, again, the remark
of [Ye et al., 2009] applies for the MCSP with clusters of same sizes and different
speeds.

Our results

We present in Section 2 a pure ”combinatorial” (without linear programming) algo-
rithm of ratio 5/2 that applies for MCSP when all the processors have the same speed,
but the mℓ may differ. This improves the previous 3-approximation algorithms cited
before (which moreover only applies for non-contiguous scheduling). That algorithm
can be adapted to MCSP with clusters of the same size but with different speed values
(see the appendix). The algorithm needs an oracle guess which will require (when enu-

merating all the possible answers of the oracle) to enumerate O(min(n,
2

PN
ℓ=1

mℓ

Nm1
)N)

possibilities in the worst case. From the methodological point of view, such an com-
binatorial algorithm with oracle may emphasize what is critical in the problem and
provide insight for the considered problem. From the point of view of practical appli-
cations, even if the previous complexity is only polynomial for fixed N , this algorithm
is faster than using approximation schemes for Rm||Cmax with ǫ = 1

4
. Moreover, this

running time can be improved (see Section 2.4) using classical rounding techniques.
Since we assign each jobs to processors of consecutive addresses, all these results also
apply for MSP (i.e for contiguous version).

3

2 A 5/2-Approximation for MCSP where clusters

have the same speed

2.1 Main Ideas and Algorithm

In this section we study the problem of scheduling rigid jobs on clusters that have
different numbers of processors, supposing that all clusters run at the same speed. We
provide a 5/2-approximation that both applies for job scheduling and multiple strip
packing.

The main idea of the algorithm is to schedule a set πℓ in each cluster Clℓ, starting
from Cl1, such that

Pℓ0
ℓ=1 A(πℓ) ≥

Pℓ0
ℓ=1 A(π∗

ℓ) for any ℓ0, where π∗
ℓ is the set sched-

uled in Clℓ in a fixed optimal solution. As the optimal value is not known, we use the
classical dual approximation technique [Hochbaum and Shmoys, 1988] and denote by
T ∈ [pmax, npmax] the current value of the guess (of the non-contiguous optimal). Since
the clusters may have different numbers of processors we define Fitℓ := {Jj |qj ≤ mℓ},
the set of jobs that fit in Clℓ. Moreover we define Lg := {Jj |pj ≥ T

2
} the set of

long jobs and Wdℓ := {Jj |mℓ ≥ qj ≥ mℓ

2
} the set jobs that are wide in Clℓ. A way

to guarantee the area domination is to select for each ℓ a set of jobs X such that
A(X) ≥ mℓT , and to schedule it below 5T

2
.

If mℓT ≤ A(X) ≤ 5
4
mℓT , we already know according to Steinberg’s theorem [Steinberg, 1997]

that X can be scheduled below 5T
2

in polynomial time. For the cases where A(X) >
5
4
mℓT , we have to proceed differently. By cleverly choosing the set X as a union of

a subset wide ⊂ Wdℓ of the wide rectangles and a subset select ⊂ (Fitℓ \ Wdℓ) we
make sure that we have only a very small number of critical jobs to handle in this
case,and that X can be scheduled in 5T

2
. For example, with X = {J1, J2, J3, J4}, with

q1 = q2 = q3 = mℓ

2
+ ǫ, p1 = T

2
+ ǫ, p2 = p3 = T

2
, p4 = T and q4 = mℓ

2
, we have

A(X ′) < T for any X ′ (X and X cannot be scheduled in 5T
2

.
It appears that the only restriction we need for defining X is to have P (X ∩

Wdℓ ≤ 3T
2

). Thus, it is possible that for a given ℓ0 we have A(X) < mℓ0T with

Fitℓ0 6= ∅, F itℓ0 ⊂ Wdℓ0 . In this case, to ensure the area domination we also need an
area domination for the wide jobs, that is

Pℓ0
ℓ=1 A(πℓ ∩Wdℓ0) ≥

Pℓ0
ℓ=1 A(π∗

ℓ ∩Wdℓ0).
This area domination for the wide jobs could be guaranteed by scheduling for each

cluster the widest possible job, until reaching T . However, by using only a widest first
policy we could overlap 3T

2
because of “big” jobs of Wdℓ0 ∩Lg. Thus, by guessing for

each cluster the (potential) unique big job scheduled in this cluster in the optimal, we
can use the widest first policy with jobs of Wdℓ0 \Lg and avoid the previous problem.

So briefly described our algorithm works as follows. We first enumerate the unique
big job for each cluster. Then, for each cluster (starting with Cl1), we select during
phase 1 some wide jobs with widest first policy from (Wdℓ \Lg) and add them to wide
until we have a total of length P (wide) at least T and at most 3T

2
. The only way to

schedule the wide jobs is one after another. So we sort the jobs in non-increasing order
of their widths and schedule them bottom-left justified starting with the widest.
In phase 2 we add jobs with largest area from (Fitℓ \ Wdℓ) to select as long as
A(wide ∪ select) < Tmℓ. As mentioned before in phase 3 we reschedule wide ∪ select
with Steinberg if possible or use the fact that we have selected only few critical jobs.

4

Algorithm 1

guess Jj∗

ℓ
∈ Lg ∩Wdℓ ∩ π∗

l for all ℓ ∈ {1, . . . , N} and remove them from the
initial set of jobs
for ℓ = 1 to N do

—————————- phase 1 —————————-
wide← ∅
add Jj∗

ℓ
to wide

while ((P (wide) < T) and (Wdℓ \ Lg 6= ∅)) do

Jj0 ← widest job of Wdℓ \ Lg

add Jj0 to wide

end while

Reschedule jobs of wide sequentially in non-increasing order of their width
starting with the widest bottom-left justified (see Figure 2).
—————————- phase 2 —————————-
select← ∅
while ((A(wide) + A(select) < mℓT) and (Fitℓ \Wdℓ 6= ∅)) do

Jj0 ← job of Fitℓ \Wdℓ with largest area
add Jj0 to select

end while

—————————- phase 3 —————————-
if A(wide) + A(select) ≤ 5

4
mℓT then

reschedule wide ∪ select using Steinberg [Steinberg, 1997] algorithm
else

schedule select using lemma 1
end if

end for

if there is an unscheduled job then

reject T

end if

2.2 Analysis

Given that we use the dual approximation technique, we have to prove that either
Algorithm 1 produces a schedule of makespan lower than 5T

2
, or that T < Opt (in this

case we say that T is rejected), where Opt denotes the non-contiguous optimal value
. For the sake of simplicity, we do not mention everywhere the “reject” instruction
in the algorithm. Thus we assume throughout the section that T ≥ Opt, and it is
implicit that if during execution one of the claimed properties is wrong then T should
be rejected.

We start by proving that the set of selected jobs assigned by our algorithm to a
cluster Clℓ can always be scheduled in 5T

2
.

Lemma 1. Let ℓ ∈ {1, . . . , N}, p ∈ N and let wide and select = {J1, . . . , Jp} be
the set of jobs selected for Clℓ in phase 1 and 2. There exists a feasible schedule of
wide ∪ select into Clℓ with a makespan lower than 5T

2
.

5

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������
��������
��������
��������

��������
��������
��������
��������������
������
������
������
������

������
������
������
������
������ ����

T
′
1T1

J1

wide

sh

T 2T

Figure 2: Example of schedule built in Lemma 1

Proof Since it is always possible to schedule wide ∪ select with the algorithm of
Steinberg [Steinberg, 1997] into the designated space if A(wide) ∪ A(select) ≤ 5T

4
, we

only consider cases with A(wide)∪A(select) > 5T
4

in phase 3. If A(wide) ≥ mℓT , the
algorithm skips phase 2 and consequently A(select) = ∅ and since P (wide) ≤ 3T/2 by
construction, all jobs are scheduled below 5T

2
.

Let us assume A(wide) < mℓT . Since A(wide) + A(select) > 5
4
mℓT the last job Jp

added to select has total area strictly larger than mℓT

4
(otherwise the algorithm would

have stopped before). This implies A(Jj) > mℓT

4
for all j ∈ {1, . . . , p} and thus p ≤ 4.

Since Jj /∈ Wdℓ we furthermore conclude qj > mℓ

4
and pj > T

2
. We add now the jobs

in select in the following way (see Figure 2):

• Sort the jobs in select by decreasing width.

• Starting at time 5T
2

schedule as many jobs of select as possible in the reverse
direction using widest first policy bottom-right justified. Let sh denote this set
of jobs, and let α denote the number of jobs in sh.

• If α < p, schedule Jj (α < j ≤ p) top justified into Clℓ as soon as possible (i.e.
at time tj := min{t|qj consecutive processors are idle in Clℓ}).

Since Wdℓ∩select = ∅, we have α ≥ 2. Since P (wide) ≤ 3T
2

the schedule is feasible
for p ≤ 2. Consequently we only study two other cases, namely p = 3 or p = 4.
Let p = 3 and let J1 ∈ select\sh. Assume that the previous algorithm fails when
scheduling J1, implying that J1 scheduled at time t1 intersects sh. With t′1 := 5T

2
−

t1 − p1 we conclude

A(wide ∪ sh) > t1(mℓ − q1) + t′1(mℓ − q1) + (Q(sh) − (mℓ − q1))
T

2
Q(sh)≥2q1

> t1(mℓ − q1) + (
3T

2
− t1)(mℓ − q1) + (3q1 − mℓ)

T

2
≥ mℓT,

which is a contradiction, since we have ∀X ⊂ select : A(wide) + A(select\X) < mℓT.
Now let p = 4. Without loss of generality we assume that there are jobs J1, J2 ∈
select\sh with p1 ≥ p2. Notice that since the algorithm selected 4 jobs of area strictly
larger than mℓT

4
in phase 2 we have A(wide) < mℓT

4
and thus P (wide) ≤ T

2
. Thus

we have empty space of widths one between level T
2

and 3T
2

where we can directly
schedule J1 and J2 at time T

2
. �

6

Figure 4: Example of stacks used in Lemma 3

Now we prove that the area of “wide” jobs we scheduled by the algorithm is larger
than the one in the optimal. Recall that for all ℓ we denote by πℓ the set of jobs
scheduled in Clℓ by the algorithm, and π∗

ℓ the set of jobs scheduled in Clℓ in a fixed
optimal solution.

Lemma 3. For ℓ ∈ {1, . . . , N} let Π =
Sℓ

t=1 πt be the set of jobs scheduled by the

algorithm after finishing the ℓth iteration and Π∗ =
Sℓ

t=1 π∗
t the corresponding optimal

set of jobs. Then A(Π ∩ Wdℓ) ≥ A(Π∗ ∩ Wdℓ).

Proof Roughly speaking, this area domination for wide jobs is true since for each
cluster Clℓ, we schedule (without counting the guessed jobs that are common to our
schedule and the optimal) a length of at least T − pj∗

ℓ
of the widest possible jobs, and

the available length for schedule wide jobs in the optimal is at most T − pj∗
ℓ
. We now

start the formal proof.
Assume that Wdℓ 6= ∅ after iteration ℓ, otherwise the claim follows directly.

We first consider jobs of Bℓ = Wdℓ ∩ Lg. We have Π ∩ Bℓ = Π∗ ∩ Bℓ. Indeed,
the only jobs of Bℓ that we scheduled are the guessed one, as no job of Bℓ can be
scheduled in phase one, two or three in clusters Cl1 . . . Clℓ. In addition, the only jobs
of Bℓ scheduled in π∗

1 . . . π∗
ℓ are also the guessed one, as it is not possible to schedule

more than one job of Bℓ in any cluster Cl1 . . . Clℓ. Thus we only consider now jobs of
Wdℓ \ Lg. Let Γ = (Π ∩ Wdℓ) \ Lg and Γ∗ = (Π∗ ∩ Wdℓ) \ Lg. W.l.o.g., we assume
that there are a ≤ |Γ∗| different widths q1 ≥ . . . ≥ qa in Γ∗. Let Γ∗

j ⊂ Γ∗ be the

subset of jobs of width qj and nj := |Γ∗
j |. Let lj :=

Pj

x=1 P (Γ∗
x). We consider the

shapes of the rows built by stacking the jobs in Γ and Γ∗, respectively, next to each
other sorted by non-increasing width (see Figure 4). We introduce a partial order over
stacks of rectangles denoted with ”≤”. Given two stacks Γ1 and Γ2, we say Γ1 ≤ Γ2

if the shape representing Γ1 is contained in the one representing Γ2. For levels l, l′ let
Γ[l,l′] denote the row of Γ between l and l′. Remark that Γ∗

[lj−1,lj] corresponds exactly

to Γ∗
j . We show by induction over the number of different widths in Γ∗ that Γ∗ ≤ Γ.

Suppose that Γ∗
[0,lj−1] ≤ Γ[0,lj−1] and let us prove that Γ∗

[0,lj] ≤ Γ[0,lj]. If all the jobs

of Γ∗
[lj−1,lj] are scheduled by the algorithm we get the desired result. Indeed, no job of

Γ∗
j

is contained in Γ[0,lj−1] otherwise there would be a job Jx and a level 0 ≤ l′ ≤ lj−1

7

with Γ∗
[l′,l′+px] > Γ[0,l′+px], as all jobs of Γ∗

[0,lj−1] are strictly wider than qj . Thus,

Γ∗
[lj−1,lj] is included in Γ[lj−1,lj] and we conclude using the induction hypothesis.

Assume now that there is a job Jx0
∈ Γ∗

j\Γ. The total processing time of jobs that
are wider than Jx0

scheduled in the optimal (into clusters {Cl1, . . . , Clℓ}) is lj . Let
l′ denote the total processing time of jobs wider than Jx0

that the algorithm packed.
We prove that l′ ≥ lj .
Let N ′ be the number of clusters where Jx0

fits (Jx0
fits in clusters Clℓ−N′+1 . . . , Clℓ

). If Jx0
is not scheduled in any of these N ′ clusters, it means that the algorithm

scheduled other jobs, that are wider than Jx0
. Thus, for any t ∈ {ℓ − N ′ + 1, . . . , ℓ},

the total processing time of jobs wider than Jx0
scheduled by the algorithm on Clt

is larger than T − pj∗t
, which is also an upper bound for the total processing time

of schedulable jobs of width larger than qx0
in the optimum. Consequently, we get

l′ ≥ Σℓ
t=i−N′+1(T − pj∗t

) ≥ lj , which implies Γ[lj−1, lj] ≥ Γ∗
[lj−1,lj]. �

We can now prove that all the jobs are scheduled in the end.

Lemma 5. All the jobs are scheduled when the algorithm stops.

Proof We prove by induction on ℓ that for all i ∈ {1, . . . , N} we have A(
Sℓ

t=1 πt) ≥

A(
Sℓ

t=1 π∗
t) after finishing scheduling Clℓ. Let Π =

Sℓ

t=1 πt and Π∗ =
Sℓ

t=1 π∗
t . Two

cases are possible according to what happens in phase 3. If A(wide)+A(select) ≥ mℓT ,
then we conclude directly. Let us assume that A(wide) + A(select) < mℓT . This im-
plies that Fitℓ\Wdℓ = ∅ when scheduling Clℓ. Thus, if we write A(Π) = A(Π

T

Wdℓ)+
A(Π

T

(I \Wdℓ)) we get the desired result as A(Π
T

Wdℓ) ≥ A(Π∗
T

Wdℓ) (according
to lemma 3) and Π∗

T

(I \ Wdℓ) ⊂ Fitℓ \ Wdℓ = Π
T

(I \ Wdℓ). �

2.3 Complexity

Algorithm 1 needs an oracle that provides for every cluster the index of the big (mean-
ing wide and long) job scheduled on this cluster (if such a job is scheduled in the opti-
mum). Thus, the cost of the enumeration is in O(

QN

ℓ=1 xℓ), where xℓ = |Wdℓ ∩Lg|+1
(we need to add one to encode the possibility where no job of Wdℓ∩Lg is scheduled on
Clℓ). The problem is that the rough upper bound on this cost (nN) is almost tight for
instances where there are n jobs of width and processing time 1, N − 1 clusters of size
2−ǫ and 1 very large cluster (let us say of size n). In this case there are indeed n possi-
ble big jobs for the first N −1 clusters. Another possible bound can be obtained using

the fact that
PN

ℓ=1 xℓ
mℓ

2
< Q(Lg) ≤

PN

ℓ=1 mℓ, implying
PN

ℓ=1 xℓ <
2

PN
ℓ=1

mℓ

m1
= λ.

Thus,
QN

ℓ=1 xℓ is maximized when all the xℓ are equal to λ
N

, leading to an over-

all complexity for the algorithm in O(N n log2 n

log(log(n))
log(npmax) min(n,

2
PN

ℓ=1
mℓ

Nm1
)N) (the

n log2 n

log(log(n))
factor is the complexity of Steinberg’s algorithm, and the log(npmax) factor

is the running-time of the dichotomic search). Thus, even if this algorithm could be
reasonable for “ordinary” instances (where

QN

ℓ=1 xℓ is not too large), its worst case
complexity remains exponential in N .

We propose in the appendix an improvement of Algorithm 1 using a classical input

rounding to replace the min{n,
2

PN
ℓ=1

mℓ

Nm1
} factor by a constant.

8

2.4 Improvement using rounding

The idea is that we could still guarantuee the ”area domination for wide jobs” (see
Lemma 3) by only guessing the processing time of of the (potential) big job scheduled
on each cluster, and schedule the widest job that has this processing time. Thus, this
new guess could become smaller if the number of different processing times of long
jobs is small. We will prove the following theorem.

Theroem 6. There is a 5
2
(1 + ǫ)-approximation for MCSP where clusters have the

same speed that runs in O(N n log2 n

log(log(n))
log(npmax)(1

2ǫ
+ 1)N).

Let us first define the rounding.

Lemma 7. Let I be the original instance, T a guess of Opt(I) and ǫ > 0. We can
construct I ′

T such that

• there are at most 1
2ǫ

+ 1 different processing times for all the jobs of Lg′ (where
Lg′ = {Jj |pj > T/2} ∩ I ′

T)

• if T ≥ OPT (I) then Opt(I ′
T) ≤ T (1 + ǫ)

Proof We generate I ′
T by rounding up the processing time pj of every long job

Jj ∈ Lg to a value p′
j := T

2
+ (aj + 1)ǫT with T

2
+ ajǫT ≤ pj ≤ p′

j . Of course
there are at most 1

2ǫ
+ 1 different processing times in Lg′. Since the jobs in Lg are

executed in parallel in the optimal solution (since T
2
≥ OPT (I)

2
), replacing those jobs

by the ones in Lg′ increases the makespan by at most ǫT . Thus Opt(I ′
T) ≤ T (1+ǫ) . �

Let T ′ = T (1 + ǫ). Let us now describe the Algorithm 2, that given an instance
I ′

T (as defined in Lemma 7) either schedules all the jobs with a makespan lower than
5
2
T ′, or rejects T ′ implying that T ′ < OPT (I ′

T) (and thus T < OPT (I)). We consider

of course that Wdℓ = {Jj ∈ I ′
T |qj > mℓ

2
}.

Algorithm 2

for all ℓ ∈ {1, . . . , N}, guess pjℓ∗ the processing time of the (potential) job of
Lg′ ∩Wdℓ ∩ π∗

l

for ℓ = 1 to N do

Jxℓ
← widest (that have the biggest qj) job of of processing time pj∗

ℓ

if qxℓ
> mℓ

2
then

schedule Jxℓ
on Clℓ //otherwise we say that Jxℓ

is discarded by Clℓ
end if

end for

run Algorithm 1 replacing T by T ′ (and replacing of course Jj∗

l
by Jxℓ

)

We only have to prove the equivalent of Lemma 3.

Lemma 8. Let ℓ ∈ {1, . . . , N}, let Π =
Sℓ

t=1 πt after finishing scheduling Clℓ, and let

Π∗ =
Sℓ

t=1 π∗
t . Then we have A(Π ∩ Wdℓ) ≥ A(Π∗ ∩ Wdℓ).

9

Proof Let ℓ ∈ {1, . . . , N} and Wdℓ 6= ∅ after iteration ℓ of the algorithm. Otherwise
the claim follows directly.

We first consider jobs of Bℓ = Wdℓ ∩ Lg′ and Bℓ
x = Bℓ ∩ {Jj |pj = T

2
+ xǫT}. Let

Γx = Π ∩ Bℓ
x and Γ∗

x = Π∗ ∩ Bℓ
x. We will prove that A(Π ∩ Bℓ) ≥ A(Π∗ ∩ Bℓ) by

proving that for every x, A(Γx) ≥ A(Γ∗
x). Let x be fixed. We proceed as in Lemma

3 by stacking the jobs of Γ∗
x and Γx. Let us assume that there are a ≤ |Γ∗

x| different
widths q1 ≥ . . . ≥ qa in Γ∗

x. Let Γ∗
x,j ⊂ Γ∗

x be the subset of jobs of width qj and

nj := |Γ∗
x,j |. Let lj :=

Pj

t=1 P (Γ∗
x,t). For levels l, l′ let Γ[l,l′] denote the jobs scheduled

in the stack of Γ between l and l′. We show by induction over the number of differ-
ent widths in Γ∗

x that Γ∗
x ≤ Γx, where ≤ denotes the same partial order as in Section 3.

Suppose that Γ∗
x [0,lj−1] ≤ Γx [0,lj−1] and let us prove that Γ∗

x [0,lj] ≤ Γx[0,lj]. If all

the jobs of Γ∗
x,j are scheduled by the algorithm we get the desired result.

Assume now that there is a job Jx0
∈ Γ∗

x,j\Γ (we have qx0
= qj). Let Xx0

=
{Js|qs ≥ qx0

}. Due to the induction hypothesis, we only need to prove that Γx [lj−1,lj] ≥
Γ∗

x [lj−1,lj], and thus we will only prove that |Γx ∩ Xx0
| ≥ |Γ∗

x ∩ Xx0
|.

We have |Γ∗
x ∩ Xx0

| =
Pj

t=1 nt, implying that there are at least
Pj

t=1 nt clusters
where Jx0

fits. Moreover, qx0
> mℓ

2
implies that qx0

>
mℓ′

2
for all ℓ′ < ℓ. Thus,

Jx0
has not been discarded by any cluster between 1 and ℓ. Thus, Jx0

has not been
scheduled in any of the

Pj

t=1 nt clusters where it fits because the algorithm scheduled

wider job instead, which proves that |Γx ∩ Xx0
| ≥

Pj

t=1 nt = |Γ∗
x ∩ Xx0

|.
The proof of A(Π ∩ Wdℓ \ Lg′) ≥ A(Π∗ ∩ Wdℓ \ Lg′) is exactly the same as in

Lemma 3 as for any ℓ′, the processing time of the jobs Jxℓ′
is either the same as the

potential big job scheduled by the optimal in Cli′ , or zero if Jxℓ′
is discarded. �

Thus, Algorithm 2 is a 5
2
(1 + ǫ)-approximation, and runs in

O(N n log2 n

log(log(n))
log(npmax)(1

2ǫ
+ 1)N).

2.5 A 5/2-approximation for clusters of same size but dif-
ferent speed

It is possible to adapt Algorithm 1 to get a 5/2-approximation for the case where each
cluster Clℓ has m identical processors of speed sℓ. Again this result also applies for
the contiguous case.

We also proceed by dual approximation, and denote by T the current guess. More-
over, let Fitℓ = {Jj |

pj

sℓ
≤ T} be the set of jobs that fit in Clℓ, Lgℓ = {Jj |T ≥

pj

sℓ
> T

2
}

and Wd = {Jj |qj > m
2
}.

The idea is to use exactly Algorithm 1 replacing of course Lg by Lgℓ and Wdℓ

by Wd, and scheduling the clusters from the slowest (Cl1) to the fastest one (ClN).
Consequently the guess for each cluster ℓ is now the potential job in Lgℓ ∩ Wd ∩ π∗

l

where π∗
l is the set of jobs scheduled on Clℓ in the optimal solution.

The proof of the feasibility of phase 3 is exactly the same as in Lemma 3. The
only adaptation needed is to prove the following lemma.

Lemma 9. For any x ∈ {1, . . . , N}, let Πx =
Sx

t=1 πt be the set of jobs scheduled
by the algorithm after finishing the xth iteration and Π∗

x = ∪x
t=1π

∗
t the corresponding

optimal set of jobs.

10

Then we have, for any ℓ ∈ {1, . . . , N}, (Πℓ ∩ Wd) ≥ (Π∗
ℓ ∩ Wd), where ≥ denotes

the same partial order for rows of jobs as in Section 3 for stacks of rectangles.

Proof Let us prove the desired result by induction on ℓ. Let us suppose that (Πℓ−1∩
Wd) ≥ (Π∗

ℓ−1 ∩ Wd) (the proof for ℓ = 1 can be done using the same ideas).
Let Γ = Πl ∩ Wd and Γ∗ = Π∗

l ∩ Wd. As in Lemma 1 we prove that Γ∗ ≤ Γ by
induction on the different numbers of widths of jobs in Γ∗. We use the same notations
as in Lemma 3. We suppose that Γ∗

[0,lj−1] ≤ Γ[0,lj−1] and we prove that Γ∗
[0,lj] ≤ Γ[0,lj]

by showing that Γ∗
[lj−1,lj] ≤ Γ[lj−1,lj]. Let us only consider the case where there is Jx0

in Γ∗
j\Γ. This implies Jx0

/∈ Lgℓ, otherwise Jx0
would belong to Lgt for 1 ≤ t ≤ ℓ , and

thus would be a guessed job as the optimal scheduled it in one of the first ℓ clusters.
Let Xα = {Js ∈ J |qs ≥ α} be the set of jobs wider than α. As in Lemma 3 we prove
that Γ∗

[lj−1,lj] ≤ Γ[lj−1,lj] by showing that l′ ≥ lj , where l′ = P (Xqx0
∩ Γ) and lj

defined as in Lemma 3 (recall that the definition of lj implies that lj = P (Xqx0
∩Γ∗)).

The hypothesis (Πℓ−1 ∩ Wd) ≥ (Π∗
ℓ−1 ∩ Wd) implies that for any α, P (Xα ∩ Γ ∩

Πl−1) ≥ P (Xα ∩ Γ∗ ∩ Π∗
l−1), thus we use it with α = qx0

. Moreover, as Jx0
is not

scheduled by the algorithm on Clℓ whereas Jx0
/∈ Lgℓ, it implies that we scheduled

wider jobs than Jx0
on Clℓ. Thus, we get also P (Xqx0

∩ Γ∩ πl) ≥ P (Xqx0
∩ Γ∗ ∩ π∗

l),
leading to l′ ≥ lj and to Γ∗

[lj−1,lj] ≤ Γ[lj−1,lj]. �

References

[Bougeret et al., 2010a] Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., and Trys-
tram, D. (2010a). A fast 5/2-approximation for hierarchical scheduling. In Pro-
ceedings of the 16th International European Conference on Parallel and Distributed
Computing (EUROPAR).

[Bougeret et al., 2010b] Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., and Trys-
tram, D. (2010b). Approximating the non-contiguous multiple organization packing
problem. In Proceedings of the 6th IFIP International Conference on Theoretical
Computer Science (TCS).

[Coffman Jr et al., 1980] Coffman Jr, E., Garey, M., Johnson, D., and Tarjan, R.
(1980). Performance bounds for level-oriented two-dimensional packing algorithms.
SIAM Journal on Computing, 9:808.

[Harren et al., 2010] Harren, R., Jansen, K., Prädel, L., and Van Stee, R. (2010). A
5/3 + ǫ approximation for strip packing. submitted.

[Hochbaum and Shmoys, 1988] Hochbaum, D. and Shmoys, D. (1988). A polynomial
approximation scheme for scheduling on uniform processors: Using the dual approx-
imation approach. SIAM Journal on Computing, 17(3):539–551.

[Horowitz and Sahni, 1976] Horowitz, E. and Sahni, S. (1976). Exact and approximate
algorithms for scheduling nonidentical processors. Journal of the ACM (JACM),
23(2):317–327.

[Jansen and Solis-Oba, 2007] Jansen, K. and Solis-Oba, R. (2007). New approximabil-
ity results for 2-dimensional packing problems. Lecture Notes in Computer Science,
4708:103.

11

[Jansen and Thöle, 2008] Jansen, K. and Thöle, R. (2008). Approximation algorithms
for scheduling parallel jobs: Breaking the approximation ratio of 2. In International
Colloquium on Automata, Languages and Programming, pages 234–245.

[Kenyon and Rémila, 2000] Kenyon, C. and Rémila, E. (2000). A near-optimal so-
lution to a two-dimensional cutting stock problem. Mathematics of Operations
Research, pages 645–656.

[Leung and Li, 2008] Leung, J. and Li, C. (2008). Scheduling with processing set
restrictions: A survey. International Journal of Production Economics, 116(2):251–
262.

[Li and Wang, 2010] Li, C. and Wang, X. (2010). Scheduling parallel machines with
inclusive processing set restrictions and job release times. European Journal of
Operational Research (EJOR), 200(3):702–710.

[Schiermeyer, 1994] Schiermeyer, I. (1994). Reverse-fit: A 2-optimal algorithm for
packing rectangles. Lecture Notes in Computer Science, pages 290–290.

[Schwiegelshohn et al., 2008] Schwiegelshohn, U., Tchernykh, A., and Yahyapour, R.
(2008). Online scheduling in grids. In IEEE International Symposium on Parallel
and Distributed Processing (IPDPS), pages 1–10.

[Steinberg, 1997] Steinberg, A. (1997). A strip-packing algorithm with absolute per-
formance bound 2. SIAM Journal on Computing, 26:401.

[Ye et al., 2009] Ye, D., Han, X., and Zhang, G. (2009). On-Line Multiple-Strip Pack-
ing. In Proceedings of the 3rd International Conference on Combinatorial Optimiza-
tion and Applications (COCOA), page 165. Springer.

[Zhuk, 2006] Zhuk, S. (2006). Approximate algorithms to pack rectangles into several
strips. Discrete Mathematics and Applications, 16(1):73–85.

12

