Learning Constraint Networks over Unknown Constraint Languages

Christian Bessiere, Clément Carbonnel, Areski Himeur
University of Montpellier, CNRS, LIRMM, Montpellier, France
{bessiere, clement.carbonnel, areski.himeur}@lirmm.fr

Abstract
Constraint acquisition is the task of learning a constraint network from examples of solutions and non-solutions. Existing constraint acquisition systems typically require advance knowledge of the target network’s constraint language, which significantly narrows their scope of applicability. In this paper we propose a constraint acquisition method that computes a suitable constraint language as part of the learning process, eliminating the need for any advance knowledge. We report preliminary experiments on various acquisition benchmarks.

1 Introduction
Constraint programming (CP) is a powerful technology for solving combinatorial problems. It has gained significant attention in the last decades. Its ability to efficiently solve complex problems has made it a popular choice for a variety of real-world applications. However, one bottleneck in the use of CP is the process of expressing the problem with constraints, which often requires advanced knowledge in both CP and the problem to model.

Constraint acquisition addresses this issue by automatically generating a model from examples of past solutions or non-solutions, or by asking queries of the user. In this paper, we are interested in passive learning approaches, that is, those in which the user provides a set of solutions and non-solutions of a target model.

Given a set of examples of solutions and non-solutions and a set of candidate constraints, CONACQ.1 computes a SAT formula representing all the constraint models expressed with constraints from the candidate set and consistent with the examples [Bessiere et al., 2005; Bessiere et al., 2017]. Given a set of examples, MODELSEEKER proposes a set of constraints taken from the global constraints catalog that are consistent with the given examples [Beldiceanu and Simoni, 2012]. As proposing all possible constraints to the user would be far too heavy, MODELSEEKER is limited to constraints involving variables from a common topology, such as rows or columns in a matrix. BAYESACQ follows a statistical approach [Prestwich et al., 2021]. BAYESACQ takes as inputs a set of examples and a set of candidate constraints. For each candidate constraint, BAYESACQ computes a score based on the ratio of the number of negative examples the constraint violates to the number of positive examples it violates. These ratios are used to return the most probable set of constraints.

There already exist a couple of approaches that could be considered as very close to ours because they do not explicitly require the set of candidate constraints to be given as input to the acquisition problem. ARNOLD learns integer programs from examples of feasible solutions by generating potential constraints that only include sums, products, and comparisons among of terms [Kumar et al., 2019]. The generation of constraints follows a general-to-specific order and collects those that are satisfied by the example solutions in order to produce an integer program model. COUNT-CP also learns a network of constraints from examples of solutions [Kumar et al., 2022]. COUNT-CP uses a grammar and a generate-and-aggregate approach to determine the constraints on this
grammar from the examples. Though not explicitly given as input, the generated constraints must belong to the language of the given grammar, which is able to express a large bunch of “counting” constraints (see [Bessiere et al., 2009]), but is not able to express any kind of constraints.

The rest of this paper is organized as follows. In Section 2, we provide background on constraint acquisition. In Section 3, we present the formalization of constraint acquisition problem over unknown constraint languages and we prove that it is NP-complete. In Section 4, we describe our method. In Section 5, we study the effectiveness of our method through several experiments. Finally, in Section 6, we conclude with a summary of our contribution and we discuss directions for future work.

2 Background

2.1 Constraint Programming

Constraint programming consists in expressing a problem as a constraint network and finding solutions, that is, assignments of values to all the variables so that no constraint is violated. Given a domain D, a constraint is a pair (R, S), where R is a relation of arity r over D (that is, R is a subset of D^r) and S is a sequence of r variables (called the scope of the constraint). A vocabulary is a pair (X, D), where X is a finite set of variables and D is a finite domain. An assignment $A : X \rightarrow D$ satisfies a constraint (R, S) if $A[S] \in R$; otherwise, the assignment violates the constraint.

Definition 1 (Constraint network). A constraint network is a tuple $N = (X, D, C)$, where (X, D) is a vocabulary and C is a set of constraints on subsets of X. An assignment $A : X \rightarrow D$ satisfies N iff A satisfies all constraints in C.

A constraint language Γ is a set of relations over a finite domain. The arity of Γ is the maximum arity over all relations of Γ. A constraint network N is over a constraint language Γ if the relation R of each constraint of N is such that $R \in \Gamma$.

2.2 Constraint Acquisition

Given a vocabulary (X, D), an example on this vocabulary is a pair $e = (\phi(e), b(e))$, where $\phi(e)$ is an assignment, and $b(e)$ is a Boolean. We say that e is a positive example if $b(e)$ is true; otherwise e is a negative example. We say that a constraint network N accepts (resp. rejects) an example e iff $\phi(e)$ satisfies (resp. does not satisfy) N. A constraint network N is consistent with a positive (resp. negative) example e if and only if N accepts (resp. rejects) e.

A training set E is a set of examples over a given vocabulary. A constraint network N is consistent with a training set E if and only if N is consistent with every example in E. Given a training set E, E^+ (resp. E^-) denotes the subset of all positive (resp. negative) examples of E.

2.3 Boolean Satisfiability

As our method will use a Weighted Partial Max-Sat solver, we introduce some basics about Boolean satisfiability. A literal is a Boolean variable or its negation. A clause is a disjunction of literals. The Boolean satisfiability problem (SAT) on a set of clauses CL asks whether it is possible to assign values to the variables of CL such that all clauses are satisfied, i.e. CL evaluates to $True$. If μ is a truth assignment of Boolean variables and l is a literal, we will slightly abuse notation and write $\mu(l)$ to denote the truth value of l under μ. The partial maximum satisfiability problem, Partial Max-SAT, is a variant of SAT in which the goal is to find an assignment such that all clauses in a first set called hard clauses are satisfied, and the number of satisfied clauses in another set of clauses called soft clauses is maximized. In the Weighted Partial Max-Sat problem, each soft clause has a weight and we maximize the sum of the weights of satisfied soft clauses.

3 Language Acquisition

In this paper, we consider the constraint acquisition problem without any language of constraints or set of candidate constraints given as input data. Rather than working with a fixed constraint language, we compute a constraint language Γ alongside a constraint network over Γ that is consistent with the training set.

An important difficulty with this approach is that there may exist a large number of constraint languages that are consistent with a given training set. Some of these languages are clearly unsatisfactory from a practical point of view; for example, every training set over n variables is trivially consistent with a constraint network over a constraint language of arity n and size 1. This constraint network has a single constraint covering all variables. Its satisfying assignments are exactly the positive examples in the training set.

Our intuition is that the best constraint language is the simplest. Because “simplicity” is difficult to define formally, we instead consider (as a first, rough approximation) that the best language is the smallest in terms of its maximum arity and number of relations. This leads us to the following definition for the constraint acquisition problem without language.

Definition 2 (Language-Free Acq). Given a training set E and two natural numbers k, r, the problem LANGUAGE-FREE ACQ asks whether there exists a constraint network over a language of size at most k and arity at most r consistent with E.

In practice we will solve an optimization and search variant of this problem, in which we attempt to find a constraint network with minimum (k, r) that is consistent with E. The problem is multi-objective (both the language arity and size must be minimized), so multiple strategies are possible: for example, one could define a real-valued cost function $f(k, r)$ to be minimized or compute a Pareto front. The next theorem states that LANGUAGE-FREE ACQ is NP-complete even when $(k, r) = (1, 1)$, so solving the optimization/search variant is likely to be difficult regardless of the chosen strategy.

Theorem 1. LANGUAGE-FREE ACQ is NP-complete even when $k = r = 1$.

Proof. We first prove membership in NP. Suppose that there exists a constraint network $N = (X, D, C)$ over a language $\Gamma = (R_1, \ldots, R_k)$ of arity r and size k that is consistent with E. We can further assume that each constraint rejects at least one negative example that is accepted by all other constraints,
in which case \(N \) has at most \(|E| \) constraints. We specify each relation \(R_i \in \Gamma \) succinctly by listing only the tuples \(t \in R_i \) such that there exists a constraint \(c = (R_i, S) \) and an example \(e \in E \) such that \(\phi(e)[S] = t \); the number of such tuples is at most \(|C| \cdot |E| \leq |E|^2 \). This succinct representation of \(N \) has polynomial size (even when \(r, k \) are part of the input) and can be checked for consistency with \(E \) in polynomial time, so \(\text{LANGUAGE-FREE ACQ} \in \text{NP} \).

In order to prove \(\text{NP-hardness, we reduce SAT to LANGUAGE-FREE ACQ} \). Let \(CL = \{Z_1, Z_2, ..., Z_m\} \) be a set of \(m \) clauses over a set \(V = \{v_1, v_2, ..., v_n\} \) of \(n \) Boolean variables. We define a training set \(E \) over a vocabulary \(\langle X, D \rangle \) with \(X = \{x_v \mid v \in V\} \cup \{x_{-v} \mid v \in V\} \) and
\[
D = \{v \mid v \in V\} \cup \{-v \mid v \in V\} \cup \{\star\}
\]
such that:

- \(e^+ \in E^+ \) such that \(\forall x \in X, \phi(e^+)[x] = * \)
- \(\forall v \in V, e^+ \in E^+ \) such that:
 - \(\forall x \in X, \phi(e^+)[x] = \begin{cases} \neg v & \text{if } x = x_v \\ v & \text{if } x = x_{-v} \\ \star & \text{otherwise} \end{cases} \)

Both \(N \) and \(E \) are computable in polynomial time from \(CL \).

4 Solving the LANGUAGE-FREE ACQ Problem

In this section we present our method for constraint acquisition, which is based on repeatedly solving instances of the LANGUAGE-FREE ACQ problem.

4.1 Method Overview

Given a training set \(E \), our goal is to compute a constraint network consistent with \(E \) with minimum \((k, r)\). As noted in Section 3, multiple strategies are possible. The most direct approach would be to output a constraint network with minimum \(k + r \). We believe that increasing the arity should incur a greater penalty than increasing the number of relations, so we will minimize \(k + r^2 \) instead. We break ties by giving preference to lower arity (for example, six relations of arity two are preferred over one relation of arity three).

It may be the case that multiple constraint networks have the same arity and number of distinct relations. In that case, we output a network with the largest number of constraints. Our intuition behind this decision is that for sufficiently large training sets, the fact that few relations can be applied to many scopes without rejecting any positive example is unlikely to be observed by chance. For the same reason, if multiple constraint networks have the same \((k, r)\) and number of constraints, we output one whose constraints are the tightest, i.e., whose relations contain the fewest tuples on aggregate.

For fixed \((k, r)\), we compute the desired constraint network (or prove that none exists) using a WEIGHTED PARTIAL MAX-SAT model, which we describe in the next sub-section. Since our model is particularly efficient for small values of \((k, r)\), we perform bottom-up minimization, constructing and solving a model for each \((k, r)\) by increasing order of \(k + r^2 \). We then output the first constraint network found.

4.2 The Model

Suppose that \((k, r)\) is fixed. Our goal is to compute a constraint network \(N = \langle X, D, C \rangle \) over a language of size \(k \) and arity \(r \) that is consistent with \(E \), whose number of constraints is maximum, and with the tightest constraints possible. We model this optimization problem as an instance of WEIGHTED PARTIAL MAX-SAT. In the following, \(RT(E) \) will denote the set of all pairs \((t, v)\) such that \(t \in D^r, v \in X^r \), and there exists an example \(e \in E \) such that \(t = \phi(e)[v] \).

For each relation \(R_i \) of the target language \(\{R_1, \ldots, R_n\} \), we have three kinds of Boolean variables in the WEIGHTED PARTIAL MAX-SAT model:

- For all \(t \in D^r \), \(r^+_{u} \) is true iff \(t \notin R_u \);
- For all \(v \in X^r \), \(s^+_{v} \) is true iff \(\langle R_u, v \rangle \in C \);
- For all \((t, v) \in D^r \times X^r \), \(c^+_{(t, v)} \equiv r^+_{t} \land s^+_{v} \).

First, for each \((u, t, v) \in \{1, \ldots, k\} \times D^r \times X^r \), we ensure that \(c^+_{(u, t, v)} \equiv r^+_{t} \land s^+_{v} \) with the following hard clauses:
\[
\begin{align*}
\forall u \in \{1, \ldots, k\}, \forall (t, v) \in RT(E^+), \quad &-c^u_{(t,v)} \\
\forall t \in E^-,
\quad &\bigvee_{u \in \{1, \ldots, k\}, \forall (t,v) \in RT(\{e\})} c^u_{(t,v)}
\end{align*}
\]

Second, we make sure that all positive examples are accepted by the corresponding constraint network with the following set of hard clauses:

\[
\forall u \in \{1, \ldots, k\}, \forall (t, v) \in RT(E^+), \quad -c^u_{(t,v)}
\]

Similarly, we make sure that all negative examples are rejected:

\[
\forall e \in E^-, \quad \bigvee_{u \in \{1, \ldots, k\}, \forall (t,v) \in RT(\{e\})} c^u_{(t,v)}
\]

Finally, in order to maximize the number of constraints in the network and, in a second time, minimize the number of tuples in the relations, we add a soft clause \((s^u_t)\) with weight 1 for each \(u \in \{1, \ldots, k\}\) and \(v \in X^r\), and a soft clause \((r^u_t)\) with weight \(\epsilon < 1/(k \cdot |D^r|)\) for each \(u \in \{1, \ldots, k\}\) and \(t \in D^r\). This completes the description of the model.

The size of this Weighted Partial Max-Sat model is defined by its number of clauses and their sizes. The number of -constant-size–clauses of type (1) and (2) is \(O(|D|^r \cdot |X|^r \cdot k)\). There are \(|E^-|\) clauses of type (3), each of size bounded above by \(|D|^r \cdot |X|^r \cdot k\). Finally, the number of -constant-size–soft clauses \((s^u_t)\) and \((r^u_t)\) is bounded above by \((|X|^r + |D|^r) \cdot k\). This gives a total size of our model in \(O(|E^-| \cdot |D|^r \cdot |X|^r \cdot k)\).

Observe that the exponential dependency on the maximum arity \(r\) is not a necessary feature of all models for this problem because Language-Free Acquisition is in NP (even when \(r\) is part of the input). However, this model has the advantage of being flexible (it is easy, for example, to maximize the number of constraints in the learned constraint network) and very efficient for small values of \(r\). In addition, this upper bound is quite loose as not all variables/clauses need to be generated. For any \(u, t, v\) such that \((t, v) \notin RT(E^-)\), we do not need to generate the variable \(c^u_{(t,v)}\) and the corresponding clauses of type (1) because it will never appear in the clauses of type (2) or (3). The same is true for all \(u, t, v\) such that \((t, v) \in RT(E^+)\). These refinements are particularly effective when the number of examples is small.

Finally, we note that the model contains some symmetries. For example, its solution set is invariant under permutation of the relational indices \(u \in \{1, \ldots, k\}\) and permutation of the entries of \((t, v)\) for a fixed \(u\). These symmetries can easily be broken using standard techniques. It was unnecessary for our experiments as \(k, r\) were always fairly small.

5 Experimental Results

In this section, we evaluate our method experimentally on several benchmark problems. For each benchmark, we will investigate how the number of examples affects the accuracy of the learned constraint network, the similarity of the learned constraint network with the target (Are they over the same constraint language? Are they logically equivalent? Are they exactly identical?), and the observed runtime. We will then dive deeper into the details for an archetypal benchmark of constraint acquisition (the sudoku), examining in particular how the fraction \(|E^+|/|E|\) of positive examples in the training set affects the learning process.

We have implemented the strategy described in Section 4.1 in the Python programming language. Our program takes as input a training set, generates the corresponding Weighted Partial Max-Sat instances and calls an external solver given by the user as a parameter. We chose to use the UWr-MaxSat solver [Piotrów, 2020]. All experiments\(^1\) are run on one core of an Intel Xeon E5-2680 v4 2.4GHz processor with 8GB of memory.

5.1 Benchmark Problems

Sudoku

The Sudoku is a logic puzzle with a 9 \(\times\) 9 grid that must be filled with the digits 1 to 9 in such a way that all the rows, all the columns and 9 non-overlapping 3 \(\times\) 3 squares contain all the digits from 1 to 9. For this problem, the target constraint network has 81 variables \(x_1, \ldots, x_{81}\), domains of size 9, and a binary constraint \(x_i \neq x_j\) for all \(i, j\) in the same row, column or square. Positive examples are generated by computing solutions of the target constraint network with a constraint solver using a randomized domain value strategy. Non-solutions are generated by altering one value in a solution randomly.

Jigsaw Sudoku

The Jigsaw Sudoku is a variant of the Sudoku in which the partition in 3 \(\times\) 3 squares is replaced by a partition into non-overlapping, irregular shapes of size 9 called jigsaw shapes. The irregularity of the jigsaw shapes makes Jigsaw Sudoku particularly difficult (or even impossible) to learn for methods that rely heavily on predefined constraint topologies, such as ModelSeeker. For this problem, the target constraint network has 81 variables \(x_1, \ldots, x_{81}\), domains of size 9, and a binary constraint \(x_i \neq x_j\) for all \(i, j\) in the same row, column or jigsaw shape. Examples are generated in the same way as for Sudoku.

We have observed significant variance in experimental results for different types of jigsaw shapes. To reflect this, we have divided these benchmarks into three sub-families (\#1, \#2 and \#3) corresponding to three different layouts.

Schur’s Lemma

The problem is to put \(n\) balls labelled 1, \ldots, \(n\) into 3 boxes so that for any triple of balls \((x, y, z)\) with \(x + y = z\) not all are in the same box. For this problem, the target constraint network has \(n\) variables \(x_1, \ldots, x_n\), domains of size 3, and a ternary constraint NotAllEqual\((x_i, x_j, x_k)\) for all \(i, j, k\) such that \(i + j = k\). We ran the experiment with \(n = 9\) which is the parameter with the highest number of solutions (546). Positive examples are generated by computing solutions of the target constraint network with a constraint solver.

\(^1\)Code and data required for conducting the experiments are available at https://gite.lirmm.fr/coconut/language-free-acq
using a randomized domain value strategy. Non-solutions are
generated by altering one value in a solution randomly.

Subgraph Isomorphism
Given two graphs G and H, subgraph isomorphism is the
problem of determining whether G contains a subgraph that is
isomorphic to H. For this problem, the target constraint net-
work has $|H|$ variables x_1, \ldots, x_n and domains of size $|G|$. A
binary constraint $x_i \neq x_j$ for all i, j ensures that the mapping
between the vertices of H and G is a one-to-one function and
another binary constraint ensures that for any edge (a, b) in
H, (x_a, x_b) is an edge of G. We ran the experiment with H
for cycle of size 5 and a new random graph G for each run having
20 vertices and 100 edges. Positive examples are generated by
computing solutions of the target constraint network with
a constraint solver using a randomized domain value strategy.
Non-solutions are paths and closed walks of G computed us-
ing a randomized domain value strategy.

N-Queens
The N-Queens problem is the problem of placing N queens
on a $N \times N$ chessboard such that no two queens can attack
each other. For this problem, we use the standard repre-
sentation in which there is a variable per column. The target con-
straint network has N variables x_1, \ldots, x_N, where x_i repre-
sents the row in which the queen on the ith column is posi-
tioned. All domains are $\{1, \ldots, N\}$. There are binary con-
straints $x_i \neq x_j$ and $|x_i - x_j| \neq |i - j|$ for all i, j. This gives
us a language of size N corresponding to all possible values
of $|i - j|$. The constraint language is binary and has size N.
We ran the experiment with $N = 8$, for which the problem
has 92 solutions. We generate positive examples by comput-
ing a random solution, and negative examples by randomly permuting the values or altering one value in a solution.

Golomb Ruler
The Golomb Ruler problem is the problem of finding a set
of marks on a ruler such that no two marks can attack
the other. The target constraint network has n vari-
ables, each representing the position of a mark on the ruler,
domains of fixed size $\{0, \ldots, m\}$, and a quaternary constraint
$|x_i - x_j| \neq |x_k - x_l|$ for all i, j, k, l. For the experiment,
we choose to use $n = 10$ and $m = 60$. Positive examples are
generated by computing a random solution of the target
constraint network with the symmetry breaking con-
straint $x_i < x_j$ for all $i < j$ and then randomly permuting
the values of this solution. Non-solutions are generated by
altering one value in a solution randomly.

5.2 Network and Language Acquisition
In this first experiment, we evaluate the overall performance
of our method on the acquisition of our benchmark problems.
We first present the experimental protocol and then discuss
important points in the results.

Protocol
We conduct a series of experiments with different numbers
of examples in the training sets. For each benchmark problem
and number $|E|$ of examples, we run our acquisition method
5 times with a new randomly sampled training set for each
run. Training sets contain positive and negative examples in
the same proportion. The timeout is set to 12 hours. The per-
formance of the model is measured in terms of the average ac-
curacy over the five runs, which is computed on a new set of
2000 examples generated independently. We also record the
optimal (k, r) values found, the number of times the learned
language is the target language (out of the 5 runs), the num-
ber of times the learned network is equivalent to the target
network (i.e., they have exactly the same solutions) and the
number of times the learned network is precisely the target
network (i.e., with exactly the same constraints). We finally
record the average runtime of the acquisition process, includ-
ing the time required to prove that there does not exist any
network consistent with E for values of (k, r) smaller than
the (optimal) one returned.

Results
We provide a summary of the results in Table 1. The target
network for the Sudoku problem is consistently learned (that
is, learned for all 5 runs) with 200 examples in the training
set, and even as few as 100 examples in 2 runs out of 5. The
Jigsaw Sudoku required significantly more examples before
reaching 100% accuracy, from 600 to 1400 depending on the
jigsaw shapes. For this problem, the target constraint net-
work is never learned no matter the size of the training set.
Equivalent networks are learned instead, which we observed
to correspond to the target network with additional redundant
constraints. (For the classical Sudoku, all possible redundant
inequality constraints are already included in the target net-
work. This is not true for all jigsaw shapes.) For Schur’s
Lemma, with only 50 examples the target constraint language
is consistently learned and the accuracy is above 85%. This
is particularly interesting because this language has arity 3,
so this means that all constraint languages with at most 6
binary relations can be ruled out with very few examples.
Learning the target network consistently requires up to 800
elements, even if 2 runs out of 5 succeeded with only 200.
Subgraph isomorphism is the first problem for which the target
language contains two relations. With 100 examples, the
learned networks are over a language with a single relation
and the accuracy is below 60%. 100% accuracy and equiv-
alent networks are reached with 800 examples, although the
target network and language can never be learned. This is be-
cause it is theoretically not possible to distinguish the graph
G (whose edges correspond to the tuples of one relation in
the target language) from another graph G' with identical 5-
ary cycles using only examples. For the 8-Queens problem, the
experiment is limited to at most 184 examples because the
problem has only 92 solutions and we need 50% of positive
examples in the training set. We observe that even training
sets with 184 examples are not sufficient to reach 100% accu-
cracy or learn the target constraint language (which is of size
8). Instead, our method outputs constraint networks over lan-
guages of size only 3 that achieve 99% accuracy. The Golomb
Ruler is particularly challenging because the target language
has arity 4. Runtimes are extremely high, with the 12-hour
timeout being reached for 800 and 1600 examples. With 400
elements, an accuracy of 76.4% is reached with a constraint
language containing a single binary relation. Perhaps surpris-
| Problem | $|E|$ | Accuracy (k, r) | Language | Equivalent | Target | Runtime (s) |
|------------------|-----|-------------------|----------|------------|--------|-------------|
| Sudoku | 100 | 83.7% (1, 2) | 5/5 | 2/5 | 2/5 | 129.3 |
| | 200 | 100% (1, 2) | 5/5 | 5/5 | 5/5 | 34.9 |
| | 400 | 100% (1, 2) | 5/5 | 5/5 | 5/5 | 25.8 |
| Jigsaw #1 | 400 | 98.9% (1, 2) | 5/5 | 0/5 | 0/5 | 25.1 |
| | 600 | 99.5% (1, 2) | 5/5 | 0/5 | 0/5 | 30.1 |
| | 800 | 99.8% (1, 2) | 5/5 | 3/5 | 0/5 | 33.3 |
| | 1200| 99.9% (1, 2) | 5/5 | 4/5 | 0/5 | 35.8 |
| | 1400| 100% (1, 2) | 5/5 | 5/5 | 0/5 | 33 |
| Jigsaw #2 | 400 | 99.3% (1, 2) | 5/5 | 2/5 | 0/5 | 25 |
| | 600 | 99.9% (1, 2) | 5/5 | 4/5 | 0/5 | 27.6 |
| | 800 | 100% (1, 2) | 5/5 | 5/5 | 0/5 | 31.6 |
| Jigsaw #3 | 400 | 99.7% (1, 2) | 5/5 | 3/5 | 0/5 | 25 |
| | 600 | 100% (1, 2) | 5/5 | 5/5 | 0/5 | 27.6 |
| Schur’s Lemma | 10 | 51.9% (1, 2) | 0/5 | 0/5 | 0/5 | 0.3 |
| | 50 | 86.9% (1, 3) | 5/5 | 0/5 | 0/5 | 22.7 |
| | 100 | 96.3% (1, 3) | 5/5 | 0/5 | 0/5 | 1 |
| | 200 | 98.8% (1, 3) | 5/5 | 2/5 | 2/5 | 0.8 |
| | 400 | 99.7% (1, 3) | 5/5 | 3/5 | 3/5 | 1.2 |
| | 800 | 100% (1, 3) | 5/5 | 5/5 | 5/5 | 1.8 |
| Subgraph Isomorphism | 100 | 59% (1, 2) | 0/5 | 0/5 | 0/5 | 0.9 |
| | 400 | 99.7% (2, 2) | 0/5 | 0/5 | 0/5 | 0.9 |
| | 800 | 100% (2, 2) | 0/5 | 5/5 | 0/5 | 2 |
| 8-Queens | 100 | 87% (2, 2) | 0/5 | 0/5 | 0/5 | 6.4 |
| | 184 | 99% (3, 2) | 0/5 | 0/5 | 0/5 | 16.7 |
| Golomb ruler | 400 | 76.4% (1, 2) | 0/5 | 0/5 | 0/5 | 506 |
| | 800 | - | - | - | - | > 43 200 |
| | 1600| - | - | - | - | > 43 200 |
| | 3200| 100% (1, 3) | 0/5 | 5/5 | 0/5 | 23 468 |

Table 1: Summary of the experiment described in Section 5.2. $|E|$ is the number of examples in the training set; Accuracy is the accuracy measured on a new set of 2000 examples generated independently; (k, r) gives the optimal values computed for the size and arity of the learned constraint language; Language is the number of times the target language is learned out of 5 runs; Equivalent is the number of times the learned and target network are equivalent out of 5 runs; Target is the number of times the target network is learned out of 5 runs.

...ingly, with 3200 examples an equivalent constraint network over a language with a single ternary relation is obtained in all five runs. This relation is symmetric and applied to all possible triples of distinct variables, revealing some hidden structure in the problem’s solution set.

5.3 Detailed Analysis on the Sudoku Problem

In this section, we investigate how the number of examples and the positive-to-negative ratio in the training set affects the accuracy and runtime of the learned constraint network with an archetypal example of constraint acquisition: the Sudoku.

Runtime

In this experiment we take a closer look at the runtime required by our method, as a function of the number of examples. We focus on the Sudoku problem and run the experiment with the number $|E|$ of examples going from 0 to 300 by steps of 5. For each value, we run our method five times (with $|E^+|/|E| = 0.5$) and report the average runtime. If any of the five runs reaches the 3-hour timeout, we ignore the others and simply report a timeout for the corresponding $|E|$.

Figure 1 shows our results. An optimal constraint network (in the sense of our objective function) is found rather quickly when the number of examples is either extremely small (5 to 15) or sufficiently large (75 or more). This is unsurprising because examples translate into hard clauses in our AXSAT model: with very few examples the search space becomes small. The transition appears to occur between 15 and 70 examples, where the solver systematically reaches the timeout. As we will see in the next experiment, for such values of $|E|$ the accuracy of an optimal constraint network would be close to 0.5. This means that very long runtimes are only observed for training sets that are too small for our method to learn the target constraint network (independently of the computational resources available). For 170 examples or more, the optimal solution is the target Sudoku network and is found in less than 30 seconds.
in this range, the learned constraint network is essentially a Sudoku model with a few additional difference constraints. As our method maximizes the number of constraints in the network, these extra constraints can only be ruled out a few at a time by positive examples. The accuracy reaches 1 at $n = 170$, at which point the target constraint network is found.

Ratio of Positive Examples

In this experiment, we vary the fraction of positive examples $p = |E^+|/|E|$ in the training set. For each $p \in \{0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$, we generate training sets with a fraction p of positive examples. In Table 2 we report the minimum number of examples needed by our method to return the target Sudoku network. Results are averaged over five runs.

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>E</td>
<td>$</td>
<td>\times</td>
<td>343</td>
<td>172</td>
<td>137</td>
<td>115</td>
<td>106</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 2: Number of examples needed to learn the target Sudoku network for a given fraction p of positive examples. A cross indicates that the target network is never returned.

We observe that as the ratio of positive increases, fewer examples are needed to acquire the target network. This is not valid past a certain point because our method is not capable of learning the target constraint network with only positive examples. Indeed, in this case a degenerate constraint network with $(k, r) = (1, 1)$ correctly classifies all examples and therefore will be returned. (Likewise, our method is incapable of learning the target network with $p = 0$.) We observe a slight increase in the number of required examples at $p = 0.9$ compared to $p = 0.8$, although the difference is within margin of error. Overall, it seems that our method performs best on the Sudoku problem when the ratio of positive examples is comprised between 0.6 and 0.9.

6 Conclusion

We proposed a constraint acquisition method that eliminates the need for advance knowledge of the target network’s constraint language. Our method computes a suitable constraint language as part of the learning process, making it more widely applicable. Experiments are particularly encouraging, although they also highlight some limitations. We believe that some of these limitations (in particular, the fairly large number of examples sometimes required to win the last percentage points of accuracy and the difficulty to deal with large constraints languages) could be addressed in the future by integrating less rudimentary notions of simplicity than language size. Automatically detecting (or guessing) topological information about the target network, such as an eventual matrix structure, would also help greatly the learning process.

Acknowledgments

This work was partially supported by the TAILOR project, funded by EU Horizon 2020 research and innovation programme under GA No 952215, by the AI Interdisciplinary...
Institute ANITI, funded by the French program “Investing for the Future – PIA3” under grant agreement no. ANR-19-PIA3-0004, and by the ANR AXIAUM project ANR-20-THIA-0005-01 (Data Science Institute of the University of Montpellier). All the experiments have been performed with the support of MESO@LR-Platform at the University of Montpellier.

References

