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Abstract

Fish Aggregating Devices (FADs) are floating objects used by fishers to facilitate their catches. The
majority of the global industrial tropical tuna purse-seine catches currently occurs at FADs. One of
the main adverse ecological impacts of FAD fisheries is the bycatch of vulnerable species such as pelagic
sharks. Detecting the presence of sharks at FADs remotely, constitutes a key step to reduce their catches.

In this paper, we explain how an image-based shark detection module can be embedded on an au-
tonomous buoy associated to a FAD. We discuss the general design, the hardware and software selection,
the implementation of the detection algorithm based on Deep-Learning techniques and we detail the
implementation inside the buoy. Some experiments allowed us to discuss energy consumption. This
system could be integrated with other new technologies to mitigate bycatch in industrial tropical tuna
purse-seine fisheries.

1 Introduction

About 66 percent of the global tuna landings is captured by the tropical tuna purse seine fishery (TTPSF)
(see Figure 1) representing annually 5.1 million tonnes [JRR21]. In the mid 2000s, large commercial
purse seiners started to intensively use man made floating objects, known as Fish Aggregating Devices
(FADs), to locate and capture schools of tuna. This fishing mode, representing 38% of global tuna
catches [MDJR+21], relies on the associative behavior of pelagic species with floating objects, including
target species, to concentrate and localize tuna schools. Since the 2010s, echosounder buoys have been
deployed at drifting FADs to remotely provide information on their position and estimate the aggregated
biomass underneath them [LMSM14]. The use of echosounder buoys further enhanced the efficiency
of the industrial TTPSF [WGKG20]. As a consequence, purse-seiners shifted their fishing effort on
drifting FADs with respect to other alternative fishing modes, targeting free swimming schools of tuna
that are feeding on the sea surface or schools associated with marine mammals [Hal92, DHRM13].
Aggregations at FADs are multi-specific. About 20 species, regularly encountered in the open ocean,
[FDM+20] form part of FAD aggregations. Consequently, when deploying their nets to surround the
tuna schools at FADs, purse seiners also capture other non-targeted species which are referred to as
bycatch. Fishing at FADs thus incurs 2.6-6.7 times more bycatch (ocean dependent) than when fishing
on free swimming schools of tuna [DHRM13]. The magnitude of the FAD-based fishery has generated
conservation concerns (see Figure 2). In particular, the silky (Carcharinus falciformis) and oceanic white
tip (Carcharinus longimanus) sharks are two major pelagic shark species that are incidentally captured
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at FADs [DHRM13]. These shark species are both listed in the convention on International Trade in
Endangered Species (CITES, Appendix II) and classified as Vulnerable and Critically Endangered by the
international Union for Conservation of Nature (IUCN), with the oceanic whitetip shark recently listed
as threatened under the United States Endangered Species Act [YCH+18].

Figure 1: Purse seine deployment used to catch tropical tuna. Copyright ISSF, Fabien Forget (2012).

Research efforts are directed towards finding bycatch mitigation methods that could reduce fishing
induced mortality of silky sharks in TTPSF. Studies which investigated mortality of silky sharks released
from the purse seiners following good handling practices agreed that survival rates of released individuals
was generally low (around 15%) [PFVD14, HIMH15, EBB16]. Other studies have subsequently explored
technical mitigation measures by removing the sharks from the net. [RDM+16, FCF+15] also investigated
the associative patterns and vertical distributions at FADs of targeted tuna species and major bycatch
species, including silky sharks, in order to characterize and identify species-specific behavioural patterns
that could help to improve the selectivity of the gear throughout the day. Silky sharks displayed similar
associative patterns and a shallower vertical distribution than tunas, indicating few opportunities for
technical mitigation solutions.

The fishing grounds of the TTPSF are extensive, so getting remote information at FADs is crucial
to fishers in planning and adapting their fishing strategy. Moreover, recently, it was suggested that
dynamic fishery closures, as opposed to static one could be far more efficient at protecting pelagic species
[PWO+22]. Echo-sounders attached to FADs can provide in real time the tuna biomass estimation at
FADs and play an important role in the choice of the fishing area. Similarly, real time information on
the presence of Endangered, Threatened and Protected Species (ETP) species could be helpful to avoid
areas with high occurrence rates. [MBF+21] investigated the possibility of applying machine learning on
echo-sounder buoy outputs to categorize FADs with high or low bycatch risks. However, echo-sounder
buoys are non effective at detecting or discriminating species, in particular sharks.

Underwater visual census at FADs by divers have been successfully used to characterize bycatch
species [TSD+07, FDM+20]. The idea of using visual monitoring have been widely used for many
ecological studies (see for example chapter 7 of [CHS18] for the sharks). In [BST+19], the authors
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Figure 2: Subsurface view of a Fish Aggregating Device. Notice the presence of a silky shark. Copyright
ISSF, Fabien Forget (2012).

designed an autonomous buoy prototype which incorporates a 360° image acquisition device based on
a turning camera. They conclude that such a system is the best compromise between a pole-mounted
video on a vessel and diver surveys. The number of fishes observed were less than those observed by
divers but they hypothesize that with a longer duration of video acquisition, such system could approach
the performances of divers at short distances from the FAD. They also emphasize the problems of energy
consumption and data transmission.

In this paper, we develop this idea by designing a shark monitoring system based on an autonomous
buoy supporting 4 synchronized cameras at 90° from each other in order to have an overview of the
fishes present under the FAD. In order to get a reliable estimation of sharks, it is necessary to perform an
acquisition during several minutes with a frequency of several images per second. This will give sequences
of more than a thousand images which have to be analyzed to assess the presence of sharks. As it is not
possible to send this large quantity of images by satellite phone for visual inspection, the detection of
sharks must be done automatically on-board and only the number of sharks in each image can be sent.
Of course, this raises questions about the algorithm to develop to get reliable results, the embedded
computer hardware to run in an efficient way and the fine tuning of power consumption with respect to
the available energy.

In section 2, we present the general design of the system with its technical characteristics. In section
3, we present the detection and localization algorithm which is based on a deep learning architecture. In
section 4, we detail how to integrate the algorithm and its hardware in an image processing module and we
discuss the different solutions for switching on the system and scheduling the calculations while accounting
for performance and energy consumption. In section 5, we describe some preliminary experiments in a
shark tank and in the last section, we discuss future work.

2 General design of the system

Our system is presented in Figure 3. The buoy is made of an upper part with a partially emerged float
unit. There are 6 rods (which can be removed and replaced by longer ones) which are fixed to the float
unit for their upper part and to a rigid disk for their lower part. The rods are 1.10 m long and forms a
cage which protects two cylindrical airtight cases fixed to two of the 6 rods. One airtight case (76 mm
diameter × 250 mm) contains the battery (lithium ion 4S3P) and a converter, and the other one (101
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mm diameter × 320 mm) contains the image processing module. Finally, 4 HD cameras are fixed on
the lower part of the buoy, which are approximately to 1.2 to 1.3 m below the sea surface. The final
prototype weight is 18.3 kg.

a) 3D Computer Assisted Design model b) Final prototype

Figure 3: Illustration of our system. a) 3D CAD model. b) The actual prototype. The 4 cameras are located
underwater at 1.2 to 1.3 meters from the float unit and point slightly downwards. The image processing
module is in an airtight case.

The objective is to build a system which is similar in shape and size compared to the standard buoys
embedding an echo-sounder.

Note that FADs can drift for months or even years in the open sea. Thanks to solar panels the system
can be self-sufficient. But the float unit design imposes a strong constraint on energy production as the
solar panels are fixed above it (see Figure 3). The area of the solar panel is thus limited by the area of
the float unitn which has a diameter of 50 cm. As shown in Figure 3b, the solar panels are rectangular
with a surface of around 0.1 m2 which gives a total nominal power of 10 W.

3 Image processing algorithm

3.1 Shark detection by Deep Learning

The aim of the algorithm is to detect in a frame of the video sequence all the sharks presents nearby the
buoy. This last decade, Deep Learning methods, based on the use of neural networks, have proven to
be much more efficient than traditional image processing ones for such a task, even if there are only a
couple of applications for shark detection.

Generally, in the field of Deep Learning, object detection methods are divided into two categories
[LOW+20]. The first category follows the traditional object detection pipeline: in a first step, bounding
boxes, delineating image parts in which the object could be, are defined and in a second step, these image
parts are classified according to a list of object classes which includes the target (here, a shark). Each
step is performed by a separate network, so this category is referred as two-stage object detection
methods. The second category handles the whole object detection task as a unique problem. Therefore,
a single network is used to perform both localization by a bounding box and classification, hence the
name one-stage object detection methods. In all methods, the output is a list of bounding boxes
associated to a class and a detection score. By setting a threshold on this detection score, we can discard
the least reliable bounding boxes.
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Two-stage methods have been used for some years to detect fishes. For example, [LSQC15] proposed
to used a network architecture called Fast R-CNN [Gir15] which is able to localize and classify 12 classes
of reef fishes. An improvement of this architecture called Faster R-CNN [RHGS15] was used to detect
(i.e. localize and classify) hammerhead sharks in videos acquired by divers [UVB+20]. But, when there
are several sharks in a video frame, the results of detection remains limited with many missed sharks.
There are also many cases where the algorithm correctly localizes the bounding box around a shark
but classifies it as another fish species. Two recent methods based on Faster R-CNN are described in
[JLC+22] and [VIMV24]. Performances are high for respectively eight and three shark species in BRUV
(Baited Remote Underwater Video Station) recordings. Notice that these videos are acquired from a
static point of view located on the seabed which may make them very different of videos acquired from
a moving buoy.

We can find two applications of shark detection based on the one-stage network architecture Yolo
v3 [FR18]. In [PPBH20], the authors extend this architecture by adding layers which allow to perform
detection at several scales and increase performance. The method was evaluated on the same application
of hammerhead shark detection as above but on other video frames. The results of detection are quite
limited (only 1/4 to 2/3 of sharks are correctly detected and classified). In [MSAF+21], Yolo v3 is applied
to detect great white sharks in an image dataset taken from Kaggle1. Detection results seem interesting
(between 40% to 86% are correctly detected and classified) but only one video was used for the evaluation
and the images contain only one shark individual which simplifies the detection task.

3.2 Image dataset description

We collected a dataset of 3,618 images, extracted from 64 videos. The videos were acquired with a
GoPro camera by divers at a depth of about 5 meters ar drifting and anchored FAD in the Western
Indian Ocean, the Maldives and the Pacific Ocean. Each image contains at least one shark (silky shark
Carcharhinus falciformis or oceanic Whitetip shark Carcharhinus longimanus) or another fish (bigeye
trevally Caranx sexfasciatus, pilot fish Naucrates ductor, rainbow runner Elagatis bipinnulata, copper
saupe Kyphosus vaigiensis). For each image, marine ecology experts manually delineated a bounding
box around each animal they were able to recognize and annotated it with a class label (see Figure 4).
Notice that partially visible animals were also labelled if possible.

Images Bounding boxes Shark BB Fish BB

3,618 6,623 4,909 1,714
Training set
3,055 5,658 4,056 1,602
Test set
563 965 853 112

Table 1: Our annotated dataset is composed of images containing at least one shark (silky shark, whitetip
shark) or one fish (bigeye trevally, pilot fish, rainbow runner, copper saupe). For each image, bounding boxes
(BB) were delineated by marine ecologists around every shark and fish.

The image dataset was then randomly partitioned into a training (85%) and a test sets (15%) as
indicated in Table 1. We ensured that images from the training and the test set belong to separate
videos for a fair evaluation. The native resolution of the images varied from 2,704×1,524 to 1280×960
pixels depending on video. All images were resampled to 640×640 pixels which is the size required by
the detection algorithms tested in this study.

3.3 Performance assessment

We tested the two cited networks Faster R-CNN and Yolo v3. We compared them to Retina-Net
[LGG+20] and Yolo v52 which works well with dense and small scale objects. Both can be considered as
state-of-the-art one stage network architectures.

Yolo v5 comes with four different versions3 that vary from the smaller version Yolo v5s to the extra-
large version Yolo v5x. All versions are pre-trained on the COCO val2017 image dataset [LMB+14] which

1https://www.kaggle.com/
2https://github.com/ultralytics/yolov5. Notice that we can find more recent extensions in [GLW+21].
3https://github.com/ultralytics/yolov5/releases/tag/v4.0
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Figure 4: Bounding boxes in an image. One was manually annotated as Shark, and the others as Fish.

contains 120,000 images from 80 different classes such as person, bike, car, bus, cat, etc. We selected the
extra-large network Yolo v5x which contains 87.7 million parameters in order to obtain the best results,
although it takes longer to run compared to Yolo v5s.

Our objective was to detect sharks so we could think that it is sufficient to train the network with
images labeled with bounding boxes around the sharks. The network computes then features to distin-
guish a shark from the rest of the image, that consists mostly in a blue background. Nevertheless, fishes,
which are the other objects in the image, share the same kind of contrast with the background. So, the
features computed to detect a shark are also active for a fish and may trigger a detection, resulting in
a confusion between a fish and a shark. It is then very important to train the network to detect all the
classes which may be confused. In the following, all the experiments will use at least the Shark and Fish
classes.

We ran various experiments with the 4 network architectures - Faster-RCNN with a ResNet backbone,
Retina-Net with a SSD backbone, Yolo v3 and Yolo v5x. We used the overall training dataset and also
some subsets to see the influence of the number of training frames. We tested 2-class (Shark, Fish) but
also 3-class (Silky shark, Whitetip shark, Fish)) detection. All experiments were conducted on a powerful
workstation integrating a Quadro RTX6000 NVIDIA owning 24 Gb of memory.

Results were evaluated by assessing the overlap between the bounding boxes detected by the network
and the manually delineated bounding boxes with the Intersection over Union (IoU) indicator (also knwon
as Jaccard index) [LMB+14] tuned to 0.5. It is then possible to see which bounding boxes are correctly
detected and which ones are missed or misidentified. By varying the threshold on the detection score, we
computed for each class the Average Precision AP@.5 (.5 stands for the IoU parameter). By averaging
them over all the classes weighted by the number of detected objects, we obtained a global performance
indicator called mean Average Precision (mAP@.5).

Architecture mAP@.5 AP@.5 Shark AP@.5 Fish

Retina-Net 59 % 91 % 27 %
Yolo v3 40 % 60 % 20 %

Faster-RCNN 74 % 92 % 56 %
Yolo v5x 90 % 95 % 86 %

Table 2: mAP and AP for the different detection networks evaluated on our image dataset.

For all the architectures, we obtained the best results when using the entire dataset and the 2-class
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(Shark and Fish) version. This could be explained by the fact that the two shark species are visually
similar. The results are presented in Table 2.

Our findings, revealed that Yolo v5 is the most efficient network both for fish and shark detection.
We also noticed that it is less time-consuming than the other architectures, which is consistent with some
benchmarks4. Yolo v5x was then the selected network for our system.

The network takes about a day to train on our high-performance workstation but this is done just
once on land; the resulting files are then uploaded on the embedded system.

4 Integrating software and hardware

4.1 Choice of the embedded computer

The image processing module of the system integrates a minicomputer which runs the shark detection
algorithm. Its features - volume, weight and electrical consumption - must fit with the general system
specifications.

At the time of our research, we found find different minicomputers on the market, such as the Rasp-
berry Pi5, the Lattepanda6,the Coral Dev Board7 or the NVIDIA Jetson8. All those micro-computers
costed less than 150 dollars and have low energy consumption.

As reported before, Yolo v5 was one of the most efficient Deep Learning algorithms for shark de-
tection. To be fast, it has to be implemented on a GPU (Graphic Processing Unit) [BD18] using the
dedicated parallel computing platform CUDA developed by NVIDIA9. In Raspberry and Lattepanda
mini-computers, the GPU was integrated to the CPU and was not compatible with the NVidia architec-
ture. Coral Dev Board came only with a CPU but a TPU (Tensor Processing Unit), which is a separate
hardware dedicated to massive multiplications and additions for neural networks, could be plugged on it.
Looking to available benchmarks10,11, the Coral Dev Board minicomputer with a TPU was faster than a
NVIDIA Jetson Nano. Nevertheless, the compatibility of Yolo v5 with a TPU was not tested. In contrast,
a large community already deployed projects with Yolo v5 running on NVIDIA Jetson minicomputers.
We then selected a NVIDIA Jetson Nano minicomputer which is a small, powerful minicomputer for
embedded Deep Learning applications. In particular, it requires a very limited electrical power, as little
as 5 W.

a) One of the 4 cameras. b) The Jetson Nano minicomputer.

Figure 4.1.a shows one of the 4 cameras of the system. They are connected to a switch that is linked
via IP protocol to the Jetson Nano minicomputer displayed in 4.1.b with a RJ45 cable.

4.2 Shark detection module implementation

The performance tests in section 3.3 were obtained with the extra-large version Yolo v5x. We implemented
it on the Jetson Nano but we faced two problems. First, we got a detection rate of only 1 frame per
second (FPS). Considering all the cameras which send 4 synchronized images, the module is then able
to detect a shark only every 4 seconds, that is clearly not efficient for moving animals. Secondly, the

4https://towardsdatascience.com/yolov5-compared-to-faster-rcnn-who-wins-a771cd6c9fb4
5https://www.raspberrypi.org/
6https://www.lattepanda.com/
7https://coral.ai/products/dev-board/
8https://developer.nvidia.com/embedded-computing
9https://developer.nvidia.com/cuda-zone

10https://tryolabs.com/blog/machine-learning-on-edge-devices-benchmark-report/
11https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
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Jetson Nano has difficulties to manage such a extra-large architecture network. This requires too much
memory which causes the algorithm to crash after the analysis of only some frames.

We then assessed the performances of the small and medium version of Yolo v5 with standard pa-
rameters.

The results obtained with Yolo v5s are 5% to 6% lower in AP@.5 for the Shark and the Fish classes that
with Yolo v5x. Nevertheless, we consider that this will ensure a sufficient detection quality considering
the small memory occupation and a fast processing compatible with the acquisition rate of the 4 cameras.

4.3 Optimizing power consumption

The entire processing chain of treatment of our detection module is as follows:

� the Jetson minicomputer retrieves the images which are acquired by the 4 cameras;

� it runs the detection algorithm Yolo v5s which outputs labelled bounding boxes. The results (in
particular the number of sharks) are stored in a text file;

� the system sends the content of this file via a satellite communication channel.

Video acquisition by cameras and computation on the Jetson minicomputer are independent processes
which can be switched on or off by an external controller of the system. We use it to find the best
processing pipeline combining a small power consumption with an optimal acquisition and detection
rate. We analyzed the three following solutions:

1. Sequential pipeline: the 4 images of the different cameras are immediately sent to, and processed
by the YOLO v5s network. Once the detection is done, the minicomputer treats the next group of
4 images. In this process, the 4 cameras and the minicomputer are then continuously running and
nothing is switched on or off.

2. Asynchronous pipeline: each sequence of images from any of the 4 cameras is recorded and stored
separately in a specific file. The detection by YOLO v5s is performed later after reading these 4
files. For this solution, cameras are switched-on during the acquisition process and then switched-
off. After switching-off the cameras, the network is run on the 4 files.

3. Concatenation/asynchronous pipeline: images of the 4 cameras are acquired separately, but it is
possible to concatenate them into one single image before recording and storing it. This unique
but 4 times larger image is then asynchronously processed by the minicomputer as in the previous
solution. This technique allows to reduce file opening and reading times.

For each solution, we evaluated the required power to process a 1 min video (constituted of the 4
video streams acquired by the 4 cameras). Camera resolution is set to standard HD that is 1, 280× 720
pixels. We hypothesized that an camera acquisition rate of 5 FPS is suitable for our application and we
discuss this point at the end of this section. Each camera thus generates 300 images in 1 mn, making a
total of 1,200 images to analyze.

Notice that by default, Yolo v5s resamples the input image to 640×640 pixels to analyze it. But then,
in solution 3 where the resulting image contains 2, 560× 1280 , the subsampling ratio would double with
regards to solutions 1 or 2. So, for solution 3, we set the Yolo v5 resampling parameter to 1, 280× 1, 280
in order to be able to compare detection performances with solutions 1 and 2.

We measured power consumption over time with a voltmeter for the cameras and with the jetson stats
package12 for the Jetson. Once a camera is launched, it has a fixed power of 2.3 W which gives 9.2 W
for the 4 cameras. Once the Jetson is started, the detection at full power takes around 5 W. This gives
us the power consumption curves over time presented in Figure 5.

In solution 1 (see Figure 5, top), the 4 cameras and the Jetson are continuously working after the
starting phase. In the two other solutions (see Figure 5, middle and bottom), we can distinguish a camera
acquisition phase at the beginning and then, a detection phase where only the Jetson is running.

In solution 3, the analyzed image is subsampled to a size of 1, 280× 1, 280. This represents the same
pixel number as for the 4 subsampled images of 640 × 640 in solution 2. Nevertheless, we can see by
comparing Figure 5, middle and bottom, that the duration of the detection phase is different: it takes
around 400 s in solution 2 but only 240 s in solution 3. Moreover, in solution 3, the detection process
requires to transfer 4 times less images (even if they are larger) which optimizes the memory use of the
Jetson and accelerates the Yolo v5s algorithm implementation.

12https://github.com/rbonghi/jetson_stats
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After doing some experiments, we noticed that the sequential solution 1 is not able to treat all the
1,200 images of the 1 minute sequence. In fact, the detection phase itself takes more than 0.05 s by
image, preventing to process the 4 images in less than the 0.2 s required by the acquisition rate of 5 FPS.

Pipeline Duration in s Energy
total/detection in J=W.s

S1. Sequential 180 / 60 2,384 J
(only 1 FPS)

S2. Asynchronous 555 / 400 3,671 J
(5 FPS)

S3. Concatenation 395 / 240 2,556 J
/asynchronous (5 FPS)

Table 3: Duration and energy consumption of the Jetson Nano to process 1 min long video.

All results are summarized in Table 3. If we want a detection rate of 5 FPS, the best solution, in
terms of energy consumption, is clearly the Concatenation/asynchronous pipeline. It gives an average
consumption of less than 6.5 W with a peak at around 13 W. As the nominal power given by the solar
panels of the system is 10 W, it lets a good margin for the consumption of the other electronic devices
(GPS and satellite communication in particular).

Note that this solution could be run at any acquisition rate as the detection process is done asyn-
chronously after image acquisition. One major concern is to assess that a rate of 5 FPS is sufficient to
not miss a shark crossing the field of view of a camera at a standard speed (which is approximated by
1 body-length per second). We selected a 300 s video sequence where there are 0, 1 or 2 sharks and no
other fish. Shark trajectories and speed were also assessed as standard. We then evaluated the detection
results obtained at 5 FPS and 25 FPS which is a standard rate for video recording. We found that all
the detected bounding boxes, at both 5 and 25 FPS, are correctly located around the sharks (i.e. there
is no false positive). If we sum the detection scores of all the detected bounding boxes in an image, the
value should be as closest as possible to the actual number of sharks and quantifies the confidence of
the overall detection process. In Figure 6, we display the actual number of sharks as purple lines and
respectively in orange (up) and blue (bottom) the results for 5 FPS and 25 FPS. As there is no significant
differences, we consider that a frame rate of 5 FPS is sufficient to detect all the sharks in an image and
we use this acquisition rate to get low energy consumption and less data to transfer.

4.4 Making the system autonomous

Figure 7 illustrates the complete detection process. The master system, running on an Arduino platform,
switches on the Jetson minicomputer which records and concatenates the video streams of the 4 cameras
in an unique file, then switches off the camera, and launches the Yolov5s detection algorithm. For each
frame, we get the number of bounding boxes identified as a shark which is written sequentially in a file.
As a clock and a GPS are connected to the minicomputer, we add to the file the time and GPS position
of the system to know when and where the observations were made.

Once the video file is analyzed, the Jetson minicomputer sends the file content, thanks to a dedicated
satellite communication Iridium device. In order to reduce the transmitted data size, we use an off-the-
shelf compression algorithm. Then, the minicomputer sends a message to the master system indicating
that it is going to turn off and finally, the master system cuts the power. All day long, the power is
restored and the minicomputer automatically repeats the whole chain.

The nominal power of the system is 10 W which corresponds to the power which can be produced
by the solar panels under standard test conditions (sunlight intensity of 1,000 W.m−2). We used the
dedicated tool from the Photovoltaic Geographical Information System13 with a 0◦ slope at the Maldives
position to estimate the energy production by the solar panels of the system in this Indian ocean area
which are crossed by a large number of FADs. The value is between 1.2 and 1.6 kWh a month which
gives a minimal available energy of 40 W.h=144,000 J by day.

The day last around 12 hours at equatorial latitudes so the minimal sunlight intensity required to
record videos at a depth of 1 m is reached for approximately 9 hours. We will assume that a video
acquisition of 5 min is appropriate to detect sharks and estimate their number at a given time with a

13https://re.jrc.ec.europa.eu/pvg_tools/fr/#PVP
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good reliability. According to Table 3, this will require at maximum 5×395 = 1, 975 s (around 33 mn) of
processing and 5×2, 556 = 12, 780 J for the detection phase. We can then perform one sequence of 5 min
acquisition and processing per hour during 9 hours a day. This leaves more than 25% of the produced
energy for the other devices (GPS ans satellite communication) and some time to send data. Moreover,
if we measure exactly the energy consumption of the detection phase for 5 mn, it is only 11,600 J so 10%
less as we do not not have to start the cameras and the minicomputer each minute.

5 Preliminary experiments

In order to test the whole system in the most realistic conditions, the system was deployed in the shark
tank of the Planet Ocean aquarium14 in Montpellier, France (see Figure 8).

The main purpose of this experiment was to evaluate the design of the system and its behavior in
the water. It also allowed to evaluate the consumption of the detection module. The environment of the
shark tank differs from the open sea one. In the aquarium, there are rocks, a sandy bottom, and light
spots that create shadows whereas, in the ocean, there is a very uniform background, which creates a
contrast with the sharks (see Fig. 9). Moreover, the shark species present in the aquarium are sand tiger
shark Carcharias taurus, grey shark Carcharhinus amblyrhynchos, leopard shark Triakis semifasciata
and we can observe sawfishes. These shark and fish species are not present in our training dataset and
more generally not around FAD in tropical pelagic waters.

Notice that, due to some hardware problem, we had to replace, at the last minute, the Jetson Nano
minicomputer by a more powerful version, the Jetson Xavier NX. If the Jetson Xavier NX minicomputer
consumes 8 W, that is 2 W more than the Jetson Nano, it takes 4 times less to perform the detection.
As a whole, we can estimate that it is 1.5 times more efficient in energy consumption.

The system was installed in the tank (see Figure 10 and 11). As planned, two people could easily
manipulated it. The buoyancy and watertightness were assessed. Camera orientation was correct and
allowed to see the bottom with a good stability (even if there is no wave in the tank).

Energy consumption was assessed by connecting the system to a computer located on the shore of the
tank via an Ethernet cable. The reported measure gives a consumption of 7 W for the Jetson Xavier NX
minicomputer alone, 10 W for the 4 cameras and around 6 supplementary W for running the detection
algorithm. The total consumption during a complete switch-on cycle, switch-off of the camera and the
detection process are thus oscillating between 13 W and 17 W, which is higher (by ≈ 3-4 W) than what
we estimated, using the jetson stats package. This difference may be explained by two reasons. First,
the external controller consumption was not taken into account during the measurement by the software.
Secondly, the cable linking the minicomputer to the power consumption measurement device was quite
long and this may lead to an overestimation of the real consumption.

If we refer to Figure 3, we will have an increased consumption of around 3 W when the Jetson Xavier
NX minicomputer begins its process during the first 155 s (that is 465 J more). As it is 4 times faster
than the Jetson Nano, the consumption during the detection phase itself will be 13 W during 240/4 = 60
s (that is 780 J) instead of 5.2 W during 240 s (that is 1248 J) with the Jetson Nano. In conclusion,
the two minicomputer have a comparable energy consumption for the sequence of 5 min acquisition and
processing per hour during 9 hours a day, which complies with the energy capacity of the system.

As there is an important mismatch between the images acquired in the tank and the ones which
belong to the training dataset, the detection algorithm performed badly. We diminished the detection
score threshold to a low value (0.4) in order to detect some sharks while avoiding false positives. As
observed in Fig. 12, sharks are correctly detected only when there is a uniform background as it is the
case in the open-water. The algorithm was not able to generalize well to the tank environment or to new
shark species. Nevertheless, these first experiments showed us that the image acquisition and processing
chain is fully operational.

6 Discussion and future work

In this paper, we explained how a shark detection module can be embedded on an autonomous buoy. We
discussed the general design, the hardware and software selection to implement the detection algorithm
and we detailed the implementation. Experiments allowed us to discuss energy consumption which is a

14https://www.planetoceanworld.fr/
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key-factor. The presented solution is the result of many discussions between researchers in computer-
science, robotics and marine ecology. We think that this system could be integrated with other new
technologies to mitigate bycatch in industrial tuna fisheries [PBC+21].

Two contributions can be highlighted. First, we demonstrated the feasibility of embedding a state-
of-the art detection algorithm in a minicomputer, with a sufficient detection rate and a small power
consumption to be able to perform experiments in the open-sea. Secondly, we described and assessed
a complete processing sequence, from the minicomputer starting which combines camera acquisition,
object detection and classification and the transmission of the results via satellite phone.

The next step would be to test the system in open-water in the Indian ocean [FFY+22]. This will
allow us to assess if all the specifications are really efficient, in particular the performances of shark
detection and the power autonomy.

This system could also be extended to other threatened species that are bycaught in FAD-based
fishing, such as turtles.
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Figure 5: Power consumption (in W) over time (in s) for the 3 solutions to process a 60 s video with an
acquisition rate of 5 FPS. The pink area represents energy consumption in J=W.s. Computer consumption
can be decomposed in starting the Jetson microcomputer, initializing the software and running the detection
algorithm itself. Cameras consumption consists in starting the cameras and performing the acquisition itself.
From top to bottom: 1. Sequential pipeline (but it results that this solution is limited to process only 1
FPS), 2. Asynchronous pipeline and 3. Concatenation/asynchronous pipeline.
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Figure 6: Performance comparisons at a rate of 5 (up) and 25 (bottom) FPS with the concatena-
tion/asynchronous solution on a 300 s long video containing 0, 1 or 2 sharks by image. In orange and
blue is displayed the sum of the detection scores of the detected bounding boxes. It should ne as closest as
possible to the purple lines which indicates the actual number of sharks in the image. Notice that perfor-
mances at 5 and 25 FPS can be considered as similar.

Figure 7: Complete system operation.
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Figure 8: Upper view of the shark tank of the Planet Ocean aquarium in Montpellier, France.

Figure 9: Shark images in the aquarium (upper row) and in open water (bottom row). They are different in
terms of color, shark or fish species, and background.
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Figure 10: Installation of the system which was planned to be easily manipulated.

Figure 11: Upper view of the system in the aquarium.
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Figure 12: Results of shark detection in the aquarium. The bounding box surrounds correctly a sawfish
shark in the upper example but also.... the shadow of a sandbar shark which passes higher under a spot of
light! Both are labelled as Shark and their detection score are displayed.
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