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Abstract. The multiplication of publicly available datasets makes it
possible to develop Deep Learning models for many real-world applica-
tions. However, some domains are still poorly explored, and their related
datasets are often small or inconsistent. In addition, some biases linked
to the dataset construction or labeling may give the impression that a
model is particularly efficient. Therefore, evaluating a model requires a
clear understanding of the database. Moreover, a model often reflects a
given dataset’s performance and may deteriorate if a shift exists between
the training dataset and real-world data.
In this paper, we derive a more consistent and balanced version of the
TrashCan [6] image dataset, called UNO, to evaluate models for de-
tecting non-natural objects in the underwater environment. We pro-
pose a method to balance the number of annotations and images for
cross-evaluation. We then compare the performance of a SOTA object
detection model when using TrashCAN and UNO datasets. Addition-
ally, we assess covariate shift by testing the model on an image dataset
for real-world application. Experimental results show significantly better
and more consistent performance using the UNO dataset.
The UNO database and the code are publicly available at:
https://www.lirmm.fr/uno and
https://github.com/CBarrelet/balanced_kfold.
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1 Introduction

Recently, interest in cleaning up the seabed has increased, motivated by the
growth of underwater macro-litter pollution [2]. Monitoring the presence of
macro-litter on the seabed, in particular by optical acquisition, has become a very
active research topic [10]. Deep Learning (DL) approaches are then adapted to
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detect, localize, and identify macro-litter in the underwater environment, which
is very variable. Moreover, these approaches should run fast, which is crucial if
we want to guide Remotely Operated underwater Vehicles (ROV) to pick macro-
litter.

The availability of video datasets as DeepSeaWaste [5]4 or TrashCan [7]5 al-
lowed researchers to design DL networks to classify [16] [13] and localize [11] [9]
macro-litter within underwater images. Figure 1 shows some images from these
two datasets.

Fig. 1. Images from the DeepSeaWaste (left) and TrashCan (right) datasets.

The DeepSeaWaste dataset [5] is composed of 544 underwater macro-litter im-
ages taken by the Japan Agency of Marine-Earth Science and Technology (JAM-
STEC) [1]. The 76 classes are descriptive, such as ashtray, bottle, or rope, but they
are entirely unbalanced, considering that the number of examples ranges from 1
to 12. In fact, 43 classes have only two examples at most. Moreover, some images
have multiple labels. The limited number of images for some classes makes the
training or evaluation of classification tasks difficult.

The TrashCan dataset [7] is a semantically-segmented database composed
of 7,212 images that were primarily extracted consecutively from 312 different
video sequences taken by JAMSTEC, since 1982, in the Sea of Japan. It is an
improved version of the Trash-ICRA19 dataset [4]. 16 to 22 classes are repre-
sented depending on the version, such as ROV (which includes any part of the
ROV carrying the camera), animals (which are defined by specific classes such as
animal_crab, animal_eel, animal_fish), plant, and trash which is also divided
into specific subclasses such as trash_metal or trash_fishing_gear. However, the
classes are poorly balanced, particularly the ROV category, which represents up
to 33% of all annotations. We also visually assessed that many annotations are
incorrect, poorly localized, or missing. Notice that some metadata, such as the
depth, date, or time, are directly overlayed on the images, which could introduce
some artifacts in the learning process.

4 https://www.kaggle.com/henryhaefliger/deepseawaste
5 https://conservancy.umn.edu/handle/11299/214865
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Another problem occurs in the evaluation. When we use the standard k -fold
cross-validation method, we split the dataset into k sub-datasets, and, for each
fold, we keep k-1 sub-datasets for constituting the training dataset, and the last
one becomes a test dataset. Thus, we get k detection/localization accuracies that
we average to estimate an overall accuracy. In the TrashCan dataset, the 7,212
images were extracted consecutively from videos sequences, so 2 images might
be very similar if they belong to the same sequence, especially if the ROV is
moving very slowly or is stable. Consequently, if in the k -fold evaluation pro-
cess, we randomly distribute the images over the k sub-datasets, we will have
images of a given sequence both in the training and the test datasets. As these
images may be very close, they may artificially boost the overall performance.

In conclusion, there are very few available underwater macro-litter datasets,
and they suffer from a strong imbalance between classes, many annotation er-
rors, and temporal consistency, which make many images of the dataset very
close. In this work, we propose to take the TrashCan dataset, which is the most
complete and relevant one for macro-litter detection and localization in the un-
derwater environment, and derive a new version that will be more consistent
and balanced. In the following, we describe our method. Notice that even if the
methodology is focused on a specific dataset, it could be used to derive other
image datasets presenting the same limitations.

The rest of the paper is organized as follows. Section II describes the deriving
process itself (frame selection, class fusion, text suppression, and re-labeling) in
order to obtain a new dataset called UNO (for Underwater Non-natural Object),
which is publicly available. Section III describes, in particular, a methodology
(available on the GitHub6) to get k-folds, ensuring that images of the same video
are only in one training or evaluation dataset, thereby resulting in a good bal-
ance of frames and bounding boxes. In Section IV, the state-of-the-art YOLOv5
[9] detector is used to compare performances using TrashCan and its derived
version UNO as training or evaluation datasets. We also evaluate the effect of
using TrashCan or UNO as the training dataset on the generalization ability by
evaluating performances on images of the AQUALOC dataset [3], which presents
a significant covariate shift.

2 UNO dataset construction

2.1 Label redefinition

Our objective in using the TrashCan dataset is to develop methods to detect
or localize macro-litter, but the dataset also includes non-litter classes such as
animal, plant, or ROV. The trash class itself is decomposed into 8 distinct classes
with 142 to 2,040 examples per class. In order to mitigate class imbalance and
the ambiguity of trash definition, we decided to consider a more general problem
6 https://github.com/CBarrelet/balanced_kfold
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of object localization by fusing all the trash classes as the ROV one into a unique
class that we call Non-natural Object. This postpones the classification step to
future work.

2.2 Text removal

As we can see in Figures 1 and 2, some metadata are directly overlayed as text in
the images. Therefore, we must remove it as it may disturb the detection process
in the learning or test phase if the text is considered as an object.

More precisely, the text is always on the top and bottom parts of the image.
We thus decided to suppress the top and the bottom of the frame leading to
cropped images with smaller heights. To this end, we set up an automatic pro-
cessing consisting in first, detecting the text, secondly estimating the average
ordinate (y-axis) for the top and the bottom text line, and third cropping the
middle region of the image (see Figure 2, column 2). More practically, we train
a YOLOv5 extra-large model for text detection on the COCO-Text dataset [15]
with the recommended hyperparameters from [9] and a batch size of 28, achiev-
ing a precision (P) of 0.71, a recall (R) of 0.56, and a mAP@.5 of 0.621. Since
the precision remains relatively low, we keep only the detected text which y co-
ordinate is within the mean ± std of all y coordinates of the detected texts. In
fact, the detected text laying outside this interval is considered as false positive
and then removed.

2.3 Relocalization

TrashCan has a non-negligible part of the labels that either are incorrect, miss-
ing, or which corresponding bounding boxes (BB) are imprecisely located. We
relocated every BB w.r.t. the following rules. First, we modify the border delim-
itation between objects and bounding boxes, assuring a perfect pixel tightness.
We removed all misplaced BB and tried to avoid overlapping BB that might
cause a performance drop. Secondly, we annotated missing objects from frame
to frame. Furthermore, we chose to add some complex examples. Indeed, objects
are barely recognizable from a human perspective because of depth, luminos-
ity, and turbidity, in the underwater environment. So for a labeled object in a
given frame, we checked for the same object in the previous frames even if its
appearance is unclear and added the frame to the dataset.

2.4 Discussion on the derived UNO dataset

In Figure 2, we can see in the TrashCan images that the ROV (up), which partly
appears on the bottom and the upper right of the image is delineated by two
different BB which are much larger than the ROV parts and (bottom) that the
plastic bottle is not labeled. The UNO images are cropped parts of the TrashCan
images in order to delete non-significant content as the text and the BBs were
resized in order to better fit the non-natural objects.
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Original: TrashCan Derived: UNO

Fig. 2. Images and annotations from TrashCan (left) and UNO (right) datasets. We
can see how the UNO images were cropped in order to delete artefactual content (in
particular the text) and how some BB were resized or added to fit better the non-
natural objects.

After the process, the UNO dataset consists of 279 video sequences with 5,902
frames and 10,773 bounding boxes labeled with the unique Non-natural object
class.

We pointed out some limitations directly linked to the localization and the
shape of the objects. We included some overlapping BBs while minimizing their
number to limit confusion at evaluation time. Moreover, thin diagonally shaped
objects, such as ropes, could confuse the model at the training stage. Indeed, a
thin diagonally shaped object covers just a small portion of its BB, while the
background covers the rest. We could have used polygonal BB and pixel-wise
labels to improve diagonally-shaped object detection. Nevertheless, we labeled
them with classic rectangle BB because of their rare occurrence.

3 A methodology for a well-balanced k-fold

When a dataset contains a small number of images, the best way to properly
evaluate the accuracy of a DL network is to split the dataset in k -folds and
circularly use (k-1) folds as the learning dataset and the last fold for the test
dataset. This results in a total of k learning phases, each evaluated on a different
fold. Finally, one can average all the results in an overall performance indicator
(i.e., accuracy) and compute the standard deviation. This last value can be
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considered as an indicator of generalizability and can be used in a Student’s t-
test on the performance indicator to decide if a network is better than another.

Note that even if one wants to split the dataset only into 2 folds (a training
set and a test set), one still must be cautious. In the case of TrashCan, a direct
random split introduces a bias. As mentioned, the frames of the dataset are
extracted consecutively from the videos. A frame n and n + 1 of a video might
be very similar, and they may be assigned one in the training set and the other
in the test set. As they are very close, they may artificially boost the model
performance. Therefore, the correct way to split the dataset is to group all the
frames belonging to one video into a unique fold. Figure 3 shows the number of
frames per video and its variability.

Fig. 3. Number of frames for the 279 videos.

Moreover, in order to get comparable learning phases in the cross-validation
process, we must ensure that we have the same number of BB in each fold. In
conclusion, we have to split the dataset into k-folds (in the following, we fixed k
to 5) with both balanced frames and BB numbers, while keeping all the frames of
a video in a unique fold. This problem is known as the bin packing problem [12]
since we want to fill k = 5 folds at the best (with the video frame constraint),
knowing their targeted capacity is approximately the total number of frames and
BB divided by 5.

As we are looking for approximately the same number of frames and the same
number of BB in each frame, we will minimize both the standard deviation σF

of the number of frames per fold and the standard deviation σBB of the number
of BB. Due to the pertinence of both the frames and the BB numbers, we choose
to consider σF and σBB equally. Thus, the problem can then be written as the
following optimization:

f∗ = arg min
f∈{1..5}279

(σF + σBB) (1)

With f a 279-tuple, i.e., f ∈ {1, ..., 5}279, corresponding to the assignment of
279 videos to 1 of the 5 folds. There are 5279 different 279-tuples which is very
large.
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An approximate but fast and easy solution to find the best assignment f is
to create 100,000,000 k-folds by shuffling the videos and filling each fold to their
targeted capacity. Then, we select the k-fold assignment minimizing equation 1.
Table 1 shows the distribution obtained in our best k-fold. The result seems
reasonable since both σF and σBB are very low.

Table 1. Optimal 5-fold distribution with video, frame and BB numbers by fold.

Fold Video Frames BBs

1 63 1180 2159
2 64 1182 2137
3 49 1185 2152
4 44 1179 2163
5 57 1176 2162

Mean 55.4 1189.2 2154.6
σ 7.81 3.00 9.60

More generally, since a different video database could lead to a scattered dis-
tribution, one may privilege a standard deviation over another in favor of a
more balanced version. Hence, the problem could be rewritten as the following
optimization:

f∗ = arg min
f∈{1..5}N

(
(1− α)σF + ασBB

)
(2)

With f a N-tuple, i.e., f ∈ {1, ..., 5}N , corresponding to the assignment of N
videos to 1 of the 5 folds, and α ∈ [0, ..., 1] a weighting parameter.

4 Experiments and results

In this section, the UNO dataset is benchmarked with YOLOv5m [9]. As a recall,
the UNO dataset contains 279 videos, 5,902 frames, and 10,773 bounding boxes.
All bounding boxes contain a non-natural object; YOLOv5m is then a one-class
detector.

4.1 Experiments

We chose the YOLOv5m [9] model pre-trained on ImageNet at a 640 × 640 pixels
resolution. We used transfer learning from its pre-trained weights to keep the
previous knowledge. We chose the SGD optimizer and the OneCycle scheduler,
with initial and final learning rates of 0.0032 and 0.000384, respectively, while
setting the warmup at 20% of the total epochs. In addition, we set the batch
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Table 2. Results on different dataset achieved using YOLOv5m

Training set Evaluation set Split P (%) R (%) F1 (%) mAP@.5 (%)

TrashCan TrashCan Random 83.1 76.5 79.7 80.8

TrashCan TrashCan K-folded 57.1 ± 5.2 60.1 ± 5.5 58.4 ± 4.2 56.6 ± 6.3

TrashCan UNO K-folded 64.2 ± 5.0 58.2 ± 2.9 60.9 ± 2.6 60.8 ± 4.2

UNO UNO K-folded 68.7 ± 4.3 66.2 ± 1.5 67.3 ± 1.5 68.8 ± 1.2

Table 3. Covariate shift results using YOLOv5m

Training set Evaluation set Split P (%) R (%) F1 (%) mAP@.5 (%)

TrashCan AquaLoc K-folded 59.8 ± 6.3 52.9 ± 3.8 55.7 ± 1.6 52.5 ± 1.9

UNO AquaLoc K-folded 61.2 ± 3.1 51.2 ± 6.2 55.6 ± 4.5 55.2 ± 4.7

size to 28, which is the maximum according to our GPU capability (NVIDIA7

Quadro RTX 6000 with 24Go VRAM). We set the IoU threshold to 0.2 between
predictions and labels for evaluation. We also used data augmentation given in
the YOLOv5 fine-tuning V5.0 version, such as color transformation, rotations,
translations, scaling, shearing, flip-UP, flip-LR, mosaic, and mixup.

As mentioned, we ran five training of 300 epochs each and five tests for every
experiment. Each experiment took approximately seven hours.

4.2 Results

UNO benchmark and improvement with respect to TrashCan Table 2
shows the results of various experiments with the same settings and k-fold to
compare TrashCan and UNO databases.

In the first row, we evaluate the results without k -folding, using a regular ran-
dom split to show the bias linked to datasets containing consecutive frames. The
results are biased because both the training and validation sets contain sim-
ilar frames, leading to excellent results (P=83.1%, R=76.5%, F1=79.7%, and
mAP@0.5=80.8%) but an erroneous conclusion. Then, we use a correct distri-
bution preventing consecutive frames to be in both training and validation sets,
i.e. using our k-fold methodology. Thus, the following rows indicate the correct
evaluation, where P, R, and mAP@.5 are below 70%.

In the second row, we evaluate the TrashCan model using our k-fold method-
ology, resulting in P=57.1 ± 5.2%, R=60.1 ± 5.5%, F1=58.4 ± 4.2%, and
mAP@.5=56.6 ± 6.3%, whereas in the third row, we evaluate the same model
but on the UNO validation split to see its performance on a cleaner version, re-
sulting in P=64.2 ± 5.0%, R=58.2 ± 2.9%, F1=60.9 ± 2.6%, and mAP@.5=60.8
± 4.2%. The latter shows an overall improvement indicating the importance of
a clean evaluation set.
7 https://www.nvidia.com/
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Finally, we give the UNO model evaluation on its validation set in the fourth
row. The results increase by almost 10 points (P=68.7 ± 4.3%, R=66.2 ± 1.5%,
F1=67.3 ± 1.5%, and mAP@.5=68.8 ± 1.2%). Moreover, when trained on the
UNO database, YOLOv5 obtained much lower standard deviation results. UNO
has thus better properties when it comes to comparing networks.

Fig. 4. Localization results on UNO images for models trained on the same subpart of
TrashCan and UNO datasets, respectively.

Figure 4 gives a visual comparison of both the TrashCan and UNO models (the
actual annotations are visible in Figure 2) . In the upper row, although the
TrashCan model could localize the plastic bottle, it did not localize the bottom
part of the ROV as the UNO model does. In the bottom row, we can see that
the TrashCan model cannot localize the small piece of wood.

Covariate shift test Given that the TrashCan dataset contains videos taken
in deep water since 1982, we want to test the generalization with recent im-
ages. So we labeled 150 frames from 3 videos taken from the AquaLoc dataset
[3] which were acquired in the Mediterranean sea in shallow water (see Figure 5).

Given that the image’s color, the lightness, the turbidity, the objects, and
the environment differ a lot from those taken by JAMSTEC, we concluded that
the distribution of both datasets is unlikely to be similar. Thus, we can test the
generalization of a model by testing the covariate shift.

Table 3 shows both models’ results on the covariate shift dataset. While
we found no noticeable difference in the F1-score for both models, the UNO
model obtains a higher mAP@.5 score than TrashCan. We assumed an actual
improvement since we correlated the mAP@.5 results with a Student’s t-test and
failed to reject the NULL hypothesis (which means both models are equivalent),
with a p-value greater than 0.05 (p-value = 0.49).

Even though a model could generalize with a relatively low amount of in-
correct examples, the quality of the evaluation set determines its actual perfor-
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Fig. 5. Images from AquaLoc [3].

mance. Indeed, the larger the database is, the least the bad quality examples
influence the overall performance. We see relatively low performances for Trash-
Can and UNO models regarding covariate shift testing. Indeed, JAMSTEC and
AquaLoc images are very different as the color and object shapes impact the
overall distribution. Moreover, a biological phenomenon called marine biological
fouling makes the detection task more difficult. Marine fouling occurs when or-
ganisms grow on underwater objects. However, because it almost does not form
in deep water due to the lack of light, JAMSTEC images do not cover that
variability. In order to keep the gain having a pre-trained network on the UNO
database but targeting use on images having a domain shift, one can envisage
performing domain adaptation [14], or generative methods [6]. This is postponed
to future works.

5 Conclusion

In this paper, we first selected images from TrashCan containing at least one
object, set their label as a unique class, and removed the text from the images
by cropping them using YOLOv5 trained on COCO-Text as a text detector.
Then, we relocated every bounding box following determined rules (pixel-perfect
tightness, overlapping limitation) to obtain UNO, a new dataset of underwater
non-natural objects.

Secondly, we proposed a methodology (script given online) to compare net-
works using a well-balanced k -fold and concluded from network comparisons
that UNO exhibits better properties than TrashCan.

Thirdly, we evaluated both TrashCan and UNO using YOLOv5m with the
same k -fold and hyperparameters for a fair comparison.

Finally, we evaluated the learning efficiency in deploying conditions with a co-
variate shift test, using underwater images taken from AQUALOC for TrashCan
and UNO models, and provided these images on UNO website.

As mentioned, UNO contains only one class because of the class imbalance
of TrashCan. However, one could overlay this issue by creating a well-balanced
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underwater litter database or using few-shot classification methods [8] [17]. More-
over, the covariate shift test indicates poor detection performances for TrashCan
and UNO. Because JAMSTEC images do not cover the variability of AQUALOC
(shallow water, fouling, object shapes, turbidity, and luminosity), one could en-
vision performing domain adaptation [14] or generative methods [6] to keep the
gain of having a pre-trained network on the UNO database.
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