Steganalysis with Cover-Source Mismatch and a Small Learning Database

Pasquet Jérôme^{2,3}, Sandra Bringay^{2,3,4} et Marc Chaumont^{1,2,3}

UNIVERSITE DE NIMES, F-30021 Nîmes Cedex 1, France UNIVERSITE MONTPELLIER 2. UMR5506-LIRMM, F-34095 Montpellier Cedex 5. France ³ CNRS, UMR5506-LIRMM, F-34392 Montpellier Cedex 5, France AMIS, UNIVERSITE MONTPELLIER 3, Route de Mende 34199 Montpellier Cedex 5, France

Eve (the steganalyst) job

{jerome.pasquet, sandra.bringay, marc.chaumont}@lirmm.fr

Steganalysis

Steganalysis is the study of detecting messages hidden in a support.

Eve's Job is :

1. to learn to distinguish cover images from stego images \rightarrow learning step, 2. to do the steganalysis \rightarrow testing step.

In the <u>clairvoyant scenario</u>, we decide that Eve knows:

- r the algorithm(s) used by Alice,
- If the payload (quantity of embedded bits) used by Alice,
- \cdot the sizes of images,
- quite well the distribution of Alice images.

far from the reality.

A closer scenario to reality

Using the Cover-Source Mismatch scenario [1]

Definition: Cover-Source Mismatch phenomenon (= inconsistency)

The proposition to overcome the cover-source mismatch problem

• We **refute** the hypothesis that millions of images are necessary to overcome the problem of cover-source mismatch.

• Experiment show that EC with post-features selection (EC-FS) [4] allows to obtain better results with 100 fewer images than [2, 3].

• We introduce an additional preprocessing technique that overcomes the problem of cover-source mismatch (the islet approach).

Islet approach

Main Idea : Reducing the heterogeneity before the learning process.

Image model learned by Eve and image model used by Alice are differents

Ensemble algorithms

An Ensemble Classifier is made of L weak classifiers

Let $\mathbf{x} \in \mathbb{R}^d$ be a features vector, A weak classifier, h, , returns -1 for cover and 1 for stego :

 $h_{i}: \mathbb{R}^{d} \rightarrow \{-1, +1\}$ $\mathbf{x} \rightarrow \mathbf{h}(\mathbf{x})$

<u>The two competing algorithms:</u>

EAP [3] Ensemble Average Perceptron of Features

EC-FS [4] **Ensemble Classifier with Post-Selection**

- was presented at IS&T/SPIE'2012 and MM&Sec'2012 [2, 3],
- use the very old notion of perceptron (1957) =simplest network neuron,
- has very low computational complexity O(d_{red}.L.N) and quasi null memory complexity
- was presented at IEEE ICIP'2012,
- is an extension of EC [5],
- increase the performance in the clairvoyant scenario,
- is scalable regarding the dimension of the features vector, has low computational complexity

Before the learning step, there are two stages:

- 1. Partitionning the image database in a few clusters; \rightarrow K vectors { μ_{k} } $_{k=1}^{k=K}$
- 2. Associating a classifier (EC-FS) to each cluster; \rightarrow K classifiers.

During the learning step, each classifier learns and classifies only vectors that belong to its cluster.

During the testing step: Given a features vector **x**_i to be classified: 1. A cluster k is selected such that $k = \arg_k \min dist(\mathbf{x}_i, \mu_k)$,

2. The kth classifier (EC-FS) is used to classify x i (into cover or stego).

(online algorithm),

• but necessitates million of images in the cover-source mismatch scenario.

The weak classifier is an average perceptron : $h_{i}: \mathbb{R}^{d} \rightarrow \{-1, +1\}$ $\mathbf{x} \rightarrow \mathbf{h}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\operatorname{avg}}.\mathbf{x})$

For an incoming features vector \mathbf{x}_i with a class number $y_i \in \{-1, +1\}$, the weight vector $\mathbf{w}^{(i)}$ is update such that :

> $\mathbf{w}^{(i)} = \begin{cases} \mathbf{w}^{(i-1)} \\ \mathbf{w}^{(i-1)} + \mathbf{y}_i \cdot \mathbf{x}_i \end{cases}$ If $y_i = sign(w^{avg}.x_i)$ If y_i≠ sign(**w**^{avg}.x_i)

 $O(d_{red}^2$.L.N) and low memory complexity.

Once a weak classifier is learned :

<u>Algorithm :</u>

1. Compute a score for each feature 2. Define an order of selection of the features 3. Find the best subset (lowest P_{r}) \rightarrow suppress the features in order to reduce P₋

Order of complexity unchanged.

Results

Experimental conditions:

- 1 million images from the TwitPic website,
- Images are decompressed, transformed, and cropped to 450×450,
- Spatial embedding with the HUGO [6] algorithm at 0.35 bpp,
- 3 steganalysis simulations,
- Features vector dimension is d = 34671 features [7],
- Average P_c computed on 40 000 images never seen.

• EC-FS is a very efficient tool for managing very heterogeneous data (overcomes the cover-source mismatch phenomenon),

Summary

- EC-FS prediction is better than EAP (+2,3%),
- EC-FS requires a learning set 100 times smaller than EAP (have required High Performance Computing Architectures),
- The islet approach is an additional efficient technique (+0.67%) (it improves the homogeneity).

Steganalysis results:

Counter-performance of EC > EAP prediction rate converges around 93% EC-FS prediction rate = 95% with only 50 000 learning

<u>Results for Islet approach:</u>

K islets	Training size per islet	Prediction rate
1	150 000	95.39
2	75 000	95.81% (+0.41%)
3	50 000	95.83% (+0.43%)
4	37 500	95.82% (+0.43%)
5	30 000	95.88% (+0.49%)
6	25 000	96.06% (+0.67%)
7	21 428	95.72% (+0.33%)

Table : Results of islets with EC-FS.

- Less samples per classifier but more homogeneity! EC-FS alone converges to 95%
 - \rightarrow The islets allow to overcome this bound
- Non negligible improvement (we are close to 100%)

[1] G. Cancelli, G. J. Doërr, M. Barni, and I. J. Cox,"A comparative study of +/-1 steganalyzers,"in Workshop Multimedia Signal Processing, **MMSP'2008**

[3] I. Lubenko and A. D. Ker, "Steganalysis with mismatched covers: do simple classifiers help?," in ACM Multimedia and Security Workshop, MM&Sec'2012.

[5] J. Kodovsky, J. Fridrich, and V. Holub, "Ensemble classifiers for steganalysis of digital media," IEEE Transactions on Information Forensics and Security, TIFS'2012.

[2] I. Lubenko and A. D. Ker, "Going from small to large data in steganalysis", in Media Watermarking, Security, and Forensics III, Part of IS&T/SPIE Annual Symposium on Electronic Imaging, SPIE'2012.

[4] M. Chaumont and S. Kouider, "Steganalysis by ensemble classifiers with boosting by regression, and postselection of features," in IEEE International Conference on Image Processing, ICIP'2012.

[6] T. Pevny, T. Filler, and P. Bas, HUGO: "Using High-Dimensional Image Models to Perform Highly Undetectable Steganography" in Information Hiding, IH'2010.

[7] J. Fridrich, J. Kodovsk y, Rich models: "Rich models for steganalysis of digital images," in IEEE Transactions on Information Forensics and Security, TIFS'2012.

European Signal Processing Conference 2014, Lisbon - Portugal