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ABSTRACT

In the field of remote sensing, it is very common to use data
from several sensors in order to make classification or seg-
mentation. Most of the standard Remote Sensing analysis
use machine learning methods based on image descriptions as
HOG or SIFT and a classifier as SVM. In recent years neural
networks have emerged as a key tool regarding the detection
of objects. Due to the heterogeneity of information (optical,
infrared, LiDAR), the combination of multi-source data is still
an open issue in the Remote Sensing field. In this paper, we
focus on managing data from multiple sources for the task of
localization of urban trees in multi-source (optical, infrared,
DSM) aerial images and we evaluate the different effects of
preprocessing on the input data of a CNN.

Index Terms— Deep Learning, Localization, Multi-
source Data, Data Fusion, Remote Sensing

1. INTRODUCTION

Nowadays, it is common to combine different information
sources in order to deal with the object detection task [1] and
more particularly in the field of remote sensing [2]. Indeed, it
is admitted that the ”heterogeneity” of remote sensing infor-
mation (optical, near-infrared, LiDAR) can improve the ob-
ject detection.

In the case of multi-source data (optical, infrared, Li-
DAR), it is nevertheless complex to merge several infor-
mation sources since they provide measurements that can be
different and complementary in their nature [3]. It is therefore
crucial considering the integration issue during the concep-
tion of an object detection method since, the way in which
different data are combined can drastically impact the final
result.

Recently, the Deep Learning [4] methods have shown that
neural network models, and more specifically Convolutional
Neural Networks (CNNs) are tailored to image classifica-
tion [5] and localization [6]. CNNs [7] integrate in a single
optimization schema both the learning of a classification
model and the learning of a suitable set of descriptors of
images.
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In this paper, we address the specific problem of localiza-
tion and detection of urban trees in multi-source aerial data
composed of synchronized optical, near infrared and Digi-
tal Surface Model (DSM) measurements of urban areas. We
should notify the reader that we are looking to localize each
tree in the image. This task is more complicated than a simple
global classification of an image. The task is also difficult due
to the overlapping between trees. The task is an object detec-
tion and not a pixel labelling which is also more complicated.

The current approaches in the remote sensing field are of-
ten ad hoc or heuristic [2]. In this paper, we propose to use
CNN which indeed give a better solution. If we are looking
for a more generalized problem of object detection, the so-
lution is using CNN [8] but usually only with RGB images
(and not near-infrared and/or DSM images) and the objects
are often not overlapping or close.

Furthermore, we want to emphasize the importance of the
image preprocessing when using a Deep Learning approach.
Indeed, we try to demystify the CNNs by showing that the
preparation of the learning data is of paramount importance
on the performances of the CNNs.

The rest of the paper is organized as follows: Section 2
introduces CNNs and specifies the network architecture, Sec-
tion 3 describes our approach. Experimental setting and re-
sults are discussed in Section 4. Conclusions are drawn in
Section 5.

2. DEEP LEARNING PRELIMINARIES

A neural network [4] is a mathematical model whose design
is inspired by the biological neurons. Initially, they were pro-
posed to model the behavior of a brain. Since the 90’s, they
have been used in Artificial Intelligence for learning purpose.
Moreover, challenges such as ImageNet showed that these ap-
proaches reached high classification performances [5, 9].

Neural networks are composed of different layers. The
first layer is called the input layer, this layer is fed by the orig-
inal data. The intermediate layers are called hidden layers and
finally there is the output layer which returns the prediction.
All these layers are composed of neurons that perform opera-
tions on their input values (see Equation (1)).
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where σ(l)
k ∈ R is the result of the l − 1 layer, x(l−1)k ∈ R

are the neuron outputs coming from the l − 1 layer with k =

{1, ...,K(l−1)} and w(l)
k ∈ R are the weights.

In a convolutional neural network, hidden layers are com-
posed of three successive processing: the convolution, the ap-
plication of an activation function and finally the pooling.

The convolution of the first layer is a classical convolu-
tion. The remaining convolutions are somewhat more spe-
cific since the resulting images of these convolutions are the
sums of K(l−1) convolutions, where K(l−1) is the number of
outputs of the l − 1 layer.

After the convolution, a non-linear function called acti-
vation function is applied to each value of the filtered im-
age. The activation function may be a Gaussian function:

f(x) = e−
x2

σ2 , a ReLU [10] (Rectified Linear Unit): f(x) =
max(0, x), etc... These functions allow to break the linear-
ity related to the convolutions. The pooling is an aggregation
operation which reduces the dimension of the feature maps,
and allows to reduce the number of calculations. This step is
specific to convolutional neural networks. The two common
methods employed to perform this operation are: i) the com-
putation of the average (avg-pooling) ii) the selection of the
maximum value among a local neighborhood (max-pooling).
In addition, in an object classification task, the use of max-
pooling allows a translation invariance of the features.

During the last decade, many network architectures have
emerged. Among these, some networks have become popu-
lar. They have become references of the state of the art. We
present here one of these networks, AlexNet [9].

AlexNet [9] appears in 2012 during the ImageNet chal-
lenge1. This network allowed Krizhevsky et al. to achieve
the best performance on the ImageNet database. It consists
of five convolutional layers. Each convolutional layer is fol-
lowed by a ReLU [10] activation function and a max-pooling
operation.

3. PROPOSITION

In order to locate the trees on the tested images, we used a
multi-scale sliding window [11]. Since trees do not have the
same crown diameter, this method allows us to detect all trees
independently of the size.

As thumbnails images extracted from the sliding window
must be of the same size than the images employed during
the training phase, instead of varying the size of the sliding
window, we vary the size of the tested images. We resize each
image from 30% up to 300% of their original size with a step
of 10%. The sliding window scans the tested images at every
scale. Each thumbnail retrieved from the sliding window is
given to the network which outputs the probability to contain

1http://www.image-net.org

a tree. The network allows us to determine the area in the
entire image that have a high probability of containing a tree.

Applying our sliding window on the same image but
at different scales will create an accumulation of bounding
boxes over the same area. To overcome this problem we
apply a fusion strategy on the set of overlapping bounding
boxes classified as a tree. On all bounding boxes that overlap,
we apply a strategy of fusion by area [12, 13].

The area fusion will compare all the pairs of bounding
boxes. For each pair, we compute if one of the two bounding
boxes overlaps each other by a percentage bigger than 80%
(see equation (2)). If this is the case, the bounding box with
the lowest probability of containing a tree is deleted.

Area(B1 ∩B2)

min(Area(B1), Area(B2))
> 0.8 (2)

with B1 and B2 two bounding boxes given by the network.
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Fig. 1. Example of Late Fusion architecture.

We also used the architecture proposed in [14]. The main
idea of this architecture is to treat the different information in-
dependently. This kind of architecture is called Late Fusion,
an example is given in Figure 1. To construct this architecture,
we used the well known AlexNet [9]. As seen in Figure 1, we
duplicated the convolutional layers, and we concatenated the
two branches before the fully connected layers. We can ob-
serve from Figure 1 that the network has two inputs. Each
entry corresponds to a different data type.

Moreover, we also used the Normalized Difference Vege-
tation Index (NDVI) [15, 16]. This vegetation index is widely
applied in the field of remote sensing [2]. This index allows to
extract vegetation in images. The NDVI is a non-linear com-
bination of red and near-infrared channels, see Equation 3.

NDV I =
NIR−Red
NIR+Red

(3)

where Red and NIR stand for the spectral reflectance mea-
surements acquired in the visible (red) and near-infrared re-
gions, respectively.

We can observe Figure 2 that the NDVI allows us to re-
move areas that are not vegetation. Thus, we can easily de-
crease the number of false positives. Indeed, the different ob-
jects that have a shape similar to that of a tree that are not
vegetation are no longer present on the NDVI.
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Fig. 2. Generated NDVI from an Vaihingen dataset image.

4. EXPERIMENTAL RESULTS

In this section we report the experimental settings and we dis-
cuss the results we obtained on the Vaihingen dataset. This
dataset was captured over Vaihingen city in Germany2.

The RGNIR data were acquired using an Intergraph / ZI
DMC flying 900m height above the ground with 9 cm ground
resolution by the company RWE Power on 24 July and 6 Au-
gust 2008 and a Digital Surface Model (DSM) with 9 cm
ground resolution was interpolated from the AirBorne Laser
Scanner point cloud acquired on 21 August 2008 by Leica
Geosystems using a Leica ALS50 system with 45 field of
view and a mean flying height above ground of 500m.

4.1. Experimental Settings
To train ours models we used a training base composed of
about 6,000 ”tree” thumbnails and 40,000 ”other” thumb-
nails. The thumbnail size is 64 × 64 pixels. The thumbnail
images of the class “tree” are obtained by manual labeling of
19 entire images while the class “other” is obtained by ran-
domly cropped images (that are not trees) of the 19 annotated
images. In addition , to increase the number of thumbnails of
the class “tree” (about 1,500 before transformation), we ap-
plied rotations of 90◦, 180◦ and 270◦ to the thumbnails. Our
test base is composed of about twenty images of variable size
(from 125× 150 pixels up to 550× 725 pixels) and contains
about a hundred trees.

To assess the results, we compute the overlap ratio be-
tween the detected bounding box and the ground truth Eq. 4.

label =


1 If area(detection∩ground truth)

area(detection∪ground truth) > 0.5

0 If area(detection∩ground truth)
area(detection∪ground truth) ≤ 0.5

(4)
detection∩ground truth is the intersection between the de-
tection and the ground truth, and area(detection∪ground truth)
is the union of their area.

2The Vaihingen data set was provided by the German Society for
Photogrammetry, Remote Sensing and Geoinformation (DGPF) [17]:
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.

First, we tested a mono-band classification (only one
source is used for the classification) but also by concatenating
the R, G and NIR channels. These tests allow us to see among
these different sources, which one is the most interesting to
discriminate trees when used alone. Then we compare dif-
ferent ways of integrating data from different sources into a
CNN.

For the first way of integrating data from different sources,
we have concatenated the different sources (EF Data1/
Data2), this kind of architecture is called Early Fusion (EF).
We tested by concatenating the images RGNIR and DSM and
finally we concatenated NDVI and DSM. For the last way
of integrating data from different sources, we used the Late
Fusion architecture described Section 3 (LF Data1/Data2).
For these experiments we used the same pairs of data as for
the Early Fusion architecture.

We want to remind the reader that our main objective is
to show the impact and importance of data preparation when
doing Deep Learning. To validate our experimentation, we
perform a 5-fold cross validation.

4.2. Results and Discussions
Table 1, Table 2 and Table 3 summarize the results we have
obtained on the Vaihingen dataset. They depict the average
values of Recall, Precision and F-Measuremax for the differ-
ent models. We chose to take the point of the recall/precision
curve where the f-measure is the highest.

4.2.1. Limits of using one only source
Table 1 shows the results we obtained using only one source.
As can be seen the results between the different tests are very
close. NDVI allows us to obtain the best performance in
terms of Recall and F-Measuremax. The best Precision is
obtained using the DSM. It can be observed that the best re-
sults in terms of F-Measuremax are obtained when we have
transformed the original data, i.e. when we use the NDVI.

Table 1. Results using one source.
Source RGNIR DSM NDVI

F-Measuremax 60.45% 62.47% 63.97%
Recall 57.89% 57.62% 62.34%

Precision 63.44% 68.56% 67.04%

4.2.2. What is the best fusion process?
Table 2 shows the results we obtained using the Early Fu-
sion. Here, we can see that the best results are obtained when
using NDVI and DSM, we obtain a F-Measuremax of 75%.
However, when we use RGNIR, the results are lower (67%).

Table 3 shows the results that we have obtained using the
Late Fusion architecture described in Section 3. The ob-
servation is the same as in the previous experiments, better



Table 2. Results using multi-source data and the concatena-
tion.

EF RGNIR/DSM NDVI/DSM
F-Measuremax 67.12% 75.30%

Recall 65.40% 68.37%
Precision 69.54% 84.11%

results are obtained when NDVI and DSM are used. When
using NDVI and DSM, we obtain an F-Measuremax of 72%
against 62% when using RGNIR and DSM. It can also be
noted that this architecture gives lesser performances com-
pared to the Early Fusion architecture.

Table 3. Results using multi-source data and the Late Fusion
architecture.

LF RGNIR/DSM NDVI/DSM
F-Measuremax 62.14% 72.57%

Recall 62.54% 70.99%
Precision 62.65% 74.83%

The NDVI allows to keep only the essential informa-
tion. Indeed the NDVI allows us to keep only the vegetation
present in the image. This shows us the benefit of using a
source which allows us to better discriminate trees, even if
this source come from a heuristic transformation. In this case,
it is possible that the lack of data prevents the networks to
mix incorrectly the data.

Furthermore, we can observe that using DSM with NDVI
gives much better results than just use the NDVI. Indeed, both
are very important to detect and locate trees. If we detect an
object that has a certain height and is vegetation, then there is
a great chance that it is a tree. These two pieces of information
are really crucial for detecting trees.

It can be noted that when using RGNIR alone, the result
is not so far from those of NDVI or DSM. However, when we
combine RGNIR and DSM the gain is not significant. Indeed,
since these data are very different (their scale of value for
example), it is very difficult for the CNN to discriminate trees
correctly by concatenating these two types of data.

Moreover, we can observe that when we use the Late Fu-
sion architecture the results are always inferior to the concate-
nation. Indeed, when we use RGNIR and DSM the result goes
from 62% to 67% while using the Early Fusion architecture.
Similarly, when tested with NDVI and DSM, the results go
from 72% with the Late Fusion architecture to 75% when
using the Early Fusion architecture. Figure 3 shows two re-
sults that we obtained.

4.2.3. How to select the sources to fuse?
Furthermore, we computed the correlation between each
source using the Jaccard index. We compute the intersection

of trees found in two sources over the union of trees found in
both sources. The results are presented Table 4. The second
row of Table 4 represents the distribution of trees present only
in one source.

Table 4. Results of the correlation between each source.
Sources RGNIR/DSM NDVI/DSM

Correlation 47.86% 48.96%
Distribution 26.47% 25.66% 28.75% 22.27%

We can observe that all the correlations are around 50%.
These results show that among all the trees found, about 50%
of the trees are found in both sources and therefore the re-
maining 50% are found in either the first or the second source.
Moreover, the second row of the table shows that the remain-
ing 50% is distributed in the two sources and thus shows us
the utility of combining several sources.

We also computed the correlation of false positives be-
tween the different sources and we noticed that this corre-
lation never exceeds 10% regardless of the sources studied.
Thus, combining sources should reduce the number of false
positives.

Fig. 3. Examples of the obtained results, in green we have
the trees correctly localized, in blue the false negatives and in
yellow the false positives.

5. CONCLUSION

In this paper, we have evaluated the use of Deep Learning
methods to deal with multi-source data (optical, near-infrared
and DSM). In addition, we have evaluated the impact of trans-
formations applied to the input data of a CNN. We used the
NDVI instead of using the data with the Red, Green and Near-
Infrared channels. We realized our experiments on a problem
of detection and localization of urban trees in multi-source
aerial data.

Our work has shown that the use of NDVI allows to obtain
the best performances and thus highlights the importance of
the data that are used to learn a model with a CNN.

The results we have obtained set a milestone by showing
the effectiveness of CNNs in merging different information
with a performance gain exceeding 10%.
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[9] A. Krizhevský, I. Sutskever, and G.E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Conference on Neural Information Process-
ing Systems, 2012, pp. 1097–1105.

[10] V. Nair and G.E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in International Con-
ference on Machine Learning, 2010, pp. 807–814.

[11] C. Garcia and M. Delakis, “Convolutional face finder:
A neural architecture for fast and robust face detection,”
IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 11, pp. 1408–1423, 2004.

[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, and Y. LeCun, “Overfeat: Integrated recogni-
tion, localization and detection using convolutional net-
works,” in International Conference on Learning Rep-
resentations (ICLR), Banff, Canada, April 2014.

[13] M. Bertozzi, E. Binelli, A. Broggi, and MD. Rose,
“Stereo vision-based approaches for pedestrian detec-
tion,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2005, pp. 16–16.

[14] J. Wagner, V. Fischer, M. Herman, and S. Behnke,
“Multispectral pedestrian detection using deep fusion
convolutional neural networks,” in European Symp. on
Artificial Neural Networks (ESANN), Bruges, Belgium,
April 2016.

[15] G.E Meyer, “Machine vision identification of plants,”
Recent Trends for Enhancing the Diversity and Quality
of Soybean Products. Krezhova D (ed.) Croatia: InTech,
2011.

[16] A. Bannari, D-C. He, D. Morin, and H. Anys, “Analyse
de l’apport de deux indices de végétation à la classifica-
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