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ABSTRACT

In this paper we present a novel object based video coder. This
coder is based on an analysis-synthesis approach which allows for
decoupling shape, motion and texture informations. These infor-
mations are then coded using wavelets decomposition and progres-
sive coding allowing to have full scalability (object, SNR, tem-
poral, and bitstream scalabilities). Experimental results show the
benefits of proposed scheme providing performances close to state
of the art video coders while providing scalability.

1. INTRODUCTION

In image or video coding, region-based [1], object-based [2] or
model-based [3] coding techniques have been often proposed as
ways to improve coding schemes. The main interest of object-
based video coding often advanced is content manipulation and
object scalability. Manipulation of video content is an important
feature of a large amount of multimedias applications. Object
scalability allows to allocate more or less bits to different objects
of a scene: for example foreground and background in a visio-
conference context...
In such schemes, codecs let appear the notion of three different
fields of information when coding objects: shape, motion and tex-
ture. On the extreme case of model based coding, these notions
may be treated separately. Scalable coding schemes may then
be obtained thanks to level of details (LOD) such as proposed in
VRML.

However, in usual video object-based coder such as MPEG4,
these informations are not completely independent. Texture cod-
ing relies on shape coding and motion information. Shape coding
relies also on motion information. These dependencies then limit
scalability features. Moreover in video, coding schemes generally
rely on predictive coding techniques. Loss of efficiency are then
observed when looking for scalable schemes (e.g. enhancement
layers approach of H263, or progressive coding schemes such as
MPEG4-FGS).

On the other hand, in the field of image coding, wavelets have
been shown to be efficient tools for providing scalable coding sche-
mes (e.g. EZW, SPIHT, JPEG2000, ...). Several works have then
proposed to use wavelets for video coding [4], [5]. However these
schemes suffer from the motion present in video. If they do not ex-
ploit motion, they suffer from poor decorrelation properties. When
trying to exploit motion, they suffer from non orthogonality de-
composition and strong dependence on motion.

In this paper we then present a novel object-based video coder
with full scalable features. This coder relies on a scheme working
independently on shape, motion and texture information thanks to
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Fig. 1. Scalable video object coding based on progressive shape,
texture and motion informations.

an analysis-synthesis approach and wavelet coding techniques. In
section 2, we will first present principle of our analysis-synthesis
approach. Section 3 and 4 will then present techniques used for
coding motion, texture and shape information based on wavelets.
Experimental results will be provided in section 5 with comparison
to existing coding schemes. Finally section 6 concludes our work.

2. ANALYSIS-SYNTHESIS APPROACH FOR VIDEO
CODING

Most of classical video coding schemes are pixel-based. They per-
form on a frame per frame basis and use blocks entities to code tex-
ture informations and may be limited since they are too focused on
the pixel structure. On the opposite model based coding schemes
allows for very important compression performance when consid-
ering models rather than pixels. However model-based coder suf-
fer from restricted class of application (typically head and shoul-
ders sequences).

A good tradeoff is then to consider object-based video coding
coupled with analysis-synthesis approach. After an analysis step
shape, motion and texture informations are extracted and defined
separately. Shape information can be extracted thanks to segmen-
tation, while motion tracking, thanks to active meshes such as pre-
sented in [6], allows to separate motion from texture (see fig. 3
for an example of mesh tracking). Motion, texture and shape in-
formations of each objects may then be coded independently in a
scalable way. Moreover mesh tracking benefits from object seg-
mentation which limits mesh degeneracy on occlusion boundaries.
Thanks to this new video representation final bit-stream is fully
scalable. It can be decoded at different bit-rates and at different
qualities for each kind of information: motion, texture or shape
and for each object. Figure 1 shows an example of scalable decod-
ing of various information for the rendering of an object.



3. MOTION AND TEXTURE CODING

3.1. Motion estimation and coding

The analysis stage works on group of N frames (GOP) and per-
forms motion estimation between frames using active meshes. Ac-
tive meshes are good tools for motion compensation, they pro-
vide long term continuous tracking of the texture which justify
the use of wavelet transform along motion trajectories performed
later. Motion estimation is performed as in [6] (see figure 3 for an
example of motion tracking between distant frames).

Considering analysis-synthesis scheme with separation between
motion and texture, motion can also be lossy coded without signif-
icant perceptual distortion (see fig. 2). Hierarchical motion rep-
resentation is then exploited to this extent [7]. Enhancement in-
formations are lossy coded with progressive bit-planes encoding.
An arithmetic coder is used to ensure good efficiency. Compres-
sion gain in motion coding can then later be repercuted to texture
coding.

(a) original frame (b) reconstructed frame

(c) DFD

Fig. 2. Example of lossy motion coding for sequence Rue. While
visual quality is good for reconstructed frame, DFD is large due to
lossy coding of motion information. PSNR of reconstructed frame
is 20dB.

3.2. Texture coding

Thanks to motion estimation via mesh tracking, frames are mapped
on reference grids, like in [8] or [9] but this time with perfect mo-
tion compensation [10]. This step allows to separate motion and
texture informations.
Texture frames are then coded using 3D wavelet transform. Tem-
poral transform is then naturally performed along motion trajec-
tories thus best exploiting temporal redundancy. The use of ref-
erence grids to represent texture permits to use textures indepen-
dently from motion during the temporal transform. Motion com-
pensation is needed only if transform is performed between frames
that have different reference grids. Thus lossy coding of motion
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Fig. 3. Motion tracking using active meshes on objects.

refinement can be performed. This separation allows to use per-
fect motion compensation at the coder while using coarse motion
compensation at the decoder in order to ensure low bit-rates. The
temporal transform uses the 5/3 lifting filter.
Temporal subbands are further transformed by 2D spatial wavelet
transform. Spatio-temporal texture subbands are finally coded us-
ing a scalable coder, typically EBCOT.

4. LOSSY CONTOURS CODING

The shape coding method is the one proposed in [11]. Firstly, the
object contours are extracted from the segmentation map. Sec-
ondly, the successive contours are mapped, aligned and padded.
Thirdly, the resulting 1D+t signal is encoded thanks to an IPB
scheme and a wavelet decomposition.

4.1. Contours’ extraction

A mask and the local object z-order, allow the extraction of a valid
contour for an object. A valid contour is the external envelope
without the parts due to occultation. Without, loss of generality,
we will restrict ourself to the outer contour. Thus, a shape descrip-
tion is a list of positions extracted from the real contour object. An
example of such a shape is represented on Fig.4. Breaks are inten-
tionly introduced in our scheme in order to have a more realistic
shape definition for objects. They will be further padded in order
to estimate complete shape of the object.

Once a position list is obtained for each frame, the lists are mo-
tion projected on a reference frame. This treatment let us benefit of
temporal consistency. Indeed, the motion compensation helps the
mapping process. Further working on projected reference frames
rather than separately on each frame allow to effectively separate
motion information from shape information.

4.2. Mapping of the contours and contours’ alignment

Since shapes’ contours will be coded using temporal decorrela-
tion techniques, it is necessary to have a mapping between every



(a) Initial segmentation map (b) Partial outer contour

Fig. 4. Extraction of the apparent contour of an object

contours along time. If we consider two contoursCt andCt+1,
defined at timest and t + 1, the mapping process tries to map
points ofCt andCt+1. Points mapped together then give partial
or whole trajectories (depending on occlusion phenomena and lo-
cal expansions). The partial trajectories will have to be completed.
To this purpose, virtual points are added on each contours allowing
to obtained a bijective mapping between all consecutive contours.

To solve the problem of points insertion the notion of univer-
sal abscissa is introduced. Each contour is mapped on an universal
abscissa ; this means that each point of each contour own a cor-
responding value named “the universal abscissa”. Once each con-
tours own a map to the universal abscissa, virtual points are then
added everywhere a universal abscissa value is missing.(see [11]
for details)

4.3. Contours’ padding

The spatio-temporal padding is used to closed each contours in the
case of “breaks”. Thus, the padding objective is to extend contin-
uously each contour.

In a first step, we will add “virtual” points to merge broken
contours. In a second step, we will fill “virtual” points by giving
them a position obtained by the computation of contours padding
(see Fig.5).

(a) Before padding (b) After padding

Fig. 5. Spatio-temporal padding illustration

4.4. IBP coding scheme of object shape

Thanks to the re-parameterization of contours on a universal ab-
scissa, contours can then be considered as a kind of 1D+t signal.
Decorrelation is then performed using IBP scheme in temporal
dimension and wavelet decomposition along abscissa dimension.
The first contour of a GOP will be coded intra (I) and others will
be coded using a simple prediction (P) or a bidirectional prediction
(B). We have considered only one B frame between two successive

I or P frames in our experiments but higher number of frame could
also be considered.
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Fig. 6. Comparison of contour coding techniques. Average per-
centage of erroneous pixels with respect to average bit-rate per
contour element. Sequence Foreman.

In order to have a hierarchical representation of the contours
and to provide enhanced scalability, dyadic wavelet decomposi-
tion is performed along universal abscissa. Before performing the
wavelet transformation we re-sample the contours in order to get
a length equals to a multiple of a power of two. This enables suc-
cessive circular wavelet decompositions as long as there is just
one coefficient left. For this decomposition we use 7/9 Antonini’s
wavelet filters [12].

Coefficients obtained after this spatio-temporal decomposition
are then coded with a bit-plane arithmetic coder. Lossy coding is
obtained by choosing the encoded number of bit-planes. Figure 6
presents results obtained with our proposed schemes and compare
it to existing schemes such as B-spline coding technique and CAE
used in MPEG4. Our proposed technique outperforms other tech-
niques while providing good scalability features.

5. RESULTS

We have tested our proposed coding scheme on several video se-
quences. Results are presented here for sequences Foreman CIF
15Hz and Erik CIF 15Hz and for very low bit-rates (i.e. below
100 Kbit/s). When considering MPEG4, such very low bit-rates
can’t be achieved. Effectively, considering foreground object in
Foreman sequence, minimal attainable bit-rate is 96 Kbit/s using
coarsest quantization parameters ( 172 Kbit/s in full frame coding
mode).

On figure 7 are reported decoded frames for our scheme and
H26L. Visual quality is higher for our proposed scheme with more
detailed texture and no blocking artifacts nor blur (which is not
the case for H26L due to its intensive de-blocking filter). Bit-rate



repartition are provided in tables 1 and 2 as well as PSNR for fore-
ground objects. Further, compared to H26L, our scheme provide
scalable features.

6. CONCLUSION

We have presented a novel full scalable video coding scheme. This
scheme relies on an analysis-synthesis scheme which allows to de-
couple shape, motion and texture information. These informations
are then later coded using wavelet and efficient progressive cod-
ing tools (e.g. bit-plane coding and EBCOT). First experiments
show results close to state of the art video coder while providing
scalability.

(a) MPEG4

(b) Proposed scheme (c) H26L VM 8

Fig. 7. Comparison between proposed coding scheme and state
of the art H26L coder VM 8.4 (2 B frames, CABAC, 5 reference
frames, full RD optimization). Foreman sequence, CIF - 15Hz.
Erik sequence, CIF - 15Hz.
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