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ABSTRACT

Deep neural networks yield positive object detection results in
aerial imaging. To deal with the massive computational time re-
quired, we propose to connect an SVM Network to the different fea-
ture maps of a CNN. After the training of this SVM Network, we use
an activation path to cross the network in a predefined order. We
stop the crossing as quickly as possible. This early exit from the
CNN allows us to reduce the computational burden.

Experimental results are obtained for an industrial application
in urban object detection. We show that potentially the computation
cost could be reduced by 98%. Additionally, performance is slightly
improved; for example, for a 55% recall, precision increases by 5%.

Index Terms— Object Detection, Deep Convolutional Neural
Network, SVM, Speed up Network

1. INTRODUCTION

In recent years, Deep Learning methods have been widely used for
image classification and detection tasks [1, 2, 3]. In many chal-
lenges [4, 3], the Convolution Neural Network (CNN) method out-
performs other approaches based on feature extraction and classifi-
cation [5, 6], two distinctive and successive steps. However, even if
Deep Learning approaches yield excellent results in detection tasks,
they require significant GPU computing power and long computa-
tional times. Moreover, to analyze an image, millions of windows
are tested, which requires a lot of CNN activation.

To reduce the time required to process an image, two strate-
gies are currently available. Firstly, using classic image processing
based on feature detection and classification, one can restrict the ar-
eas of the image to be analyzed by preprocessing it; however, in
this method, good windows may be missed or deleted [7, 8]. Sec-
ondly, one may use any of the many cascade-based methods [9, 10]
inspired by Viola and Joness seminal paper [11]. Recently, Angela
et al. have proposed to increase CNN speed by using a simple cas-
cade reject system with a deep net [12]. This method yields results
similar to those obtained with classical Deep Learning approaches,
and reduces computational time by a factor of 80.

In this paper, we propose an alternative approach which would
enable real-time application based on an SVM cascade concept
which is directly integrated into CNN layers. In this cascade ap-
proach, CNN features are given to SVMs. All these SVMs are
connected in a SVM Network as described in [13]. The activation
path of the CNN is then optimized by ordering the activation of the
SVM nodes so as to reach a decision before crossing all the SVMs.
To lower the error rate we adapt the activation path with a criterion
of minimal number of confident SVMs.

The rest of this paper is organized as follows: first, in section
2, we present the CNN, and the integration of the SVM Network in
the CNN. Then, in section 3, we introduce the activation path and its
optimization. Further, in section 4, we present our image database
and evaluate the performance of our approach. Finally, we conclude
and offer future research directions.

2. INTEGRATING AN SVM NETWORK INTO A CNN

2.1. CNN architecture

The CNN architecture we use is summarized in Figure 1. We use
a similar design as Krizhevsky et al.’s [3], which featured 8 layers
with weights. The first 5 layers are convolutional, and the last 3 are
fully connected (FC). This network contains three max pooling steps
after the first, third and fifth convolutional layers. Using the ReLU
function [14], non-linearity is applied to the outputs of every layer
with weights. The input consists of three 8-bit images of size 64x64,
which are the R, G, B channels of a color window.

In order to model the computational cost required to activate part
of the network, we use the vector size of the output from a layer c,
out(c), which can be defined as:

out(c) =

{
N (c) for a fully connected layer

I
(c)
w .I

(c)
h .N (c) otherwise

(1)
where I(c)w and I(c)h are the width and the height of the input feature
map for the layers c ∈ {Conv1, .., F c2}, and N (c) is the number
of neurons if c is a fully connected layer; otherwise, it represents the
number of feature maps.

We then define a cost function, notedw(c), which sums the num-
ber of operations required to activate the c layer. In our model, we
only take into account the layers with weights without any activation
function, pooling or normalization cost; see Equation 2.

w(c) = w(c−1)+

 |K
(c)|.out(c−1).N (c) if convolution layer

out(c−1).N (c) if FC layer
0 otherwise

(2)
with |K(c)| the kernel size of the convolution layer numbered c.

RC(c) =
w(c)

w(last layer)
(3)

Using equations 2 and 3, we are able to compute the relative
computational costRC(c) by activating the layers presented in Table
1. We note that the cost w(c) radically increases after the first and
third convolutions. A partial crossing of the CNN should lead to a
significant reduction in computational burden.



Fig. 1. Architecture of the CNN with 5 convolutions, 3 pooling and 3 fully connected layers.

layer c w(Conv1) w(Conv3) w(Conv5) w(Fc2)

RC(c) 0.088 0.689 0.905 1

Table 1. Relative computational cost selected layers.

2.2. The SVM Network

Speeding-up the decision process is achieved by stopping the explo-
ration of the CNN network as quickly as possible. To that effect, we
integrate an SVM Network.

Using an SVM has been proposed to increase the efficiency of
a CNN [15, 16]. In this paper, we propose to use not just one but a
network of several SVMs. We define an SVM Network as an acyclic
graph of SVM layers [13, 17]. Each SVM layer is a set of linear
SVMs [18] whose inputs are the outputs of a previous layer called
PL. A layer may be a CNN layer or another SVM layer. In the
following, we note S(c)

i the input vector for the SVM numbered i,
with i ∈ {0..M (c)}, M (c) being the number of SVM in the layer
c ∈ {Conv1, .., F c2} ∪ {LSVM1, .., LSVM9}.

We define three SVM layer types according to the PL layer
type:

• If PL is a fully connected layer, the SVM layer will contain
only one SVM. S(c) contains all the outputs of PL.

• If PL is an SVM layer, we randomly connect the two SVM
layers. So S(c) is a random subset of the PL outputs.

• If PL is a convolution or pooling layer, each S(c) is associ-
ated to one or several PL feature maps.

The output of an SVM o(c)(S
(c)
i ) is defined as:

o(c)(S
(c)
i ) = f(W(c)

i .F(c)
i ) (4)

with |.| the dot product, W(c)
i the weights associated with the SVM i,

F(c)
i the concatenation of all feature maps in S(c)

i and f the sigmoid
activation function.

Once an SVM layer is created, we train the next one. We repeat
this step to create an SVM Network over the CNN.

For this work, we create nine SVM layers, as shown in Figure
2. Three SVM layers, named LSVM1, LSVM3 and LSVM5 are con-
nected with the CNN layers Pool 1, Pool 3 and Pool 5, respectively.
For these SVM layers, we set |S(c)

i | ∈ {1, 6} ∀i ∈ {0..M
(c)} with

c ∈ {LSVM1, LSVM3, LSVM5}, thus associating each feature map

Fig. 2. Illustration of our SVM Network architecture. Communica-
tion with the CNN is only effective on layers 1, 3, 7, 8 and 9.

to one SVM with |S(c)
i | = 1. For example, the layer LSVM1, which

is connected to Pool 1, contains 48 SVMs. Additionally, in order to
improve the SVM network’s diversity, we also use |S(c)

i | = 6. For
example, some SVMs are connected with 6 random maps from the
Pool 1. In practice, we add 20, 40, and 60 SVMs toLSVM1, LSVM3

and LSVM5, respectively. Two layers named LSVM7 and LSVM8

contain only one SVM, which uses the outputs of FC1 and FC2 as
input.

The layers LSVM2, LSVM4, LSVM6, LSVM9 are only con-
nected with the outputs of SVM layers. Their input size is defined
such that |SLSV M2

i | = 30, |SLSV M4
i | = 50 and |SLSV M6

i | =

|SLSV M9
i | = 70 with i ∈ {0..M (c)}.

Using the equation 3, we show that the relative computational
cost for a SVM layer is lower than 10−3. We thus ignore this small
cost.

3. OPTIMIZING THE ACTIVATION PATH

The SVM Network is used to reduce the overall complexity of the
CNN. For this purpose, we propose to optimize the activation path



as proposed in [13]. In order to normalize the output of each SVM,
we use an asymmetric sigmoid, as in equation 5.

o(c)(Si) =
1

1 + exp(α
(c)
i o(c)(Si) + β

(c)
i )

(5)

with α(c)
i and β(c)

i the scale and shift for the SVM i, in the layer c.
These parameters are based on Platt’s scaling algorithm [19].

During the activation of the CNN, the SVM Network is also ac-
tivated. The following order can be used: Conv1, Pool1, LSVM1,
LSVM2, Conv2, Conv3, Pool3, LSVM3, LSVM4, Conv4, Conv5,
Pool5, LSVM5, LSVM6, FC1, LSVM7, FC2, LSVM8, LSVM9. The
goal is to stop the crossing of the acyclic CNN graph when an SVM
is confident enough with its prediction.

Using a validation database, we find two thresholds for each
SVM. For a binary classification, we note θ(A) the threshold needed
to classify an object as classA, and θ(B), respectively, for classB
classification. These two parameters are obtained by maximizing
the recall such that the minimal precision is higher than pmin, as in
equation 6.

θ
(s)
i = argmax

θ
(s)
i ∈[0..1]

Recall(s)i (θ) such that Precison(s)
i (θ) ≥ p(s)min (6)

with s ∈ {classA, classB}, and Recall and Precision the func-
tions giving the recall and precision of SVM i for class s.

On each layer, we use the recall to sort the SVMs in descending
order to maximize the number of rejected or accepted window. As
a result, the SVM with the best recall and achieving minimal pre-
cision is used first, and so forth. This order defines the activation
path. SVMs with no recall with the minimal precision required are
removed from the activation path.

During the evaluation step, several million windows are tested.
Thus, a large number of false positives is generated for the SVM
Network. Indeed, the global error is the sum of errors for each SVM
in the path. In order to reduce the false positive rate, and to give more
robustness to the rejection process, we modify the reject condition
that allows us to stop the crossing. During the test, and therefore
during the crossing of the CNN and SVM network, instead of relying
on just one SVM decision, we pool the SVMs decisions from all the
nodes already crossed such that a sufficient number of SVMs are
confident for classifying objects into class A or class B.

We therefore add a parameter to our activation path which we
call the pooling decisions, noted as P . When an SVM categorizes
the window as a class A or B object, the decisionP is shifted towards
this class. Equation 7 shows the evolution of the P parameter during
the crossing of the node i.

{
oi > θ

(A)
i → P = P + 1

oi < θ
(B)
i → P = P − 1{

P > +Olim → stop the exploration returns the class A
P < −Olim → stop the exploration returns the class B

(7)

Where Olim is the criterion of minimal number of confident SVMs.
We stop crossing the network when the pooling decision P is

greater thanOlim. To obtain an optimal performance, we need to set
a large enough Olim criterion. However, if this criterion increased,
we would assume the stop condition would become increasingly
rare. Accordingly, as the number of activated SVMs increases, so
does complexity.

Fig. 3. The red points represent the ROC curve for the SVMFC2,
and the blue points trace the efficiency of the activation path accord-
ing to the Olim criterion.

4. EXPERIMENTAL RESULTS
4.1. Experimental Setup
We focused on detecting tombs in cemeteries with high-definition
aerial images for geo-localization and digital heritage purposes [20].
Tomb detection is a challenging problem, as tombs substantially vary
in appearance, color, size and disposition on aerial images. More-
over, vegetation, as well as the shadows cast by buildings, pedes-
trians or utility vehicles create multiple distortions and occlusions in
the images. Lastly, this type of detection is known as multiple-object
detection, as cemeteries typically contain hundreds or thousands of
tombs.

For the training database, we used 19 aerial images of cemeteries
of French villages provided by the Berger Levrault company1, and
which showed about 4,500 tombs. For the validation database, we
used 3 images containing about 750 tombs.

The algorithm returned a list of bounding boxes with SVM clas-
sification scores. For the CNN approach, after the training step, we
replaced the softmax layer by an SVM [21, 22]. This SVM, noted
SVMFC2, predicted from the FC2 features. For our SVN network
method, the scores were 1 for the tombs and 0 for other objects. The
activation path was built using ptombsmin > 0.99 and pothersmin > 0.995.

Evaluation was performed according to this list. The ground
truth contained 700 tombs from the images of 2 other cemeteries.
According to the PASCAL VOC evaluation protocol [4], a detected
bounding box matches if the overlap with the ground truth is larger
than 50%.

In the learning and testing step, we used the Caffe framework
for CNN [23]. After the CNN training, we extract the features from
different layers in order to train the SVMs. Then, for each of them
we add a fully connected layer to our Caffe model using the SVM
weights. At the moment, the whole CNN is still activated. Never-
theless, we check the outputs of the SVM layers to see if potentially
the network would have taken its decision before. We will discuss
implementation issues to get a real acceleration in the last section.

4.2. Results Analysis

As shown in Figure 3, the SVM Network’s precision is greater than
that of the SVMFC2 for recall ranging from 50 to 70. For a recall

1Berger-Levrault is a French public regulation expert that addresses
healthcare and local public administrations, www.berger-levrault.com



ranging between 70 and 80, both achieve a high precision of approx-
imately 75%.

However, in the single instance where Olim criterion is set to 0,
we observe that the SVMFC2 outperforms the SVM Network with
87% precision when the chosen recall is 43.1. In this case, the acti-
vation path thus rejects or accepts a window without any confirma-
tion. According to the predefined pmin, each SVM has a minimal
precision of 99.5%. During the testing step, when millions of win-
dows are assessed, this error cannot be ignored. Table 2 shows that
the precision increases with the Olim criterion from 0 to 2. How-
ever, beyond this value, precision remains flat because some tombs
are detected by only a few SVMs in the activation path. Therefore,
the number of SVMs which are able to detect these tombs is lower
than the Olim criterion.

Olim Recall Precision % RC
0 43.15 69.4915 1.38
1 47.36 86.5385 1.59
2 52.63 90.90 1.75
10 70.52 84.81 2.72
11 70.52 82.7 2.83
26 71.57 80.95 4.74
27 70.52 77.90 4.97

Table 2. Performance of the SVM Network according to Olim crite-
rion in the test database.

Table 2 also gives the average computational cost needed to ac-
tivate the CNN according to the equation 2. As the data shows, only
1.75% of the network is used for a minimal number of confident
SVMs lower than 3. Moreover, the maximum cost is 2.83% for a
criterion lower than 12. The activation path could potentially allow
us to save up to 98.25% of processing time.

An SVM is activated when it rejects or accepts the window. Fig-
ure 5 shows the activity for each SVM inside the SVM Network. We
observe that the entire SVM Network is used to predict all sliding
windows of an image. Furthermore, we note from table 3 that SVMs
from layers LSVM1 and LSVM2 have less than 0.4% of false posi-
tive. Windows with hard to predict image content activate more and
more SVMs, so that the number of false positives is increased after
the first layers. Table 3 summarizes the histogram in Figure 5. The
error for the two-first stage SVM layers is very low (about 0.3%), but
they only detect 0.02% of the tombs. These layers significantly filter
other objects. The more complex an object is, the deeper SVMs will
classify it, and, in turn, the deeper the SVM, the greater the number
of false positives. Finally, on the last SVM layers the classification
rate is improved, with 35% of true tombs for 30% of FP; however,
the CNN network is fully activated and there is no complexity gain.
In this case, the network is similar in performance and computational
cost to an SVMFC2.

SVM Layers #Activations Error (%) FP (%) TP (%)
LSV M{1, 2} 3,946,414 0.38 0.38 0.02
LSV M{3, 4} 31,433 18.76 18.61 0.71
LSV M{5, 6} 3,724 50.70 49.03 5.89

LSV M{7, 8 and 9} 450 42.85 30.84 35.61

Table 3. Average efficiency for groups of SVM layers with the cri-
terion of minimal number of confident SVMs set to 2.

Fig. 4. Activation path performance according to Olim criterion.

4.3. Optimal Activation Path

To find the most optimal Olim, we use a validation database. In this
database, we try to optimize one parameter out of several: precision,
recall, F-measure or computational cost. Figure 4 gives Olim = 5,
maximizing the F-measure to 60%. Following evaluation, we obtain
a precision of 90% and a recall around 68.4%. For the same recall
the SVMFC2 reaches 80% in precision. Moreover, in this condition,
the SVM Network only uses 2.17% of the CNN.

Fig. 5. On this histogram, each vertical blue line represents the num-
ber of activations for each SVM in the activation path during the
testing step.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a new solution to add an adaptive SVM
Network to a CNN. The tuning of the activation path allowed us to
obtain a 9% precision gain for a recall set to 67%. Moreover, the
activation path massively reduced the computational cost required.
In our experiments, for a recall of only 67%, an average of 97.8% of
the network remained unused.

At the moment, the CNN is deployed on a GPU, and requires to
be fed with a batch of images in order to benefit of massive paral-
lelism. The difficulty is that all images from a batch are rejected or
accepted by different SVMs in the activation path. When an image
from the batch is rejected by an SVM from the activation path the
batch size decreases for the next layer. We are thus unable to ensure
a constant size of the batches during the network crossing. The cur-
rent implementation does not use totally the parallelism possibilities.
This could be obtained using a trick for keeping batch sizes constant
or using batch sizes of predefined different sizes for each layer.

Connecting the SVM network to the entire CNN - and not just
to the pooling layer outputs - could offer interesting perspectives
for future work. Moreover, weighing the pooling decision during
activation could help reduce the number of false positives on the first
activated SVMs. Finally, another possible way to increase overall
performance would be to extend the activation path to a multiclass
problem.
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