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Empirical security measurement:

Steganalysis empirical security measurement ingredients:
> A few state-of-the art CNN networks,
> A database,

> A scenario such as the clairvoyant:
= Laboratory scenario,
= Worst case attack for Alice.
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Empirical security measurement:

Steganalysis empirical security measurement ingredients:

> A few state-of-the art CNN networks,
— Minimum size required?

» to face to database ,
» to face to diversity 7,
» to be in the over-parameterized region.

— Accuracy ranking if database is larger?
> A database,

— Minimum size to be better than a random guesser?
— CNNs collapse or not if the training is larger?
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(1) Macroscopic black-box first observations:

Model scaling general behavior:
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— It is beneficial using over-parameterized networks,
i.e. with millions of parameters i.e > 10°.
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(2) Macroscopic black-box first observations:

Data scaling general behavior:
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— In the power-law region, the more data, the better results,
— Power-law region seems to start between 10% to 10° images.
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General model for those 2 behaviors:
The test error (noted €) can be simplified! in [*]:

~ — -8
€(m,n) = an + bm +c
(m, n) an* , 0
dataset power—law  model power—law
> a, b, a, B, cx real positive constants,
> n = dataset size, m = model size,
> « and (8 control the exponential decreasing,

> c,, the irreducible error.

@ [*¥] Rosenfeld, J.S., Rosenfeld, A., Belinkov, Y., Shavit, N.

A constructive prediction of the generalization error across scales
ICLR'2020, Apr 2020.

lin the power-law regions.
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Effect of increasing the dataset size:

P ) : : : ;
© small data region power-law region irreductible error region

random guess error

‘number of training sample:

In this paper, we use only one CNN
and study the effect of database scaling.

In the dataset power-law region,
we should observe the exponential decreasing [*]:

e(n)=an +c,

@ [¥] Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.M.A_, Yang, Y.,

Zhou, Y.
Deep Learning Scaling is Predictable, Empirically
Unpublished - ArXiv 1712.00409, 2017.
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Why studying the effect of increasing the dataset size?

P ) ’ : ; ;
© small data region power-law region irreductible error region

random guess error
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Why studying this?

» ML community observed this power-law. What about steganalysis?

» Database scaling;
An important ingredient for empirical security analysis?

» Model scaling in steganalysis = future work?.

2 . . .
First observations have been made during JPEG steganalysis Alaska#2 competition, when using the scalable
modified EfficientNet network, which is based on the principle of building gradually larger/scalable EfficientNet

networks.
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Choice of the network for JPEG steganalysis:

Low Complexity network (LC-Net) [*]:

>

>
>
>

One of the state-of-the-art CNN until mid-2020,
20 times fewer parameters than SRNet,
Faster learning than other networks,

Medium size model (3.10° parameters),
— WARNING: model size close to the interpolation threshold.

— early stopping during learning.

[*¥] Huang, J., Ni, J., Wan, L., Yan, J.
A Customized Convolutional Neural Network with Low Model Complexity for JPEG Steganalysis

ACM IH&MMSec'2019. Jul 2019.
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LC-Net rapid overview:

Input image P it AR . Convolutional module
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Preprocessing module

Ingredients:

» 30 SRM filters for the pre-processing module,
» 6 blocks using residual connections,

» Blocks 3 to 6 downsample the feature maps,
» RelLU, Batch Norm, and 3x3 convolutions.
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Choice related to the database:

Requirements:

» Grey level images (color steganalysis is not enough
understood),

More than one million images (needs large dataset),

A controlled database (easier to analysis and generate),

A diverse database (more realistic),

vvvyyy

A quality factor 75:
— Robustness to quantization diversity is not enough understood,
— Will facilitate future comparison with uncontrolled databases;

» Small size images (256x256; memory budget).

The LSSD database is available at:
http://www.lirmm.fr/~chaumont/LSSD.html.


http://www.lirmm.fr/~chaumont/LSSD.html
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Choice of the payload:

Objectives:
» Accuracy € [60%, 70%)] for a small database ( ~ 20,000 images)
i.e. being sufficiently far from the random-guess region,
» — Large progression margin (when dataset is scaled),
» — Room for future works (using better networks).

— JUNIWARD at 0.2 bpnzacs for grey-level JPEG 256 x256
images from LSSD database with a QF=75.
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Experimental protocol

Essential points:

» 4 learning sets: 20k, 100k, 200k, 1 million (cover+stego)
JPEG images,

» 5 models for each learning set (std < to 0.8% for 20k),

» 1 unique test set: 200k (cover+stego) JPEG images,

» LC-Net hyper-parameters are almost the same as the paper,

» Use of an IBM container having access to 2 Tesla V100 GPU.
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Figure: Average probability of error with respect to the learning database
size. Notice that the abscissa scale is logarithmic.
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Essential points:

» Accuracy improved by 6% from 20k to 1M images,
> LC-Net does not have its performance collapsing,

» Standard deviation is getting smaller and smaller,
— learning process is more and more stable.

Other facts:
» Time consumption:
> 20k ~ 2h
» 1 million =~ 10 days
> Memory consumption:

> 20k ~ 10 GB (MAT file in double precision)
» 1 million ~ 500 GB (MAT file in double precision)
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What about power-law?

Using a non-linear regression with Lagrange multipliers:

e(n) = 0.49241570:086236 () 168059

» Erroneous to affirm that the irreducible P = 16.8%,
» but without much error on the prediction, probability of error
for 20M images should be close to 28%,

» For 2k images it was 37%,
— 9% increase which is a considerable improvement in

steganalysis domain.
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Conclusions (1)

Error power-law is also observed for steganalysis:

» Even with a medium-size model (3 x 10° parameters),

» Even starting with a medium-size database (2 x 10* images).

Take away message:

Increasing a lot (20 million images)
will make you win almost 10% in accuracy
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Conclusions (2)

Future work:

| 2

vvyyy

Evaluate with more diversity (quality factors, payload sizes,
embedding algorithms, colour, less controlled database),

Evaluate with other networks,
Reduce learning time and optimize memory management,
Find a more precise irreducible error value,

Study the slope of the power-law depending on the starting
point of the CNN (use of transfer, use of curriculum, use of
data-augmentation such as pixels-off),

Find innovative techniques when the database is not huge in
order to increase the performances.
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