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Steganography / Steganalysis
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Introduction

Empirical security measurement:

Steganalysis empirical security measurement ingredients:

I A few state-of-the art CNN networks,

I A database,

I A scenario such as the clairvoyant:
= Laboratory scenario,
= Worst case attack for Alice.
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Introduction

Empirical security measurement:

Steganalysis empirical security measurement ingredients:

I A few state-of-the art CNN networks,
→ Minimum size required?
I to face to database ↗,
I to face to diversity ↗,
I to be in the over-parameterized region.

→ Accuracy ranking if database is larger?

I A database,
→ Minimum size to be better than a random guesser?
→ CNNs collapse or not if the training is larger?



Analysis of the Scalability of a Deep-Learning Network for Steganography ”Into the Wild”

Introduction

(1) Macroscopic black-box first observations:

Model scaling general behavior:

→ It is beneficial using over-parameterized networks,
i.e. with millions of parameters i.e ≥ 106.
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(2) Macroscopic black-box first observations:

Data scaling general behavior:

→ In the power-law region, the more data, the better results,
→ Power-law region seems to start between 104 to 105 images.
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General model for those 2 behaviors:

The test error (noted ε̃) can be simplified1 in [*]:

ε̃(m, n) = an−α︸ ︷︷ ︸
dataset power−law

+ bm−β︸ ︷︷ ︸
model power−law

+c∞

I a, b, α, β, c∞ real positive constants,

I n = dataset size, m = model size,

I α and β control the exponential decreasing,

I c∞ the irreducible error.

[*] Rosenfeld, J.S., Rosenfeld, A., Belinkov, Y., Shavit, N.

A constructive prediction of the generalization error across scales
ICLR’2020, Apr 2020.

1in the power-law regions.
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Effect of increasing the dataset size:

In this paper, we use only one CNN

and study the effect of database scaling.

In the dataset power-law region,
we should observe the exponential decreasing [*]:

ε(n) = a′n−α
′

+ c ′∞

[*] Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.M.A., Yang, Y.,

Zhou, Y.
Deep Learning Scaling is Predictable, Empirically
Unpublished - ArXiv 1712.00409, 2017.
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Why studying the effect of increasing the dataset size?

Why studying this?

I ML community observed this power-law. What about steganalysis?

I Database scaling;

An important ingredient for empirical security analysis?

I Model scaling in steganalysis = future work2.

2
First observations have been made during JPEG steganalysis Alaska#2 competition, when using the scalable

modified EfficientNet network, which is based on the principle of building gradually larger/scalable EfficientNet
networks.
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Our test bench to assess scalability for DL-based steganalysis

Choice of the network for JPEG steganalysis

Choice of the network for JPEG steganalysis:

Low Complexity network (LC-Net) [*]:

I One of the state-of-the-art CNN until mid-2020,

I 20 times fewer parameters than SRNet,

I Faster learning than other networks,

I Medium size model (3.105 parameters),
→ WARNING: model size close to the interpolation threshold.
→ early stopping during learning.

[*] Huang, J., Ni, J., Wan, L., Yan, J.

A Customized Convolutional Neural Network with Low Model Complexity for JPEG Steganalysis
ACM IH&MMSec’2019. Jul 2019.
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Our test bench to assess scalability for DL-based steganalysis

Choice of the network for JPEG steganalysis

LC-Net rapid overview:

Convolution (HPF)

TLU

Convolution

Convolution

Convolution

Preprocessing module

Cover Stego

Softmax

Fully Connected

Classification module

Block 1

Block 2

Block 3

Block 4

Block 6

Block 5

Convolutional moduleInput image

Ingredients:

I 30 SRM filters for the pre-processing module,

I 6 blocks using residual connections,

I Blocks 3 to 6 downsample the feature maps,

I ReLU, Batch Norm, and 3x3 convolutions.
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Our test bench to assess scalability for DL-based steganalysis

Choice of the database

Choice related to the database:

Requirements:

I Grey level images (color steganalysis is not enough
understood),

I More than one million images (needs large dataset),

I A controlled database (easier to analysis and generate),

I A diverse database (more realistic),

I A quality factor 75:
→ Robustness to quantization diversity is not enough understood,

→ Will facilitate future comparison with uncontrolled databases;

I Small size images (256×256; memory budget).

The LSSD database is available at:
http://www.lirmm.fr/~chaumont/LSSD.html.

http://www.lirmm.fr/~chaumont/LSSD.html
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Our test bench to assess scalability for DL-based steganalysis

Choice of the payload

Choice of the payload:

Objectives:

I Accuracy ∈ [60%, 70%] for a small database ( ' 20,000 images)

i.e. being sufficiently far from the random-guess region,

I → Large progression margin (when dataset is scaled),

I → Room for future works (using better networks).

→ JUNIWARD at 0.2 bpnzacs for grey-level JPEG 256×256
images from LSSD database with a QF=75.
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Experimental protocol

Experimental protocol

Essential points:

I 4 learning sets: 20k, 100k, 200k, 1 million (cover+stego)
JPEG images,

I 5 models for each learning set (std < to 0.8% for 20k),

I 1 unique test set: 200k (cover+stego) JPEG images,

I LC-Net hyper-parameters are almost the same as the paper,

I Use of an IBM container having access to 2 Tesla V100 GPU.
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Results

Figure: Average probability of error with respect to the learning database
size. Notice that the abscissa scale is logarithmic.
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Results

Analysis

Essential points:

I Accuracy improved by 6% from 20k to 1M images,

I LC-Net does not have its performance collapsing,

I Standard deviation is getting smaller and smaller,
→ learning process is more and more stable.

Other facts:
I Time consumption:

I 20k ≈ 2h
I 1 million ≈ 10 days

I Memory consumption:
I 20k ≈ 10 GB (MAT file in double precision)
I 1 million ≈ 500 GB (MAT file in double precision)
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Results

What about power-law?

Using a non-linear regression with Lagrange multipliers:

ε(n) = 0.492415n−0.086236 + 0.168059

I Erroneous to affirm that the irreducible PE = 16.8%,

I but without much error on the prediction, probability of error
for 20M images should be close to 28%,

I For 2k images it was 37%,
→ 9% increase which is a considerable improvement in
steganalysis domain.
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Conclusions and perspectives

Conclusions (1)

Error power-law is also observed for steganalysis:

I Even with a medium-size model (3× 105 parameters),

I Even starting with a medium-size database (2× 104 images).

Take away message:

Increasing a lot (20 million images)

will make you win almost 10% in accuracy
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Conclusions and perspectives

Conclusions (2)

Future work:
I Evaluate with more diversity (quality factors, payload sizes,

embedding algorithms, colour, less controlled database),

I Evaluate with other networks,

I Reduce learning time and optimize memory management,

I Find a more precise irreducible error value,

I Study the slope of the power-law depending on the starting
point of the CNN (use of transfer, use of curriculum, use of
data-augmentation such as pixels-off),

I Find innovative techniques when the database is not huge in
order to increase the performances.
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