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Abstract— Due to the critical role of power lines in modern
infrastructure, numerous automated methods have been devel-
oped for their inspection. Among these, Unmanned Aircraft
Systems (UAS) have emerged as a valuable tool, offering rapid
and precise inspections by capturing high-resolution aerial
imagery of power lines. Drones enable access to hard-to-reach
areas, reduce safety risks for workers near live wires, and
significantly lower the time and cost associated with traditional
inspection methods. In particular, deep learning techniques
have been widely applied to automate the analysis of key
components via the onboard camera. However, these methods
typically rely on a first stage of detection based on large,
annotated datasets focused on specific components, limiting
their adaptability to new or unseen components. This paper
investigates the application of two state-of-the-art algorithms of
Few-Shot Object Detection (FSOD) for power line component
detection: DeFRCN and CD-ViTO, alongside a modified Yolov8
detector of our own in which we integrated the modules of
DeFRCN. We evaluate their performance using both public
and proprietary datasets, analyzing unexpected outcomes and
provide insights into the practical applicability of FSOD in
real-world scenarios.

I. INTRODUCTION

Power lines are critical to daily life, and outages can be
costly. It is thus essential to inspect regularly the lines and
their components to ensure they are functioning properly.
Various inspection methods are used, including helicopter-
assisted technician teams and robots that climb on the power
lines [1]. Recently, UAS-based inspections have gained
popularity due to their cost-effectiveness, wide coverage,
and ability to capture optimal images of components using
onboard cameras [2]. In parallel, automatic analysis of these
images has been explored [3]. In particular, recent Deep-
Learning based algorithms have been proposed to detect
critical components, such as insulators, cables, shackles, or
top caps [4] [5] and eventually detect their faults [6].

While these methods demonstrate promising results in
detecting and analyzing components of power lines, they
depend heavily on large labeled datasets for the specific com-
ponents of interest. In fact, many components on an electric
line are susceptible to defects that, if left unaddressed, could
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Fig. 1. Diversity of designs for two classes of component (insulators and
shackles) based on power line context. The first column shows components
from our private dataset, while the second shows those from the Insplad
dataset [7], both of which will be detailed later.

lead to grid failure. Furthermore, these methods are limited
to detecting only the components they have been trained on
and lack adaptability to new classes of components for which
we do not have a lot of examples. Moreover, the appearance
of components can vary significantly depending on their
environment as shown in Fig. 1. For example, insulators
near the sea often have supplementary protective disks to
shield them from salt-induced corrosion. Additionally, the
configuration of components can differ based on the power
rating of the line; high-voltage lines typically use insulator
chains with more disks than those found on low-voltage lines.

Few-Shot Object Detection (FSOD) offers a promising
approach to deal with this difficulty by allowing a detector
to quickly learn to recognize new component classes with
only a few examples (typically between 1 and 30 labeled
bounding boxes).

In this paper, we evaluate state-of-the-art FSOD algorithms
on the domain of power line component detection using
aerial imagery captured by UAS. First, we describe two
state-of-the-art FSOD methods in Sec. II, along with our
adaptation of the Yolov8 detector [8] for FSOD by using
components from the DeFRCN [9] framework. Then, in
Sec. III we provide a detailed description of the datasets used
for this study and evaluate the performance of the presented
methods, with a comparison to the standard Yolov8 model as



Fig. 2. Illustration of the principle of meta-learning and transfer-learning strategies for object detection.

a baseline. Finally, in Sec. IV, we discuss some unexpected
results and derive insights regarding the practical application
of FSOD in real-world scenarios of power line inspection
with UAS.

II. FEW-SHOT OBJECT DETECTION

A. Some notations

We will define the FSOD problem by following the nota-
tions given in [10], [11]. Let us assume two image datasets,
Dbase and Dnovel , which contain objects belonging only to the
base classes Cbase and the novel classes Cnovel respectively,
such as Cbase

⋂
Cnovel = /0. Dbase is generally a very large

dataset, whereas Dnovel is a very small one, allowing for
few-shot learning. A model can be trained first on Dbase to
detect objects belonging to Cbase. Then, it can be fine-tuned
on a subdataset of Cbase

⋃
Cnovel which contains exactly K

labeled samples of both the base and the N novel classes
to detect (with N ≤ |Cnovel |). Notice that in the finetuning
phase, K-shot are used for each class (base and novel) to
prevent highly umbalanced dataset with all instances from
base classes, and rapid overfitting with only the instances of
novel classes.

This approach is called N-way K-shot FSOD and results
are analyzed in reference benchmarks like MSCOCO [12]
by providing performance metrics for both the base and the
novel classes with respect to N and K. Note that a shot is
an instance of the object (i.e. a bounding box) which means
that a single image can contain more than one shot.

B. Two state-of-the-art Methods

There are two main strategies for FSOD (see Fig. 2): meta-
learning [13] and transfer-learning [11]. The main differ-
ence lies in their pretraining approach where meta-learning
simulates multiple FSOD tasks by sampling random K-shot
from Dbase, while transfer-learning focuses on learning high-
quality features through standard supervised training.

Recently, transfer learning has appeared to be the more
promising paradigm, as illustrated by the results on public
benchmark of DeFRCN [9] and CD-ViTO [14]. We selected
these two algorithms for our analysis.

1) DeFRCN, a Performant Faster R-CNN Method: Dur-
ing the training of a Faster R-CNN [15], the network
enhances localization with class-invariant features and clas-
sification with class-specific features, creating contradictory
optimization objectives. This tradeoff is manageable with
many examples but problematic in few-shot settings. While
DCFS [16] employs a form of gradient decoupling by using
separate classifiers to address the issue of missing labels in
FSOD, DeFRCN introduces the Gradient Decoupling Layer
(GDL) to separate localization from classification during
gradient backpropagation. This design enables the backbone
network to continue learning during fine-tuning, rather than
being frozen. Two decoupling layers are used: one between
the Region Proposal Network (RPN) and the backbone, and
another between the R-CNN head and the backbone. The
backpropagation becomes then:

θb← θb− γ(λrpn
∂Lrpn

∂θb
+λrcnn

∂Lrcnn

∂θb
). (1)

Where θb is the parameters of the backbone, ∂Lrpn and
∂Lrcnn respectively the loss from RPN (localization loss) and
RCNN (classification loss), γ the learning rate, and λrpn and
λrcnn the gradient scaling value for each task. Then, during
the forward pass, GDL applies an affine transformation
(dense layer) to adapt the feature to the decoupled branches,
with learned parameters W and b for weights and biases:

GDL(x) =Wx+b. (2)

DeFRCN also introduces the Prototypical Calibration
Block (PCB), inspired by few-shot classification [17], to
enhance classification scores during inference. PCB com-
pares predictions with precalculated class representations



Fig. 3. Illustration of our proposed modification of Yolov8 that we named Yolov8 DeFRCN. GDL adjusts the amplitude of the gradients backpropagated
into the backbone by applying scaling factors, λloc for the localization branch and λcls for the classification branch. PCB applies its classification score on
the heatmaps produced by the classification branch.

(prototypes). These prototypes are generated by passing K-
shot of each class through a pretrained feature extractor
to obtain vector representations. PCB then averages these
vectors for each class to create a prototypes bank P = {pc}.

Then during inference on novel images, PCB extracts
features f of the query image by using the same pretrained
features extractor used for creating P. Next, to obtain the
same features size for a bounding box proposed by the
RPN fbbox and the prototypes pc, it uses an RoI Align (i.e:
pc, fbbox ∈ R1000).

Afterwards, for a bounding box, it calculates cosine sim-
ilarity between its representation and all the prototypes to
obtain the classification score for the PCB module:

PCBbbox =
fbbox · pc

∥ fbbox∥∥pc∥
, pc ∈ P. (3)

Finally, it reports the scores of PCB for all bounding boxes
with a weighted sum (parameterized by a value α) with the
ones of the RCNN head to obtain the final classification score
C f inal of the model:

C f inal = α ·RCNN +(1−α) ·PCB. (4)

2) CD-ViTO, Using Self-Supervised Pretrained Trans-
formers for FSOD: Transfer learning object detection has
then profited from vision transformers that have proven
to be particularly well-suited for self-supervised learning
(SSL). Specifically, SSL-pretrained transformers offer better
generalization capabilities, which is essential in scenarios
with limited data, such as FSOD [18] [19].

Recently, DE-ViT [20] utilizes the capabilities of Dinov2
[21] [22] for FSOD by generating prototypes for each class
based on support examples A frozen RPN is used to generate
bounding boxes, which are subsequently refined by the prop-
agation network. Then, a dot product is calculated between
the prototypes and the features of the query image extracted
by Dinov2, similar to the PCB approach in DeFRCN.

CD-ViTO [14] builds on DE-ViT to enhance its perfor-
mance, particularly in domains significantly different from

the MSCOCO benchmark. To better distinguish between
closely related precomputed class prototypes in downstream
tasks, CD-ViTO converts them into learnable instance fea-
tures. Instead of averaging the vectors of the same class,
it passes them through a multi-layer perceptron (MLP) to
highlight high-quality shot while reducing the weight of less
relevant ones. Additionally, CD-ViTO incorporates domain
adaptation techniques by applying contrastive loss between
different prototypes, combined with randomly generated vir-
tual domains. These improvements not only boost DE-ViT’s
performance on cross-domain FSOD tasks but also improve
metrics on traditional FSOD benchmarks like MSCOCO.

C. An adaptation of Yolov8 for fast FSOD

Yolov8 [8] is one of the latest iteration from Ultralytics
in the YOLO family [23]. It excels in object detection with
high inference speed while having a lightweight architecture
making it well-suited for embedded devices, such as UAS
applications [24], [25].

Unlike its predecessor, it employs an anchor-free detection
head, enabling dense predictions on its feature maps. Yolov8
extracts features on three different scales via Feature Pyramid
Network [26] (FPN) and a Path Aggregation Network [27]
(PANet), which are then fed into three separate detection
heads, one for each scale. These detection heads consist
of two parallel branches: one for classification, generating
a heatmap for each class, and the other for localization,
predicting bounding boxes. Even if Yolov8 uses differents
”modules” for these tasks as in faster RCNN, it differs
because both are independents and can be calculated in
parallel whereas the RCNN head relies on the output of the
RPN.

While Yolov8 achieves great performances in object de-
tection when trained with abudant data, it was not originaly
designed for FSOD. However, we observed that its new
architecture makes it compatible with the GDL and PCB
principles presented in DeFRCN as illustrated in Fig. 3,
allowing its use in FSOD while maintaining a fast inference



Fig. 4. Samples images from the Insplad dataset [7] in the first row vs our private dataset in the second row.

speed. First, the Gradient Decoupling Layer can be incorpo-
rated at the beginning of both branches in the detection head
to control the flow of classification and localization gradients
during backpropagation into the backbone. GDL, being an
affine layer, adds almost no computational overhead during
inference. Secondly, the Prototypical Calibration Block can
calculate its classification score and modify with a weighted-
sum the heatmap output by Yolov8 classification branch.
PCB adds some computation for the pretrained feature ex-
tractor’s inference, but this can run in parallel with YOLO’s
detection, minimizing overhead. In our experiments, we refer
to this modified model as Yolov8 DeFRCN.

III. EXPERIMENTS

For the experiments, we use two databases: one pub-
lic, Insplad [7], while the second is a private benchmark
consisting of UAS images captured in a more realistic
setting—specifically, with the drone flying above power lines
without focusing precisely on the components, as illustrated
in Fig. 4.

A. A Public Power Line Dataset: Insplad

Insplad [7] contains 18 object classes1 typically found on
power lines, with 10,563 HD RGB images (1920x1080), split
into 7,936 for training and 2,627 for testing.

Originally designed for classical supervised learning, we
adapted the dataset for FSOD by creating two splits and
evaluating methods in 5-shot and 10-shot. Unlike FSOD
benchmarks such as MSCOCO, where all classes in the fine-
tuning stage have the exact same number of training shot, our
setup deviates slightly. In practical scenarios, some classes
appear only in conjunction with others (e.g., insulators and
shackles), making it challenging to have the exact same
number of shots in each classes. Our splits2, detailed in
Tab. I, are designed to be as balanced as possible.

1Insplad also includes 5 classes for defect classification, which are not
utilized in our study since our focus is on the initial detection phase.

2https://github.com/XiphosF/Insplad_FSOD

TABLE I
NUMBER OF INSTANCES PER CLASS FOR OUR 5-SHOT AND 10-SHOT

SPLITS FOR THE INSPLAD DATASET.

Asset category 5-shot split
Inst. Count

10-shot split
Inst. Count

Damper - Spiral 5 12
Damper - Stockbridge 5 10
Glass Insulator 5 10
Glass Insulator Big Shackle 5 11
Glass Insulator Small Shackle 6 10
Glass Insulator Tower Shackle 6 10
Lightning Rod Shackle 5 11
Lightning Rod Suspension 5 10
Tower ID Plate 5 10
Polymer Insulator 5 10
Pol. Insulator Lower Shackle 5 10
Pol. Insulator Upper Shackle 5 10
Pol. Insulator Tower Shackle 5 10
Spacer 5 11
Vari-grip 5 10
Yoke 4 6
Yoke Suspension 5 10
Sphere 5 6

B. Our Private Benchmark

Our FSOD benchmark focuses on detecting two object
classes similar to those in the Insplad dataset but in a more
challenging context: glass insulators and the shackles that
connect them to power poles. The glass insulators in this
case differ slightly from those in the Insplad dataset, as they
consist of a chain of three disks, which is more common in
medium and low voltage power lines. For this benchmark,
we used a 12-shot setup for both classes, drawing from 3
images as training examples. The detectors were evaluated on
122 instances of glass insulators and 53 instances of shackles
with a total number of images of 36 images. The images were
4K (4096x2160) RGB captures from real-world inspections
conducted by a technician using a UAS.

C. Protocol and Results

We tested DeFRCN (97 million parameters), CD-ViTO
(331 million parameters), our custom Yolov8 DeFRCN, and

https://github.com/XiphosF/Insplad_FSOD


Fig. 5. Detection results from the tested methods on the Insplad dataset [7] for the 5-shot and 10-shot splits.

the baseline Yolov8 models on these two datasets. Note that,
for both Yolov8, the medium model (25 million parameters)
was used as a reasonable size for embedded device. The
training of both Yolov8 used the Ultralytics framework with
100 epochs and a batch size of 128 on two GPUs RTXA6000.
Both DeFRCN and CD-ViTO are based on the Detectron2
framework [28] and are used as off-the-shelf models with
their default configuration for 5 and 10 shot.

As discussed in Sec. II, these models utilize Transfer
Learning techniques. They are first pretrained on large
datasets and then fine-tuned using K-shot samples to adapt
to new classes. In the FSOD-adapted MSCOCO dataset
[11], used for pretraining DeFRCN, Yolov8 DeFRCN, and
Yolov8, standard benchmark consists to use 60 of the 80
classes as base classes for pretraining, while the remaining 20
are used for K-shot finetuning. For CD-ViTO, all learnable
parameters were pretrained on the FSOD-adapted MSCOCO,
except for its frozen backbone, Dinov2, which was pretrained
on the private LVD-142M dataset [21].

Finally, to place ourselves in a more realistic case of
FSOD, we do not use a validation dataset during the fine-
tuning stage. Indeed, given that we only have K-shot for
training, we cannot determine the optimal stopping point for
training to achieve the best performance for the models. We
therefore trained the models for 100 epochs with a learning
rate one-tenth of the pretraining learning rate. The metrics
used are mean Average Precision (mAP), split into base AP
(bAP) for pretraining classes and novel AP (nAP) for new
classes.

The performance of all four selected models on the 5-shot
and 10-shot splits of Insplad is summarized in Tab. II, with
qualitative results illustrated in Fig. 5.

TABLE II
AVERAGE PRECISION IN OUR 5-SHOT AND 10-SHOT SPLITS OF THE

INSPLAD DATASET [7], AVERAGED OVER ALL NEW CLASSES.

Method Shot nAP50 nAP50-95
Yolov8 [8] 5-shot 52.5 38.6
Yolov8 DeFRCN 5-shot 45.6 33.0
DeFRCN [9] 5-shot 34.2 20.5
CD-VITO [14] 5-shot 50.5 32.4
Yolov8 [8] 10-shot 62.6 45.7
Yolov8 DeFRCN 10-shot 59.6 44.1
DeFRCN [9] 10-shot 53.5 31.0
CD-VITO [14] 10-shot 59.0 37.6

TABLE III
AVERAGE PRECISION AFTER 12-SHOT FINETUNING ON INSULATORS

AND SHACKLES OF OUR PRIVATE DATASET.

12-shot Insulator Shackle
nAP50 nAP50-95 nAP50 nAP50-95

Yolov8 [8] 89.8 64.7 41.4 20.7
Yolov8 DeFRCN 89.2 67.6 42.8 19.6
DeFRCN [9] 84.8 57.6 17.0 6.0
CD-ViTO [14] 84.9 56.8 29.5 8.3

We then conducted the 12-shot finetuning on our private
benchmark which results are presented in Tab. III.

IV. ANALYSIS OF RESULTS

Both datasets lead to the same unexpected conclusion:
FSOD-specialized methods do not achieve the best perfor-
mance on this task. One might assume that the specific
architecture of Yolov8 is particularly well-suited for these
types of objects, but even our adapted Yolov8 DeFRCN
model performs worse than the baseline. This is especially



TABLE IV
PERFORMANCE METRICS ON FSOD-ADAPTED MSCOCO [11] OF YOLOV8 DEFRCN. AVERAGE PRECISION IS REPORTED FOR BOTH BASE (BAP)

AND NOVEL (NAP) CLASSES SEPARATELY.

1-shot 2-shot
bAP50 bAP50-95 nAP50 nAP50-95 bAP50 bAP50-95 nAP50 nAP50-95

Yolov8 [8] 13.9 9.1 3.9 2.3 12.9 8.9 6.3 3.7
Yolov8 DeFRCN 54.5 38.8 10.5 7 49.0 34.6 12.7 7.8
DeFRCN [9] 48.7 31.8 10.9 6.5 49.7 32.5 20.6 11.7

3-shot 5-shot
bAP50 bAP50-95 nAP50 nAP50-95 bAP50 bAP50-95 nAP50 nAP50-95

Yolov8 [8] 19.1 13.4 9.3 5.6 19.3 13.6 11.7 7.4
Yolov8 DeFRCN 55.9 40.4 15.9 10.8 53.0 38.1 23.0 15.0
DeFRCN [9] 49.8 32.5 24.2 13.4 50.6 33.1 28.4 15.3

10-shot 30-shot
bAP50 bAP50-95 nAP50 nAP50-95 bAP50 bAP50-95 nAP50 nAP50-95

Yolov8 [8] 19.3 13.6 15.5 10.0 23.6 16.9 23.2 15.7
Yolov8 DeFRCN 49.6 34.7 27.9 17.9 51.7 36.2 33.4 22.1
DeFRCN [9] 53.1 34.5 34.5 18.5 52.8 34.6 39.9 22.4

TABLE V
GAINS ACHIEVED BY THE PCB MODULE IN YOLOV8 DEFRCN IN THE

5-SHOT AND 10-SHOT SPLITS FROM FSOD-ADAPTED MSCOCO [11]
AND INSPLAD, SHOWING THE INFLUENCE OF THE PRETRAINED FEATURE

EXTRACTOR.

PCB gain MSCOCO Insplad
Splits 5-shot 10-shot 5-shot 10-shot
nAP50 +1.7 +1.7 -3.4 -3.1
nAP50-95 +1.0 +1.0 -0.1 -0.2

surprising when comparing the results of vanilla Yolov8
and Yolov8 DeFRCN on the standard FSOD benchmark
MSCOCO. Our best-performing Yolov8 DeFRCN model
was achieved with λloc = 0.25 and λcls = 0.75 during pre-
training and λloc = 0.1 and λcls = 0.1 during K-shot finetun-
ing for the GDL, with α = 0.5 for PCB. When evaluated
on the MSCOCO dataset, this model showed improvements
over the baseline Yolov8 and achieved performance levels
approaching those of DeFRCN as shown in Tab. IV, while
being faster and more lightweight (25M vs 97M parameters).

However, we argue that some FSOD methods that per-
form well on datasets like MSCOCO may struggle in other
domains with different types of objects. As discussed in
Sec. II, the PCB module relies on a pretrained feature
extractor to enhance performance. The feature extractor used
in both DeFRCN and our Yolov8 DeFRCN is ResNet101
[29], pretrained on ImageNet [30]—a dataset closely aligned
with MSCOCO. However, it is likely that the prototypes
learned from this feature extractor are less relevant for
industrial objects like those in our dataset, leading to reduced
performance. This is evident when comparing the impact of
the PCB module in our Yolov8 DeFRCN on FSOD-adapted
MSCOCO versus Insplad, as shown in Tab. V.

V. CONCLUSION

In this article, we presented the performance of several
state-of-the-art FSOD-specialized methods, along with our
new FSOD-adapted architecture based on Yolov8, for de-
tecting power line components in real-world applications.

We evaluated these models on two datasets that contain
similar object classes but differ in UAS capture contexts.
The results were surprising: the baseline detector, Yolov8,
outperformed the FSOD methods. This highlights that, in
practical use cases, FSOD methods remain challenging to
implement effectively, partly due to biases in the algorithms
and limitations in traditional FSOD benchmarks. Moreover,
addressing this issue could enable a highly data-efficient
pipeline for unsupervised anomaly detection methods to
identify faults in power line components [31], which cur-
rently rely on extensively trained detectors for their analysis.
Finally, future research could investigate the integration of
Vision Langugage Model (VLM) that use internet-scale pre-
training data to obtain general knowledge from both text and
images for zero-shot object detection [32], [33]. However,
adopting this paradigm for FSOD would necessitate rethink-
ing current evaluation methodologies [34], particularly in
light of potential data contamination issues [35].
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