Analyzing Deep-Learning Methods for Power Line Component Detection in Unmanned Aircraft System Imagery with Few Data

International Conference on Unmanned Aircraft Systems 2025

<u>Guillaume Fourret</u>^{1,2}, Marc Chaumont^{1,3}, Christophe Fiorio², Gérard Subsol^{1,2}, Samuel Brau²

¹ICAR, LIRMM, University of Montpellier, CNRS, France ²Drone Geofencing, Nîmes, France ³University of Nîmes, France

Contact : guillaume.fourret@lirmm.fr

1. UAS monitoring

Objective: Prevent power line shutdowns by analyzing their components.

Traditional inspection methods include:

1. UAS monitoring

Objective: Prevent power line shutdowns by analyzing their components.

Traditional inspection methods include:

Unmanned Aircraft Systems (UAS) have revolutionized the field:

- Minimize risk to technicians
- Significantly lower operational costs
- Efficiently cover large and hard-to-reach areas
- Capture high-quality views of components from multiple angles

1. Monitoring automation

Technicians using UAS provide us with numerous RGB inspection videos:

 $drone_inspection.mp4$

To automate defect monitoring on components, the first step is to apply **object detection** using deep learning:

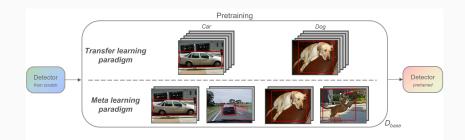
 $drone_detection.mp4$

1. Interest of FSOD

In real-world scenarios: a wide variety of components must be detected!

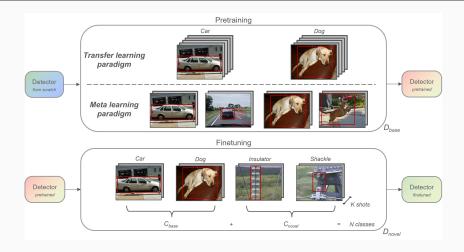
Few-Shot Object Detection (FSOD): Training a detector to recognize new classes using as few as 1 to 30 annotated examples.

2. General FSOD setting



• Pretraining: Use a large dataset with many classes and examples

2. General FSOD setting



- Pretraining: Use a large dataset with many classes and examples
- Finetuning: Add new classes using very few examples (shots)

• DeFRCN¹: A modified Faster R-CNN based method for FSOD

 $^{^{1}}$ Qiao, Limeng et al. 2021. "Defrcn: Decoupled faster r-cnn for few-shot object detection" Proceedings of the IEEE/CVF International Conference on Computer Vision.

² Fu, Yuqian et al. 2024. "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector" arXiv preprint arXiv:2402.03094.

³Jocher, Glenn, Ayush Chaurasia, and Jing Qiu 2023. YOLO by Ultralytics.

- DeFRCN¹: A modified Faster R-CNN based method for FSOD
- CD-ViTO²: Most performant method, using Self-Supervised Learning (SSL) for high quality feature extraction for FSOD

 $^{^{1}}$ Qiao, Limeng et al. 2021. "Defrcn: Decoupled faster r-cnn for few-shot object detection" Proceedings of the IEEE/CVF International Conference on Computer Vision.

²Fu, Yuqian et al. 2024. "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector" arXiv preprint arXiv:2402.03094.

³Jocher, Glenn, Ayush Chaurasia, and Jing Qiu 2023. YOLO by Ultralytics.

- DeFRCN¹: A modified Faster R-CNN based method for FSOD
- CD-ViTO²: Most performant method, using Self-Supervised Learning (SSL) for high quality feature extraction for FSOD
- Yolov8³ (baseline): Widely adopted one-stage detector
 - · Lightweight models suited for embedded devices
 - High inference speed
 - Strong performance on MSCOCO
 - However, NOT designed for FSOD

¹Qiao, Limeng et al. 2021. "Defrcn: Decoupled faster r-cnn for few-shot object detection" Proceedings of the IEEE/CVF International Conference on Computer Vision.

²Fu, Yuqian et al. 2024. "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector" arXiv preprint arXiv:2402.03094.

³ Jocher, Glenn, Ayush Chaurasia, and Jing Qiu 2023. YOLO by Ultralytics.

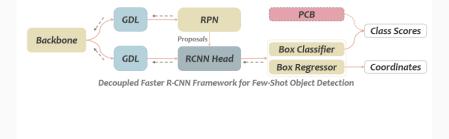
- DeFRCN¹: A modified Faster R-CNN based method for FSOD
- CD-ViTO²: Most performant method, using Self-Supervised Learning (SSL) for high quality feature extraction for FSOD
- Yolov8³ (baseline): Widely adopted one-stage detector
 - · Lightweight models suited for embedded devices
 - High inference speed
 - Strong performance on MSCOCO
 - However, NOT designed for FSOD
- Yolov8_DeFRCN: Our hybrid approach, combining DeFRCN components with YOLOv8

 $^{^1}$ Qiao, Limeng et al. 2021. "Defrcn: Decoupled faster r-cnn for few-shot object detection" Proceedings of the IEEE/CVF International Conference on Computer Vision.

²Fu, Yuqian et al. 2024. "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector" arXiv preprint arXiv:2402.03094.

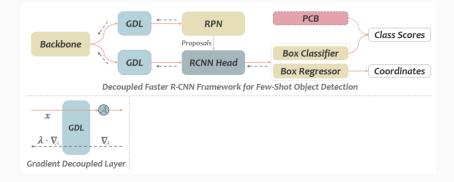
³ Jocher, Glenn, Ayush Chaurasia, and Jing Qiu 2023. YOLO by Ultralytics.

2. DeFRCN, a Faster R-CNN based method



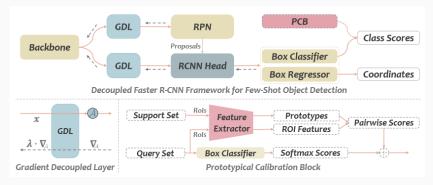
GDL and PCB modules in DeFRCN.

2. DeFRCN, a Faster R-CNN based method



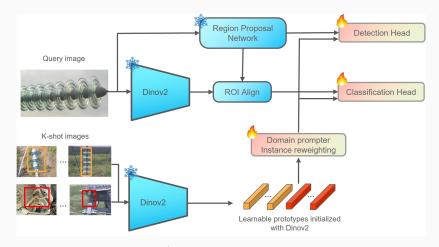
GDL and PCB modules in DeFRCN.

2. DeFRCN, a Faster R-CNN based method



GDL and PCB modules in DeFRCN.

2. CD-ViTO, a SSL based method



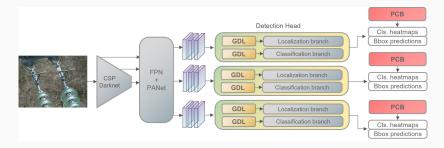
CD-ViTO uses DINOv2⁴ pretrained with SSL on 142 million images.

⁴Oquab, Maxime et al. 2023. "DINOv2: Learning Robust Visual Features without Supervision" arXiv:2304.07193.

2. Our adaptation of Yolov8

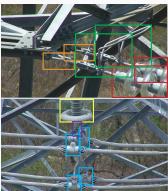
Traditional YOLO: Shared weights for localization and classification.

 \Rightarrow **YOLOv8_DeFRCN** combines DeFRCN with YOLOv8's decoupled head to achieve faster and more accurate FSOD:



- YOLOv8's decoupled head enables the use of GDL.
- PCB can be computed from the classification branch outputs.

3. Two power line components detection datasets



Insplad⁵

A private dataset from Enedis

 \Rightarrow Insplad offers close-up views of components, while our private dataset provides a broader, aerial perspective.

⁵ (Silva, et al Andre Luiz Buarque Vieira e 2023. "InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images" International Journal of Remote Sensing)

Insplad

- 18 components
- Evaluated on 2,627 RGB images (1920×1080)

Enedis dataset

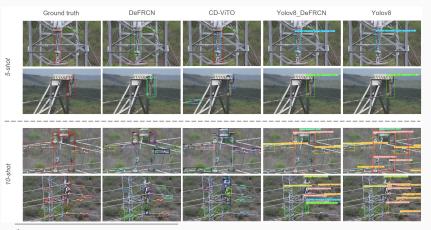
- 2 components
- Evaluated on 122 RGB images (4096×2160)

In real-world FSOD scenarios, classes rarely have the same number of instances, we conducted our experiments on:

- 5-shot and 10-shot splits on Insplad, balanced as much as possible
- 12-shot split on the Enedis dataset

4. Qualitative results

We performed few-shot fine-tuning of all methods using their base weights pretrained on the FSOD-adapted version of $MSCOCO^6$:



⁶Wang, Xin et al. 2020. "Frustratingly Simple Few-Shot Object Detection" *Proceedings of the 37th International Conference on Machine Learning.*

Mean average precision on novel classes (nAP) in our 5-shot and 10-shot splits of the Insplad dataset

Method	Shot	nAP50	nAP50-95
Yolov8	5-shot	52.5	38.6
Yolov8_DeFRCN	5-shot	45.6	33.0
DeFRCN	5-shot	34.2	20.5
CD-VITO	5-shot	50.5	32.4
Yolov8	10-shot	62.6	45.7
Yolov8_DeFRCN	10-shot	59.6	44.1
DeFRCN	10-shot	53.5	31.0
CD-VITO	10-shot	59.0	37.6

Mean average precision on novel classes (nAP) in our 12-shot split of our private dataset

12-shot	Ins	ulator	Shackle		
12-51101	nAP50	nAP50-95	nAP50	nAP50-95	
Yolov8	89.8	64.7	41.4	20.7	
Yolov8_DeFRCN	89.2	67.6	42.8	19.6	
DeFRCN	84.8	57.6	17.0	6.0	
CD-ViTO	84.9	56.8	29.5	8.3	

Mean average precision on novel classes (nAP) in our 12-shot split of our private dataset

12-shot	Ins	ulator	Shackle		
12-51101	nAP50	nAP50-95	nAP50	nAP50-95	
Yolov8	89.8	64.7	41.4	20.7	
Yolov8_DeFRCN	89.2	67.6	42.8	19.6	
DeFRCN	84.8	57.6	17.0	6.0	
CD-ViTO	84.9	56.8	29.5	8.3	

 \Rightarrow Surprisingly, FSOD-specialized methods do **NOT** deliver the best performance on either dataset.

4. Why do FSOD methods underperform here?

Surprisingly, Yolov8_DeFRCN underperforms on both datasets despite outperforming Yolov8 on FSOD-adapted MS COCO:

	3-shot			5-shot				
	bAP50	bAP50-	nAP50	nAP50-	bAP50	bAP50-	nAP50	nAP50-
		95		95		95		95
Yolov8	19.1	13.4	9.3	5.6	19.3	13.6	11.7	7.4
Yolov8_DeFRCN	55.9	40.4	15.9	10.8	53.0	38.1	23.0	15.0
DeFRCN	49.8	32.5	24.2	13.4	50.6	33.1	28.4	15.3

Hypothesis: The few-shot performance of some FSOD methods is heavily influenced by their pretraining, leading to strong biases.

Surprisingly, Yolov8_DeFRCN underperforms on both datasets despite outperforming Yolov8 on FSOD-adapted MS COCO:

	3-shot			5-shot				
	bAP50	bAP50-	nAP50	nAP50-	bAP50	bAP50-	nAP50	nAP50-
		95		95		95		95
Yolov8	19.1	13.4	9.3	5.6	19.3	13.6	11.7	7.4
Yolov8_DeFRCN	55.9	40.4	15.9	10.8	53.0	38.1	23.0	15.0
DeFRCN	49.8	32.5	24.2	13.4	50.6	33.1	28.4	15.3

Hypothesis: The few-shot performance of some FSOD methods is heavily influenced by their pretraining, leading to strong biases.

PCB gain	MSCOCO		Insplad	
Splits	5-shot	10-shot	5-shot	10-shot
nAP50	+1.7	+1.7	-3.4	-3.1
nAP50-95	+1.0	+1.0	-0.1	-0.2

To conclude, this work:

- FSOD methods often perform poorly in real-world scenarios and are highly sensitive to bias, unlike their performance on standard benchmarks.
- Cross-Domain Few-Shot Object Detection (CD-FSOD) is a relatively new field, with growing interest through initiatives like the NTIRE workshop at CVPR2025.
- Another emerging approach is the use of Vision-Language Models (VLMs) for zero-shot object detection, with promising methods like YOLO-World⁷ and Grounding-DINO⁸, which present interesting directions for future work.

⁷Cheng, Tianheng et al. 2024. "Yolo-world: Real-time open-vocabulary object detection".

⁸Liu, Shilong et al. 2024. "Grounding dino: Marrying dino with grounded pre-training for open-set object detection".

Thanks for your attention! Questions?

References i

- Cheng, Tianheng et al. (2024). "Yolo-world: Real-time open-vocabulary object detection". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16901–16911.
- Fu, Yuqian et al. (2024). "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector". In: arXiv preprint arXiv:2402.03094.
- Jocher, Glenn, Ayush Chaurasia, and Jing Qiu (Jan. 2023). **YOLO** by Ultralytics. Version 8.0.0. URL:

https://github.com/ultralytics/ultralytics.

Liu, Shilong et al. (2024). "Grounding dino: Marrying dino with grounded pre-training for open-set object detection". In:

European Conference on Computer Vision. Springer, pp. 38-55.

Oquab, Maxime et al. (2023). "DINOv2: Learning Robust Visual Features without Supervision". In: arXiv:2304.07193.

References ii

Qiao, Limeng et al. (2021). "Defrcn: Decoupled faster r-cnn for few-shot object detection". In: Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 8681–8690.

Silva, et al Andre Luiz Buarque Vieira e (2023). "InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images". In: International Journal of Remote Sensing 44.23, pp. 1–27. DOI: 10.1080/01431161.2023.2283900. eprint: https://doi.org/10.1080/01431161.2023.2283900. URL:

https://doi.org/10.1080/01431161.2023.2283900.

Wang, Xin et al. (Apr. 2020). "Frustratingly Simple Few-Shot Object Detection". In: Proceedings of the 37th International Conference on Machine Learning 119. Ed. by Hal Daumé III and Aarti Singh, pp. 9919–9928. URL:

https://proceedings.mlr.press/v119/wang20j.html.