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Abstract—Power lines are composed of various components
that can deteriorate over time due to use. To detect potential
issues with these components and prevent costly network outages,
aerial drones are increasingly being utilized. They allow for the
rapid inspection of large distances and provide a clear view of
the different components and their defects. However, the manual
analysis of flight videos by experts is labor-intensive. Moreover,
the wide variety of anomalies that can cause network inter-
ruptions makes it impractical to develop dedicated automated
solutions for each type, particularly due to the limited number
of examples available for many anomalies. We thus propose a
method to automatically detect anomalies in scenarios where no
prior information about the visual appearance of anomalies is
available, using drone-acquired videos. The approach relies on
the computation of an anomaly score based on a generic feature
vector. Results demonstrate that this approach is effective in
scenarios without any examples of anomalies and requires very
limited computational resources for learning.

Index Terms—Object detection, Anomaly detection, Deep
Learning, Aerial drone, Video.

I. INTRODUCTION

Power outages caused by defects in power line components
are extremely costly for electricity providers. These malfunc-
tions can have numerous causes, ranging from surrounding
vegetation to component failures. Preventive maintenance is
therefore essential for these companies to anticipate such
failures. While the inspection of power lines using drones is
now common practice, it typically requires visual inspection
by technicians and could be automated [1–3]. For instance,
the automated analysis of one of the primary components,
the insulator, has been studied, particularly in cases involving
missing discs [4, 5]. However, these methods are tailored to the
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analysis of a specific, predefined object and a clearly identified
anomaly.

Anomalies, however, can vary significantly in appearance
depending on viewing conditions such as distance, lighting,
and other factors. Recent methods for more generic anomaly
detection leverage classification neural networks trained on
large datasets containing objects with known anomalies [6].
By definition, anomalies are rare, making it challenging to
collect a dataset large enough for training. This limitation
has driven the development of solutions that require no prior
information, i.e., no examples of anomalies. These solutions
focus on identifying extreme data points (commonly referred
to as ’outliers’) that deviate from the distribution of the
majority of the data.

Many approaches have been proposed in the past for
such scenarios (i.e., unsupervised learning). Most of these
methods rely on hand-crafted features, including those based
on decision trees or random forests (e.g., Isolation Forest),
density estimation (e.g., LOF), angular relationships (e.g.,
ABOD), statistical models (e.g., Gaussian Mixture Models),
hypersphere-based methods (e.g., One-Class SVM), cluster-
ing techniques (e.g., Spectral Clustering), and autoencoders
(where the reconstruction error for anomalies deviates from
the learned patterns). For instance, in the case of insulators,
a local hand-crafted descriptor is computed for each disc in
a chain of insulators as described in [7]. Anomaly detection
is then performed in an unsupervised manner using the Local
Outlier Factor (LOF) to compare these descriptors.

In this paper, we propose a pipeline designed to assign an
anomaly score to all detected objects along a power line. Un-
like traditional computer vision methods, which are carefully
designed to detect a specific anomaly on an object [8], our
approach is not limited to any particular type of anomaly and
relies on a generic descriptor that is not specialized for a
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Fig. 1. Overview of our anomaly detection pipeline. Anomalies in power line components are identified as deviations from others of the same class detected
during the drone’s flight, assuming most are defect-free. This approach eliminates the need for reference or training defect examples, making it particularly
suitable given the inherent challenges of data collection in practice.

specific object. During the drone flight, most, if not all, of
the observed objects (e.g., insulators, steel pole caps, tops of
wooden poles, etc.) are expected to be in normal condition.
Most objects detected along the power line are assumed to
be in good condition, with anomalies clearly standing out.
An anomalous object is expected to exhibit a significantly
different score, facilitating its detection. Our general idea
is to compare all objects of the same class after the flight
to identify those that deviate from the norm. This approach
eliminates the challenging task of collecting data for various
types of anomalies, which is difficult to obtain for training
a discriminator network. Moreover, our anomaly detection
method does not require defect-free examples to learn a
distribution of normal objects, unlike most autoencoder-based
approaches [9].

The overall process for detecting anomalies in drone videos
is illustrated in Figure 1, and begins with the identification
of each object of interest. This is achieved using an object
detection network to extract sub-images (thumbnails) of the
objects seen during the flight. Subsequently, a convolutional
neural network (CNN) is used to extract a feature vector from
each thumbnails, effectively representing the object. Finally,
a score is computed by comparing these feature vectors,
enabling the identification of potential outliers.

II. STATE-OF-THE-ART

A. Multiple Object Tracking

Multiple Object Tracking (MOT) algorithms aim to identify
and track multiple objects without any prior knowledge of
their number. Object detection algorithms output a collection
of rectangular bounding boxes, defined by their coordinates,
height, and width, surrounding the thumbnail of the object.
In addition, MOT algorithms also assign a target ID to each
bounding box, enabling the tracking of each individual object
throughout its appearance in the video [10].

Most MOT algorithms follow the following steps: first,
detect objects in the current frame; second, optionally extract
features describing each object and use a motion predictor to

estimate their positions in the next frame; third, compute a
similarity or distance score between pairs of detections using
these features; and fourth, associate the bounding boxes from
the current frame to those in the next frame [10].

The first step is typically performed using an object de-
tection algorithm. In our case, we used YOLOv5 [11], a
one-stage detector from the YOLO family [12]. While more
recent detectors are available (e.g. DETR [13]), YOLOv5
was sufficient for demonstrating feasibility of our anomality
detection pipeline. Additionally, it is a well-known, accu-
rate, lightweight, and fast detector, making it suitable for
deployment on embedded systems aboard drones, especially
when optimized with inference engines (e.g., TensorRT) and/or
precision quantization [14, 15].

The second step can leverage features provided by the
object detector. Finally, the third and fourth steps, which
involve associating bounding boxes, can be accomplished
using trackers [16–18], deep learning approaches (including
end-to-end methods) such as [19], or graph-based methods
[20].

B. Feature extraction and anomaly score computation

1) A generic feature vector:
Once the thumbnails of each class for each frame have been

extracted using the MOT process, it is necessary to compute a
generic and discriminative feature descriptor to both compare
vectors along consecutive frames and to calculate an anomaly
score. A feature vector for a thumbnail should encapsulate
the object appearance. We utilize the last convolutional layer
of a VGG16 neural network [21], pre-trained on ImageNet.
While ResNet [22] and EfficientNet [23] were also evaluated
as feature extractors, VGG16 was selected as it experimentally
yielded the best results for anomaly discrimination. VGG16
produces a feature vector capable of capturing subtle appear-
ance variations within objects of the same class.

Each thumbnail of a given class is represented by a feature
vector denoted as Xi ∈ Rd, where d is the dimension of the
vector, i ∈ {1, .., N} is the index of the thumbnails and, N
is the total number of thumbnails. From the flight sequence,



we thus have a set of feature vectors {Xi}i=N
i=1 . Some of these

vectors may represent objects exhibiting anomalies.
2) Local Outlier Factor (LOF):

Detected object of the same class acquired during the
same fly over a power line should present roughly the same
appearance. A defective object could be then considered as an
outlier. We thus use the Local Outlier Factor (LOF) [24] as a
measure for evaluating the local deviation of a given feature
vector with respect all the others.

The LOF is based on the concept of ’local reachability den-
sity’, denoted ’lrd’, with respect to the k-nearest neighbors:

lrdk(Xi) = 1/

(∑
Xj∈Nk(Xi)

dk(Xi,Xj)

|Nk(Xi)|

)
, (1)

where dk(Xi,Xj) represents the reachability distance, defined
as the maximum between the Euclidean distance between Xi

and Xj , and the Euclidean distance between Xj and its k-th
nearest neighbor. Nk(Xi) represents the set of the k-nearest
neighbors of Xi. Based on this local reachability density, we
compute the Local Outlier Factor of a vector, which is the
ratio between the local reachability density of Xi and that of
its neighbors Nk(Xi):

LOFk(Xi) =

∑
Xj∈Nk(Xi)

lrdk(Xj)

|Nk(Xi)| × lrdk(Xi)
. (2)

This allows us to assign an anomaly score based on the
local density of a vector. The more isolated a vector is (fewer
neighbors and/or distant neighbors), the higher its LOF score
will be compared to other vectors.

III. EXPERIMENTAL SETUP

The used image detector was YOLOv5m6 model [11],
which we trained on 143 images of low-voltage “insulators”
using an Nvidia RTX3070 Laptop GPU. The 4,096×2,160
resolution images were extracted from two videos captured
during real preventive maintenance drone missions. The hy-
perparameters and weights used are those from the pretraining
on MSCOCO conducted by Ultralytics1. We set a batch size
of 4, an image resolution of 1,280×720, and the training lasted
for 85 epochs.

We used tracking algorithms like SORT [18] and Strong-
SORT [25]. An ID is assigned to each detected object in an
image sequence, based on motion estimation using a Kalman
filter and texture similarity through the correlation of feature
vectors computed on the thumbnails. This approach allowed
us to enhance insulator detection by lowering the confidence
threshold at which YOLO detections are considered valid.
Potential false positives were then filtered by considering
only tracked objects that appear in more than 15 consecutive
frames.

Finally, we used VGG16 to extract the feature vectors of
dimension d = 4096, for each thumbnail and then calculated
the LOF for each one.

1https ://github.com/ultralytics/yolov5

IV. RESULTS AND DISCUSSIONS

The first step consists in running an object detection in the
MOT pipeline. Figure 2 shows the detection of insulators on
a test image.

Fig. 2. Example of insulator detection by YOLOv5m6.

As previously mentioned, we lowered the confidence thresh-
old at which YOLO detections are considered valid to reduce
false negatives. Potential false positives were then filtered
by retaining only tracked objects that appear in more than
15 consecutive frames. Figure 3 compares the final detection
results over an entire video sequence under three conditions:
without tracking at a higher confidence threshold, without
tracking at a lower confidence threshold, and after applying
MOT processing and filtering. In this example, the drone flew
over three poles containing 3, 7, and 3 insulators, respectively.
The results show that the number of detected insulators is
stable and consistent with the ground truth.

Fig. 3. Number of insulators detected as a function of the time in seconds. The
drone flew over three poles, containing 3, 7, and 3 insulators, respectively. It
can be observed that the number of detected insulators is stable and consistent
with the ground truth.

Note that not all insulators are always detected, partly due
to occlusions. However, this does not pose a significant issue
for anomaly detection, as it is preferable to focus on visually
representative instances within the tracklet (i.e., thumbnails



displaying the complete object) to determine the presence of
anomalies.

We applied the entire processing pipeline (detection +
MOT + LOF) to a drone video provided by Enedis2, the
company responsible for managing and developing 95% of
the electricity distribution network in France. In this video,
one insulator exhibits a crack. Figure 4 shows the LOF scores
of all the thumbnails of objects detected as insulator, sorted
in descending order. The anomaly scores corresponding to the
images of the defective insulator are highlighted by the red
points. It can be observed that the scores for the thumbnails
of this insulator are among the most distinct and stand out
clearly. Note that the negative LOF values in the graph result
from the sklearn implementation, which outputs the negative
of the LOF value.

Fig. 4. LOF scores (k=400) associated with the thumbnails of insulators
detected by YOLO during a flight. The thumbnails are sorted in descending
order of their anomaly scores. Cracked insulators exhibit LOF scores that are
distinct from those of normal insulators.

We also evaluate the performance of our VGG16 feature
extractor coupled with LOF computation using a set of thumb-
nails of ’steel electric pole caps’ and ’wooden poles’ manually
extracted from a video. Some of the wooden poles were
damaged by termites, and some of the steel poles had their
caps disappeared. It can be observed in Figures 5 and 6, that
these defective objects also exhibit LOF scores that stand out
from those of the defect-free objects.

Fig. 5. LOF scores (k=2) associated with the thumbnails of wooden poles. The
thumbnails are sorted in descending order of their anomaly scores. The poles
damaged by termites, having a different texture, generally receive distinct
anomaly scores.

For all the results, the thumbnails of outliers show a higher
LOF score compared to the other thumbnails. This result
is interesting as it highlights the potential defective objects.

2The video is different from these used for the YOLOv5m6 training.

Fig. 6. LOF scores (k=2) associated with the thumbnails of steel poles.
The thumbnails are sorted in descending order of their anomaly scores. The
absence of a cap on certain poles significantly affects their visual appearance,
causing their anomaly scores to stand out prominently.

Setting the LOF threshold value is given to the drone operator
or the maintenance technician. Figure 7 illustrates a graphical
interface where each object is represented by an horizontal bar
on the flight timeline. The color red signifies that our method
suspects an anomaly. Clicking on a bar opens a window with
a representative thumbnail of the corresponding tracklet for
further examination.

Fig. 7. Graphical User Interface. The x-axis represents the flight video
timeline. Each detected object is depicted as a colored bar, with the color
indicating its normality (green = normal, red = anomalous). The user can
click on a bar to view the representative image of the corresponding tracklet
for further analysis.

V. CONCLUSION

In this paper, we propose a generic method for visual
defect analysis. A detector (YOLO) combined with a tracking
approach, trained on a few hundred examples, allows for the
extraction of all objects of interest from a video sequence.
Then, by using a generic feature extractor (VGG16) and a
geometric measure of outliers (LOF), we are able to detect
defective objects. In the case of a drone flying above a power
line, we can detect insulators exhibiting cracks, steel poles
with missing caps, and wooden poles damaged by termites.

Future extensions could include the use of Few-Shot Learn-
ing for detection [26], the use of other feature extractors such
as DINO [27] or semi-supervised anomaly detection [28],
an analysis of the sensitivity of the hyperparameter k in the
computation of LOF, and finally, active/incremental learning
to incorporate expert feedback and continuously improve our
model [29]. Additionally, further research could focus on
automatically preventing the computation of LOF for detected
objects that are partially occluded, as their altered extracted
features inherently increase the likelihood of being incorrectly
flagged as anomalous by our pipeline.
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