







# Pixels-off: Data-augmentation Complementary Solution for Deep-learning Steganalysis

IH&MMSec2020

15 June 2020

#### Presented by

Dr. Mehdi YEDROUDJ

Pr Patrick BAS

#### **Authors**

Dr. Mehdi YEDROUDJ
A. Pr. Marc CHAUMONT
A. Pr. Frédéric COMBY
M. Ahmed OULAD AMARA



# Outline

#### Introduction and background

Pixels-off technique

# Steganography & Steganalysis



#### Steganography vs. Steganalysis

Steganography: the practice of concealing a secret message within a digital support.

Steganalysis: the analysis of a cover material to identify the presence of hidden information.

# The chronology of steganalysis DL models evolution



# The evolution of steganalysis models depth over the last 5 years



# NN's performance in terms of depth and amount of data



[1] Deep neural networks are able to learn from massive amounts of data — adapted from 'Al is the New Electricity' (Andrew Ng)

# Steganalysis models performance in terms of depth and amount of data

#### Test protocol

Stéganographie: WOW

Payload: 0.2bpp

|              | BOSS   | BOSS+BOWS2 | BOSS+BOWS2+VA |
|--------------|--------|------------|---------------|
|              | (4000) | (14000)    | (112000)      |
| Xu-Net       | 32.4 % | 30.3 %     | 30.5 %        |
| Yedroudj-Net | 27.8 % | 23.7 %     | 20.8 %        |
| Ye-Net       | 33.1 % | 26.1 %     | 22.2 %        |
| SRNet        | 32.5 % | 24.1 %     | 19.0 %        |

[2] M. Yedroudi, M. Chaumont, F. Comby YEDROUDJ-NET: An efficient CNN for spatial steganalysis. (ICASSP), 2018

Xu-Net:5cony

Ye-Net:8conv

Yedroudj-Net:5conv

SRNet:14 conv

# Existing solutions for data enrichment

# Given a target database:

For the learning of the NN:

- Apply straightforward virtual data augmentation in either online or offline manner (flip & rotation  $\rightarrow \times 8$ ),
- Use other database similar to the target database (e.g. BOSS+BOWS2),
- Use similar cameras to capture new images, and reproduce the same development than the target database,
- ► Apply similar developments to those in the target database on the original RAW images.

[3] M. Yedroudj, M. Chaumont, F. Comby How to augment a small learning set for improving the performances of

a CNN-based steganalyz. (EI), 2018

- Due to storage limitations, RAW images are not usually available, besides not easy to reproduce the same development:
  - Apply similar developments to those in the target database on the original RAW images.

- ▶ Due to storage limitations, RAW images are not usually available, besides not easy to reproduce the same development:
  - Apply similar developments to those in the target database on the original RAW images.
- Definition of database 'resemblance' is not yet well established (no objective measurement):
  - Use other database similar to the target database (i.g. BOSS+BOWS2),

- Due to storage limitations, RAW images are not usually available, besides not easy to reproduce the same development:
  - Apply similar developments to those in the target database on the original RAW images.
- Definition of database 'resemblance' is not yet well established (no objective measurement):
  - Use other database similar to the target database (i.g. BOSS+BOWS2);
- ► The enormous variety of existing digital cameras:
  - Use similar cameras to capture new images, and reproduce the same development than the target database,

- ▶ Due to storage limitations, RAW images are not usually available, besides not easy to reproduce the same development:
  - Apply similar developments to those in the target database on the original RAW images.
- Definition of database 'resemblance' is not yet well established (no objective measurement):
  - ► Use other database similar to the target database (i.g. BOSS+BOWS2),
- ► The enormous variety of existing digital cameras:
  - Use similar cameras to capture new images, and reproduce the same development than the target database,
- ▶ Very small amount of data to start with (10,100 images):
  - Apply straightforward virtual data augmentation in either online or offline manner (flip & rotation  $\rightarrow \times 8$ )

# Proposed approach



# Pixels-off technique

- ► A new way to enrich a database in order to improve the CNN-based steganalysis performance,
- ► An efficient, generic approach which is usable in conjunction with other data-enrichment approaches,
- It can be used to build a "Side-Channel-Aware database" (SCA-database).

# Global flowchart of the pixel-off technique



# Phase1 : covers preparation



- ► Set the value of "P", the number of pixels to switch off,
- ► Generate a pixels-off version of cover images,
- ► A new set of covers is produced.

# Phase1: covers preparation





- ► Set the value of "P", the number of pixels to switch off,
- ► Generate a pixels-off version of cover images,
- ► A new set of covers is produced.

# Global flowchart of the pixel-off technique



# Phase2: stegos generation



- Chose an embedding algorithm,
- Set a payload size,
- ► Two sets of stegos are generated.

# Phase2: stegos generation



The embedding modification probabilities map for the cover (resp."pixelsoff" version) used by S-UNIWARD model with a payload of 0.4 bpp



- ► Chose an embedding algorithm,
- Set a payload size,
- ► Two sets of stegos are generated.

# Phase2: stegos generation



The embedding modification probabilities map for the cover (resp."pixels-off" version) used by S-UNIWARD model with a payload of 0.4 bpp



- Chose an embedding algorithm,
- Set a payload size,
- ► Two sets of stegos are generated.



# Global flowchart of the pixel-off technique



# Phase3: training with pixels-off enrichment



- Prepare the training set (initial cover/stego database + the pixels-off cover/stego images),
- Choose whether to use other given data augmentation techniques e.g. VA,
- ► Initiate the model training.

# Experimental results

#### Setup 1:

The enrichment method: pixels-off,

The steganalysis: Yedroudj-Net,

The database: BOSSbase.

|                                          | WOW    |        | SUNIWARD |        | examples | conv   |
|------------------------------------------|--------|--------|----------|--------|----------|--------|
|                                          | 0.2bpp | 0.4bpp | 0.2bpp   | 0.4bpp | (pairs)  | time   |
| $\mathbf{B} = BOSS$                      | 27.71  | 15.27  | 35.42    | 22.70  | 4,000    | 4-5h   |
| ${\bf B}_1 = {\bf B}{+}100$ -off         | 25.31  | 14.3   | 33.1     | 19.4   | 8,000    | 9-10h  |
| ${\bf B}_2 = {\bf B}_1 + 256$ -off       | 23.95  | 13.41  | 29.8     | 17.8   | 12,000   | 13-14h |
| ${\bf B}_3={\bf B}_2{+}400{\text{-off}}$ | 23.5   | 13.44  | 29.3     | 16.95  | 16,000   | 17-18  |
| ${\bf B}_4={\bf B}_3{+}1024{-}{\sf off}$ | 23.8   | 13.65  | 29.2     | 16.98  | 20,000   | 21-22  |

- ▶ The optimal parameter is roughly around P = 400 pixels-off,
- ► Combining various enrichments with *P* between 100 and 1024 improves the steganalysis efficiency.

# Experimental results

# Setup 2:

The enrichment method: pixels-off,

The steganalysis: CovPool-Net,

The database: BOSSbase.

|                                          | WOW    |        | SUNIWARD |        | examples | conv   |
|------------------------------------------|--------|--------|----------|--------|----------|--------|
|                                          | 0.2bpp | 0.4bpp | 0.2bpp   | 0.4bpp | (pairs)  | time   |
| $\mathbf{B} = BOSS$                      | 26.08  | 15.60  | 31.89    | 18.32  | 4,000    | 5-6h   |
| $\mathbf{B}_1 = \mathbf{B} + 100$ -off   | 25.33  | 14.63  | 28.54    | 16.25  | 8,000    | 10-11h |
| ${\bf B}_2 = {\bf B}_1 + 256$ -off       | 24.88  | 13.11  | 26.61    | 15.00  | 12,000   | 14-15h |
| ${\bf B}_3={\bf B}_2{+}400{\text{-off}}$ | 23.34  | 13.02  | 26.64    | 15.44  | 16,000   | 19-20h |
| $\mathbf{B}_4 = \mathbf{B}_1$ -VA        | 17.5   | 9.23   | 21.58    | 10.54  | 64,000   | 10-11h |

- The proposed method can improve performance of different steganalyzer,
- Accumulating VA + pixels-off can improve further the performance.

# Does other weak noise signal work?

# Setup 3:

The enrichment method: pixels-off, Gaussian, salt&pepper noise,

The steganalysis: Yedroudj-Net,

The database: BOSSbase.

|                                | WOW0.4 | SUNIWARD0.4 |
|--------------------------------|--------|-------------|
| BOSS                           | 15.27  | 22.70       |
| BOSS+100-off                   | 14.3   | 19.4        |
| BOSS+Gaussian                  | 16.08  | 23.25       |
| BOSS+salt&pepper (d = $0.05$ ) | 15.16  | 22.25       |
| BOSS+salt&pepper (d = 0.0016)  | 14.76  | 19.92       |

- ► Low-power noise (less than 1.5% modified pixels) can be useful,
- ▶ Other noises such as +/-1 noise achieve good results.

# SCA-database:

#### Setup 4:

The enrichment method: selective pixels-off,

The steganalysis: Yedroudj-Net,

The database: BOSSbase.

|                    | WOW0.4 | SUNIWARD0.4 |
|--------------------|--------|-------------|
| BOSS               | 15.27  | 22.70       |
| BOSS+100_off       | 14.3   | 19.4        |
| BOSS+100_off-lowP  | 15.17  | 20.85       |
| BOSS+100_off-highP | 13.65  | 18.15       |

- More beneficial to limit the pixels-off to pixels with a high modification probability.
- ► Another way of doing SCA steganalysis, by generating SCA training sets (to be investigated).

# Outline

Introduction and background

Pixels-off technique

# Conclusion

#### The pixel-off technique is:

- ► A novel technique for data-base enrichment for CNN-based steganalysis.
- Close in principle to noise addition, but made so that the pixel distribution of the resulting image remains close to that of the original image.
- ▶ Efficient, simple to implement, and come with low complexity.
- Suitable to be a complementary option to other enrichment techniques.
- May be used for building informed database "Side-Channel-Aware database".









# Pixels-off: Data-augmentation Complementary Solution for Deep-learning Steganalysis

Thank you for your attention

IH&MMSec2020

15 June 2020