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Abstract. This paper presents a new approach of camera model identi-
fication. It is based on using the noise residual extracted from an image
by applying a wavelet-based denoising filter in a machine learning frame-
work. We refer to this noise residual as the polluted noise (POL-PRNU),
because it contains a PRNU signal contaminated with other types of
noise such as the image content. Our proposition consists of extracting
high order statistics from POL-PRNU by computing co-occurrences ma-
trix. Additionally, we enrich the set of features with those related to CFA
demosaicing artifacts. These two sets of features feed a classifier to per-
form a camera model identification. The experimental results illustrate
the fact that machine learning techniques with discriminant features are
efficient for camera model identification purposes.
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1 Introduction

Source camera identification is one of the major interests in image forensics. It
is the process of deciding which camera has been used to capture a particular
image. The problem of establishing the origin of digital media obtained through
an imaging device is important whenever digital content is presented and is used
as evidence in the court. The general structure of a digital camera consists of
lens system, filters, color filter array (CFA), imaging sensor, and digital image
processor. The sensor is an array of rows and columns of photo-diode elements,
or pixels. To produce a color image, a color filter array (CFA) is used in front
of the sensor so that each pixel records the light intensity for a single color only.
An interpolation algorithm is used to generate the missing colors values from
adjacent pixels. All these elements can be used in extracting features in order to
identify a camera device.

There are two families of methods for camera identification. The first one
is based on producing a model, for example a PRNU, and then compute the
correlation between a given image and the model of a specified camera. The
second one is based on features extraction on a machine learning approach.
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From the first family of camera identification methods, a reliable one for
identifying source camera based on sensor pattern noise is proposed by Lukas et
al [1]. Due to imperfections in sensor manufacturing process, the Photo Response
Non-Uniformity (PRNU) is a major source of pattern noise. This makes the
PRNU a natural feature for uniquely identifying sensors.

Choi et al [2] proposed to use the lens radial distortion as a fingerprint to
identify source camera model. Each camera model expresses a unique radial
distortion pattern that helps to identify it.

Dirik et al [3] proposed the device identification from sensor dust in digital
single lens reflex cameras (DSLR). This problem arises due to the dust particles
attracted to the sensor. When the interchangeable lens is removed, a dust pattern
is created in front of the imaging sensor. Sensor dust patterns are used as artifacts
on the captured images to identify the camera device.

On the other hand, we have the second family of camera identification meth-
ods related to features extraction and machine learning . Bayram et al [4] ex-
plored the CFA interpolation process to determine the correlation structure pre-
sented in each color band which can be used for image classification. The main
assumption is that the interpolation algorithm and the design of the CFA filter
pattern of each manufacturer (or even each camera model) are somewhat differ-
ent from others, which will result in distinguishable correlation structures in the
captured images.

Kharrazi et al [5] identified a set of 34 image features that can be used
to uniquely classify a camera model. The proposed features are color features,
Image Quality Metrics (IQM), and wavelet domain statistics. Celiktutan et al
[6] used a set of binary similarity measures and a set of Image Quality Metrics
to identify the source cell-phone.

Our approach is a mix of the two families of methods since we use a polluted
PRNU in a machine learning framework. The polluted PRNU, that we called
POL-PRNU, is the sensor noise but also some residual linked to the content of
the image. In our approach, extracting the polluted PRNU from a single image
leads to an easy way to extract statistics from an image (co-occurrences and
color features from polluted PRNU). Indeed, the set of images used to train the
classifier will be lightly scattered thus limiting the overfitting effect. Additionally
we propose to use a bigger set of features (compared to the classical machine
learning approaches) in order to better describe the statistics.

This paper is structured as follows. Section 2 explains the classical approach
to compute PRNU. Section 3 presents all the details of our approach, from
POL-PRNU extraction to the features computed from co-occurrences and CFA
interpolation. In section 4, we describe the experiments, the results, and the
database used for experiments. Finally, we conclude in Section 5.

2 Preliminaries

Camera sensor consists of a large number of photo detectors called pixels which
convert photons to electrons. Each pixel in a digital camera’s sensor records the
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Fig. 1. Sample image and its residual noise

amount of incident light that strikes it. Slight imperfections in manufacturing
introduce small amounts of noise in the recorded image.
This noise is spatially varying and consistent over the time and can therefore
be used for forensic purposes. It has a stochastic nature and is unique for each
sensor. This makes it an ideal candidate for forensic applications, such as camera
identification [7].
Generally, most PRNU-based image forensic techniques extract the residual noise
from image by subtracting the denoised version of the image from the image itself
as in equation(1):

N = I − F (I), (1)

where I is the image, F (I) is the denoised image, and F is a denoised filter.
Wavelet based denoising filter is recommended and it is used in most cases
because it provides the least amount of traces of the scene [7].
In order to extract the PRNU of a camera, multiple images are averaged. At
least 50 images are used to calculate the reference pattern Kc [7] of a known
camera C as in equation(2).

Kc =

∑n
i=1(NiIi)∑n

i=1 I
2
i

. (2)

A common approach to perform a comparison is to compute the Normalized
Cross-Correlation which measures the similarity between the reference pattern
Kc and the estimated noise N of an image under test which is of unknown source
[7]. Normalized Cross-Correlation is defined as:

ρ(N,Kc) =
(N −N).(Kc −Kc)

‖N −N‖.‖Kc −Kc‖
. (3)

Where N and Kc are the means of N and Kc, respectively.
By applying equation(1) on an image I, we obtain the residual noise. The

residual noise is a sum of different noise. One of them is the sensor pattern noise
PRNU. Other types of noise, such as image content, may pollute the PRNU and
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are part of the residual noise given in equation (1). An example is provided in
Figure(1) shows an image and its residual noise which contains some clear parts
of the scene.

In this paper, we will consider only the residual noise and call it polluted
PRNU (POL-PRNU). This POL-PRNU will then be used for extracting discrim-
inant features. In a machine learning framework, the polluted PRNU is beneficial
for the learning process. Indeed, the set of images for a given camera better fill
the space and make the obtained cloud in the feature space more spread. Finally,
this paper shows that extracting features of high dimension achieves very good
results even if the learning database is small.

3 Proposed method

Camera model identification approach based on machine learning is used to
classify the camera based on discriminant features extracted from images. In
our approach we extract the features directly from what we called the POL-
PRNU. The scheme presented in Figure 2 shows the functional diagram of our
proposal. In general, the image is decomposed into its three color channels (r, g,
b) considering the central 1024x1024 pixel image block. The POL-PRNU of the
image is obtained by subtracting from the original image its filtered version by
a wavelet denoising filter. Two sets of features are extracted from POL-PRNU
for classification. The following two sub-sections describe the theoretical aspects
of the major parts of our approach.
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3.1 POL-PRNU Extraction

First of all after decomposing the image into its three color channels, the central
block 1024x1024 is extracted. Using a small block from the original size reduces
the computational complexity, and speeds up the matching process. In [10], the
authors prove that the false-positive rate FPR decreases as the size of the image
block is greater, which reaches the minimum when the block size is 1024x1024
pixels.

Our POL-PRNU N is extracted by subtracting the denoised version of the
image from the image itself I [1] as in equation(1). For the denoising process, a
wavelet based denoising filter, F (I), is used based on a Wiener filtering of each
wavelet sub-band for each channel as in [1].

In order to suppress all artifacts introduced by color interpolation and JPEG
compression, a periodic signal of pattern noise, called the linear pattern L, is
extracted by subtracting the average row (respectively average column) from
each row (respectively column) of N from each color channel separately [7]. This
leads to the three linear patterns corresponding to each color channel, noted Lr

for red channel, Lg for the green channel, and Lb for the blue channel.
Finally, the three linear patterns are combined into one pattern, noted  L by

using the conversion formula from RGB to gray-scale as in equation(4). Extract-
ing the features from the recombined linear patterns will be more reliable due
to the fact that the three linear patterns are highly correlated and provide a
compact information for the classifier [7].

 L = 0.3.Lr + 0.6.Lg + 0.1.Lb. (4)

3.2 Description of Features

Co-occurrences matrix The promising aspects of rich models approach [11]
can be adapted to extract co-occurrences of a POL-PRNU image. Rich models
can play a potential role to provide a good model for forensics applications,
especially, in forgery detection and localization [12, 13].

Indeed co-occurrences are a very good way to describe the statistics of some
data owning neighborhood relations, which is the case for POL-PRNU images.
Calculating the co-occurrences of the POL-PRNU allows a reduction of the di-
mension and gives a good representation of the statistical properties of finger-
print. The co-occurrences feature vector is made of joint probability distributions
of neighboring residual samples. In our case, the residual is the POL-PRNU im-
age which is explained in section 3.1. We use four-dimensional co-occurrences
matrices formed by groups of four horizontally and vertically adjacent residual
samples after they were quantized and truncated as follows:

R← truncT (round( L/q)), (5)

where truncT is a function to minimize the residual range with T ∈ {−T, ..., T},
round(x) gives the nearest integer value of x,  L is the linear pattern of the POL-
PRNU given in equation (4), and q ∈ {1, 1.5, 2} is the quantization step.
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The final co-occurrences matrix will be constructed from horizontal and vertical
co-occurrences of four consecutive values from R of equation (5). The horizontal
co-occurrence matrix Ch

d is computed as follows:

Ch
d = 1

Z |{(i, j) | Ri,j = d1, Ri,j+1 = d2, Ri,j+2 = d3, Ri,j+3 = d4}|, (6)

where Z is the normalization factor, with Ri,j ∈ N is the coefficient from
the matrix R at position (i, j) ∈ {1, ..., n}2, d = (d1, ..., d4) ∈ {−T, ..., T}4 with
T = 2.

Equivalently, we can compute the vertical co-occurrences matrix.

Color Dependencies The underlying assumption is that, the CFA interpola-
tion algorithms leave correlations across adjacent pixels of an image. In digital
cameras, the color filter array is placed before sensor to produce the colored im-
age. The CFA is usually periodic and forms a certain pattern. The missing color
components are interpolated using existing neighbor color components. The CFA
pattern and the way of colors interpolation are important characteristics of the
camera model and can be used in the camera identification process [4].
In this section we will describe the features extracted from the Lr, Lg, and Lb

by computing local dependencies or periodicity among neighboring samples. The
normalized cross-correlation is computed between the estimated linear pattern
from POL-PRNU of color channels and their shifted version as in [14]. For each
color channel pair (C1, C2), C1, C2 ∈ {Lr, Lg, Lb} and shift 41 ∈ {0, ..., 3},
42 ∈ {0, ..., 3}. The normalized cross correlation between two matrices is de-
fined as:

ρ(C1, C2,4) =

∑
i,j(C1i,j − C1)(C2i−41,j−42 − C2)√∑

i,j(C1i,j − C1)2
∑

i,j(C2i−41,j−42 − C2)2
, (7)

where ρ is the normalized cross correlation, 4 = [41 42]T is the 2D shift,
C1 and C2 are sample means calculated from matrices C1 and C2 respectively.
This step results in 96 features which are the result of six combinations of color
channels by 4× 4 shifts of 41 and 42.

3.3 Classification

A Support Vector Machine (SVM) constructs a hyperplane, or a set of hyper-
planes, in a high dimensional space which can be used for classification. The
effectiveness of the SVM depends on the selection of kernel function, and the
kernel’s parameters [18].

Using a kernel function provides a single point for the separation among
classes. The radial basis function (RBF), which is commonly used, maps samples
into a higher dimensional space that can handle the case when the relation
between class labels and attributes is nonlinear.

Projecting into high-dimensional spaces can be problematic due to the so-
called curse of dimensionality. As the number of variables under consideration
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increases, the number of possible solutions also increases exponentially. The re-
sult is that the boundary between the classes is very specific to the examples in
the training data set. The classifier has to handle the overfitting problem, so as
it has to manage the curse of dimensionality [15].

In our case, the training and testing sets have 100 instances each, and the
number of features is 10860 which is considered much larger than the number
of instances. Here, we have to proceed the learning process with a small data
base and a large dimension. Thus, the overfitting and the curse of dimensionality
problem may occurs.

Fortunately, when the SVM uses the cross validation procedure, the cost
parameter that controls the over/under-fitting phenomenon, is set to a value that
allows a better handling of the curse of dimensionality problem and then, can
prevent the overfitting problem. A cross validation procedure splits the original
training data into one or more training subsets. More precisely, the v-fold cross
validation divides the training set into v subsets of equal size, v-1 subsets are
used for training and the rest subset is left for testing.

4 Experimental results

4.1 Data Acquisition

The Dresden Image Database is designed to fill the needs for digital image foren-
sics applications by providing a useful resource for investigating camera-based
image forensic methods [16]. It provides 16,000 authentic digital full-resolution
natural images in the JPEG format, and of 1,500 uncompressed raw images. It
covers different camera settings, environments and specific scenes, facilitate rig-
orous analyses of manufacturer, model or device dependent characteristics and
their relation to other influencing factors. In our experiments 14 different camera
models were used, as outlined in table 1. A set of 100 images for the training
and an another one of 100 images for the test are used from Dresden database
for each camera model. As a result 1400 images for training and 1400 images for
testing were used from 14 camera model which are randomly selected.

4.2 Experimental Protocol

Since each color channel is denoised separately, an image is decomposed into
its three color channels (R, G, B). It is recommended that when image blocks
are used in forensic investigation, they should be taken from the image center
before POL-PRNU extraction stage. This will reduce false positive rate [10]. The
images from the training and testing sets are cropped to obtain the 1024x1024
central images. The essential step is to extract POL-PRNU from all images by
applying wavelet denoising filter on the original image. This step then followed
by subtracting the denoised image from original as explained in section 3.1.

Two sets of features are extracted from linear pattern of POL-PRNU of
each image. The first set is the co-occurrences matrix which consists of 10764
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Abbreviations Brand Model Resolution

(A1) Agfa Photo DC-733s 3072x2304

(A2) Agfa Photo DC-830i 3264x2448

(A3) Agfa Photo Sensor 530s 4032x3024

(C1) Canon Ixus 55 2592x1944

(F1) Fujifilm FinePix J50 3264x2448

(K1) Kodak M1063 3664x2748

(N1) Nikon D200 Lens A/B 3872x2592

(O1) Olympus M1050SW 3648x2736

(Pa1) Panasonic DMC-FZ50 3648x2736

(Pr1) Praktica DCZ 5.9 2560x1920

(Sa1) Samsung L74wide 3072x2304

(Sa2) Samsung NV15 3648x2736

(So1) Sony DSC-H50 3456x2592

(So2) Sony DSC-W170 3648x2736

Table 1. Models used from Dresden database

features of different statistical relationships among neighboring pixels. While
the second set consists of 96 features from normalized cross correlation between
POL-PRNU and its shifted versions to get the CFA interpolation dependencies
among neighbor pixels. See section 3.2 for the two feature sets. This resulting in
10860 as a total number of features.

For the feature normalization step, we used the method of min-max scaling
for both training and testing sets. In this approach, the features will be re-
scaled, to a specific range [0,1]. This will avoid attributes in the greater numeric
ranges dominating those in the smaller ranges. For the classification, LIBSVM
package was used [17] with the Radial Basis Function (RBF) and v-fold cross
validation scheme. Although SVM is a binary classification model, LIBSVM
package performs multi-classification by using one-versus-rest (OVR) approach.

We used the kernel parameter γ = 2−7 and cost parameter C = 4096
for the SVM after examining a grid search over a range of values. For γ ∈
{23, 22, 21, ..., 2−15} and C ∈ {215, 214, 213, ..., 2−5} as is recommended in [18].
The training and testing sets consisted of 100 images each for each camera model.
The method was implemented under corei7 processor with memory of 16 gega
bytes. For the computation cost, the feature extraction process took few seconds
for each image, while the training process took 30 minutes.

Filler et al [14] proposed a method for camera model identification which aims
to classify camera models using some features. We have implemented this method
for comparison purposes on the same set of images from Dresden database. The
later method [14] proposed features are concerning statistical moments, cross
correlation between color channels, block covariance, and cross correlation of
the linear pattern. The images are cropped to 1024x1024. We did not perform
the step of reducing feature space.
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Camera Model A1 A2 A3 C1 F1 K1 N1 O1 Pa1 Pr1 Sa1 Sa2 So1 So2

A1 96.93 - 1.0 - - - - - 1.32 - - - - -

A2 1.53 97.92 - - - - - - - - - - - -

A3 - - 98.93 - - - - - - - - - - -

C1 - - - 99.57 - - - - - - - - - -

F1 - - - - 98.57 - 1.33 - - - - - - -

K1 - 1.29 - - - 98.21 - - - - - - - -

N1 - - - - - - 99.07 - - - - - - -

O1 - - - - - - - 98.93 - - - - - -

Pa1 - - - - - - - - 99 - - - - -

Pr1 - - - 1.37 - - - - - 97.79 - - - -

Sa1 - - - - - - - - - - 99.91 - - -

Sa2 - - - - - - - - - - 2.20 97.57 - -

So1 1.51 - 1.01 - - - - - - - - - 93 4.36

So2 - - - - - - - - - 2.83 - - 3.3 93.94

Table 2. Confusion matrix of the proposed method for the fourteen camera models,
the symbol ’-’ refers to the values less than 1%.

4.3 Results and Discussion

A comparison is performed between our method and three other experiments.
From the proposed method, we take the first set of features (the co-occurrences
matrix) and perform it alone. The experiment resulted in 96.91% as an identifica-
tion accuracy. This proves the potential role of the statistical features represented
by co-occurrences matrix.

The second experiment is performed by taking the set of CFA interpolation
features alone from our proposed method. It gave a result of 86.93% of accuracy.
This is considered acceptable but not enough, and still less than the result of
the first experiment of the co-occurrences computed on the POL-PRNU.

The method presented in [14] is tested under a similar conditions as discussed
in section 4.2. This method only achieved 88.23% as an average identification
accuracy. This low result may be explained by the use of probabilities of first
order.

Back to our method, we gathered the two sets of proposed features. By
combining the co-occurrences computed on the linear pattern from equation 4
and the CFA features, we gain almost 1% accuracy. The computation of the co-
occurrences on the linear pattern is the most important features and the addition
of CFA features allows to improve the efficiency. Our method achieved an average
accuracy of 97.81%. We can see from the table 2 that some of the models are
identified with a very high accuracy. For example, Samsung-L74wide, and Canon-
Ixus55 achieve 99.91%, and 99.57% respectively. Also, most of the other camera
models do so, except for the Sony-DSC-H50, and Sony-DSC-W170. They achieve
the lowest rates of 93%, and 93.94% respectively, and this is, maybe, PRNU
structure is very close between the two cameras.

Table 3 shows all the mentioned comparisons with their accuracy rates.
Finally, we conclude that our method always performs better than the com-
pared method. This is due to the strength of the descriptive features of the
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co-occurrences, and the additional interesting features of CFA interpolation char-
acteristics.

Camera identification method Result(%)

CFA 86.93

Co-occurrences 96.91

Compared method in [14] 88.23

Proposed method 97.81

Table 3. Overall average identification rates for all the tested algorithms.

5 Conclusion

This paper proposes an algorithm for identifying camera sources combining tech-
niques based on sensor pattern noise and machine learning. The algorithm is
mainly composed of extracting two sets of features from the noise residual POL-
PRNU. The first set is the co-occurrences matrix. The second set is the color
dependencies from normalized cross correlation of the three color channels and
their shifted versions . These sets of features served as input to the SVM which
is used as a classifier. The effectiveness of the method for source camera model
identification, was tested on a set of images from the Dresden data-base.

The results illustrate the efficiency of the proposed method since it provides
an identification rate of 97.81%. Compared to Filler’s method [14], we increase
the identification rate by 9.58% since it only achieved 88.23% of identification
on the same data set.

One problem related to the PRNU correlation based methods is their weak
detection rate if geometrical transformations such as, cropping or scaling, have
been performed. The direct detection will not succeed because of the desynchro-
nization introduced by additional distortion [9].

Our future work include enhancing the proposed method to a better classifi-
cation accuracy by improving the former feature set, and considering the problem
of the geometrical transformations. Adding an unknown class will also be one of
the perspectives, as an additional class, to handle models which are not in the
training set.
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