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ABSTRACT 

 
Steganography is the art of secret communication [1] Since the advent of modern steganography, in the 
2000s, many approaches based on error correcting codes (Hamming, BCH, RS ...) have been proposed to 
reduce the number of changes in the roof while inserting the maximum bit. Jessica Fridrich's works have 
shown that sparse codes best approach the theoretical limit of efficiency of insertion. Our research 
works are a continuation of those on low-density codes (LDGM) proposed by T. Filler in 2007. In this 
paper we propose a new approach to correcting codes using LDPC codes rather than LDGM. The 
complexity of our approach is much less than that of T. Filler which makes it usable in practice. 
 
Keywords: LDPC Codes, Encoding, Decoding, Steganography. 

 

1 INTRODUCTION 

Steganography is the art of secret 
communication. Steganography consists in hiding 
a message into a medium-trivial for example, a 
picture, video, sound, so that this insertion is 
statistically undetectable. 
    One of the assumptions made before 2011, was 
to say that it was sufficient to minimize the 
number of modification of the medium to ensure 
maximum security of the scheme. This 
assumption casts doubt over question the 
competition BOSS. That is to say, while 
minimizing the number of changes the study 
of error correcting codes to insert a message is an 
interesting problem. 
Many steganographic schemes based on the 
principle of "embedding matrix" (there is a use 
hijacked correcting codes) have been proposed in 
the past BCH, RS ... [2] [3] [4] These patterns are 
usually far from the theoretical limit of efficiency. 
    Our work continues the same approach to 
minimize the number of changes by providing 
support host-based approach using LDPC error 
correcting codes. Our approach has the advantage 
of being less complex than the 
LDGM approach [5]while being very close to 
the theoretical limit of efficiency of insertion. In 
Section 2 we will recall the principle of operation 

of the LDPC codes. In Section 3 we will 
explain our approach. In Section 4 we will present 
the experimental results. 
    
2 CODES LDPC 

 
2.1 Definition 
   A code LDPC is a code which matrix of parity 
checks H is of weak density. The weak density is 
explained by the fact why there is more number 
of “0” that number of “1” in the matrix [6].A code 
LDPC can be represented in matrix and graphic 
form called bipartite graph (or Tanner). Thus We 
have: 

۶ ൌ ൮

1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

൲ 

 

Figure 1: Bipartite graph of a code LDPC 
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   In this graph the rows (check nodes) are 
represented by squares, the columns (variables 
nodes) by circles and the “1” by arcs. 

There are two families of codes LDPC: regular 
codes and irregular codes. 

   Regular codes LDPC are the codes in which the 
number of “1” in each row and the number of “1” 
in each column are constant. By extension, 
irregular codes LDPC are the codes defined by 
matrices of parity check where the number of “1” 
in each row or column is not constant. The 
irregularity of these codes is specified through 
two polynomials λሺxሻ and ρሺxሻ. 

ሻݔሺߣ ൌ ෍ ௜ߣ
௜ஹଵ

 ௜ିଵ                                            ሺ1ሻݔ

ሻݔሺߩ ൌ ෍ ௜ߩ
௜ஹଶ

 ௜ିଵ                                            ሺ 2ሻݔ

Where λ୧ (resp. ρ୧) the proportion of the number 
of branches connected to the variables nodes 
characterizes (resp. with the check nodes) of 
degree i compared to the full number of branch. 
The degree is defined like the number of branches 
connected to a node.  

2.2 Encoding 

   Works of T.J. Richardson and R.L Urbanke [7] 
showed that the matrix of control must undergo a 
pretreatment before the encoding operation.  The 
goal of the pretreatment is to put the matrix H in a 
lower almost triangular form, as shown in the 
Figure 2, by using only permutations of the rows 
or columns. This matrix is made up of 6 hollow 
sub matrices, noted as A, B, C, D, E and of a 
matrix T under lower triangular of size m-g × m-g   
. Once completed the pretreatment of H, the 
principle of the encoding is based on the 
resolution of the system represented by the 
following matrix equation: 

              cH୘ ൌ 0                                                    ሺ3ሻ 

 

Figure 2: Representation in pseudo form 
triangular lower of the matrix H 

    

The algorithm of pretreatment is described in a 
following way: 

The preprocessing algorithm is described 
below succinctly [8] 

1 - [Triangulation] performs the permutations of 
rows or columns of an approximation of the 
matrix H as lower triangular. 

ܪ ൌ ቀܣ ܤ ܶ
ܥ ܦ  ቁܧ

With a gap g small if possible. We will see in the 
following section how this can be effectively 
accomplished. 

 2 - [Control of row] to use Gaussian elimination 
to carry out the pre-multiplication indeed.  

ቀ ܫ 0
െିܶܧଵ ቁܫ ቀܣ ܤ ܶ

ܥ ܦ ቁܧ

ൌ ቀ ܣ ܤ ܶ
െିܶܧଵܤ ൅ ܥ െିܶܧଵܤ ൅ ܦ 0ቁ 

In order to check that െETିଵB ൅ D is non-
singular and executant of other permutations of 
column to the need to ensure this property. 

When solving the equation (3), the code word 
sought is divided into three parts: c ൌ
ሺ܌, ,૚ܚ  ૛ሻ , where d is the systematic part (thatܚ
is to say an element the canonical 
basis in the vector space of dimension n-m as 
shown in Figure 2) where 
the desired redundancy bits are separated into 
two vectors r1 and r2 of respective sizes g and m-
g . After multiplication on the right by the 
matrix  ቀ ܫ 0

െିܶܧଵ  :ቁ, the equation (3) becomesܫ

்܌ܣ            ൅ ૚ܚܤ
் ൅ ૛ܚܶ

் ൌ 0          ሺ4ሻ 

    ሺെିܶܧଵܣ ൅ ்܌ሻܥ ൅ ሺെିܶܧଵܤ ൅ ૚ܚሻܦ
் ൌ 0     ሺ5ሻ 

The equation (5) makes it possible to find 
૚ܚ

் while reversing Φ ൌ െିܶܧଵܤ ൅  Then the .ܦ
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equation (4) makes it possible to find ܚ૛
். Many 

expensive operations in time can be made once 
for all in a pretreatment. All the operations 
repeated during the encoding have a complexity 
in Oሺnሻ except for the multiplication of 
ሺെିܶܧଵܣ ൅  by the square matrix ்܌ሻܥ
ሺെΦିଵሻ of size g x g which after insertion is not 
hollow any more from where a complexity 
in Oሺgଶሻ. T.J. Richardson and R.L Urbanke also 
shown  that we can obtain a value of g equal to a 
weak fraction of n: g ൌ  is a ߙ where ݊ߙ
sufficiently low coefficient so that Oሺgଶሻ ا
Oሺnሻ for values of n going until 10ହ. 

Thus, the complexity of the approach of 
encoding complexity is O (n). 

2.3 Decoding 

   The decoding of codes LDPC is carried out 
starting from the iterative algorithms of which 
more used is the algorithm of Belief Propagation 
(BP). At each iteration, there is exchange of 
messages between the variables nodes and the 
check nodes, on the same arc of the bipartite 
graph. 

   The algorithm of Belief Propagation consists in 
updating initially the variables nodes then the 
check nodes and finally to make a decision based 
. (see work of Jean-Baptiste Doré [8]) . 

  The update of the messages m୴ୡ resulting from 
the variable node v with iteration i is calculated in 
the following way: 

݉௩௖
௜ ൌ ଴ݒ ൅ ෍ ݉௖ ′௩

௜ିଵ

௖ ஼ೡ\௖א′

                                 ሺ6ሻ 

Where ݒ଴ represent the log likelihood ratio of 
probability resulting from the observation ݕ௩ at 
output of the channel: 

଴ݒ ൌ ln
ݒ|௩ݕሺ ݎܲ ൌ 0ሻ
ݒ|௩ݕሺ ݎܲ ൌ 1ሻ                                   ሺ7ሻ 

And where ܥ௩ represents the whole of the check 
nodes connected to the variable node v. With the 
first iteration, the message coming from the check 
nodes are null. 

   The update of the messages ݉௖௩ resulting from 
the node of control C to iteration i is calculated in 
the following way: 

݉௖௩
௜

ൌ 2tanhିଵ ቌ ෑ tanh ቆ
݉௩′௖

௜ିଵ

2 ቇ
௩′א஼೎\௩

ቍ               ሺ8ሻ 

Where ܥ௖ represents the whole of the variable 
nodes connected to the check node c. 

3 PRINCIPLE OF THE SCHEME BASED 
ON CODES LDPC 

3.1 Minimization embedding impact 

   When we want to hide a message by using a 

steganography scheme, we take x א Fଶ
௡ and this 

sequence is changed into a steganography 

image y א Fଶ
௡. And the message can be 

represented by m א Fଶ
௠ with ݉ ൏ ݊. 

   Indeed, to measure the similarity between the 
cover vector and the steganography image, we use 
the additive function of distortion which is 
defined by: 

݀ሺx, yሻ ൌ ԡx െ yԡ

ൌ ෍ ௜|x௜ߩ െ y௜|
௡

௜ୀଵ

                    ሺ9ሻ 

    Where  ߩ௜ or the not-negative number is the 
cost embedding of the pixels to be changed which 
belongs to the interval [0 1]. 

   And the efficiency embedding is given by the 
following relation: 

                 ݁ሺx, yሻ
ൌ

݉
݀ሺx, yሻ                                     ሺ10ሻ 

   In the case of codes LDPC, the matrix of parity 
check H is used for encoding and even for 
decoding. For that, let us take ܥሺܕሻ ൌ
ሼܞ א Fଶ

௡|۶ܞ ൌ  ሽ the coset1 corresponding to theܕ
syndrome ܕ א Fଶ

௠ (m is the secret message). The 
embedding and the extraction of the message can 
be given by: 

    y ൌ ,ሺxܾ݉ܧ mሻ ؜ arg min
୳א஼ሺ୫ሻ

ԡx െ vԡ       ሺ11ሻ 

ሺmሻݐݔܧ     ൌ Hy ൌ m                                    ሺ12ሻ 

   Let us take a vector u member of the coset such 
as. 

min
୴א஼ሺ୫ሻ

ԡx െ vԡ ൌ min
ୡא஼

ԡx െ u െ cԡ        ሺ13ሻ 

c is the code word which is determined by the 
equation (13).   The sender must find the vector u 
in order to satisfy the equation (15). 

                                                           
1 The whole of the words of code which have the same 
syndrome 



Journal of Theoretical and Applied Information Technology 
15th April 2012. Vol. 38 No.1 

 © 2005 - 2012 JATIT & LLS. All rights reserved.                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
106 

 

   To reduce the embedding impact to the 
minimum, the sender must find a vector there 
nearer to x. 

   A binary code C used for the embedding of a 
message has a rate ܴ ൌ ௡ି௠

௡
ൌ 1 െ ߙ and ߙ ൌ ௠

௡
  

is the payload. Consequently, we can write the 
higher limit of the rate of distortion by using the 
average embedding distortion [9]: 

ߙ      ൌ 1 െ ܴ ൑ ሺ݀ܪ ݊⁄ ሻ                   ሺ14ሻ 

Where H is the entropy function which is defined 
by: 

ሻݔሺܪ ൌ െݔ logଶ ݔ െ ሺ1 െ ሻݔ logଶሺ1 െ  ሻݔ

   According to the definition of the effectiveness 
of insertion, we can obtain the higher limit: 

  ݁ ൑
ߙ

 ሻ                                 ሺ15ሻߙଵሺିܪ

3.2 The scheme proposed 

T. Filler [5] proposed the use of LDGM codes to 
minimize the number of changes to support a 
host. T. Filler showed that the insertion is 
equivalent to the problem of quantifying binary. 
To solve this T. Filler used the BP algorithm 
applied to LDGM codes. 
Our work is an extension of the work of T. Filler  
with, for our purposes, the use of LDPC codes. 
The use of LDPC codes overcomes the problem 
of complexity of implementation of the 
scheme T. Filler and its cumbersome 
implementation. In against part, the same way 
as T. Filler, our scheme is very close to the 
theoretical limit. 
    We will seek to minimize the number of pixels 
to change to insert a message into a cover 
image. We take as representative of the cover 
image the binary vector x consists of the LSB 
(Least to represent bits) of the pixels to insert 
the selected message. 

The insertion of the message x is then performed 
as: 
[Treatment of the matrix of control] Pre-
treatment of the matrix parity check is performed 
as explained in Section 2.2. Note that the method 
proposed by T. Filler does not go through the pre-
treatment. 
[Calculation of a vector u] We calculate the 
vector u as a member of the coset: 
               u= P T.m  (12) 
where P T is the transpose of the 
matrix H 'obtained  
through preprocessing algorithm described in 

Section 2.2. This differs from the approach 
of Filler. In fact to determine u, we made 
a treatment at the generator matrix G 
LDGM code with the introduction of two 
matrices which assumes the existence Pr matrix 
that permutes the rows, the matrix 
switches Pc columns. 
Filler led to the following equation: 

(PrGPc)T=G’T=ቀA B T
C D Eቁ 

 Where  ቀA B T
C D Eቁ  triangular matrix as closely 

as defined Section 2.1. 
  To make this work, he was inspired by the work 
of Richardson and Urbanke finally he asked: 
  u = Pr-1. (m, 0) or 0 is a vector that it 
concatenates the message m for the matrix 
multiplication is possible. 
We see that this approach is very tedious for the 
determination of the vector u, we propose a much 
simpler method with LDPC codes. 
Treatment of the parity check matrix is made by 
Richardson and Urbanke without using 
matrices that allow either swap the rows or 
columns of the matrix. 
3. [Calculation of the vector c] Calculate c 
= (d,r1, r2), with the systematic part of (that is to 
say an element of the canonical basis in the vector 
space of dimension n-m as shown in Figure 
2) .The vectors r1 and r2 are determined as 
explained in Section 2.2. 
4. [determination of the vector change r] We 
determine the vector r approaching x-u-c as 
described in equation (13) BP by running the 
algorithm that takes as input and returns the 
 x െ u െ c codeword r. Note that T. Filler also 
uses the BP algorithm with the same approach for 
the vector of change r. Once the vector r 
changes is obtained, we calculate the vector  y 
=r + u. 

 

 

Figure 3: Diagram based on codes LDPC 

Figure 3 shows a representation of the different 
steps in the process of inserting a message into a 
vector coverage using the codes 
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4 PRESENTATION AND ANALYZES OF 
THE RESULTS 

The construction of an LDPC code is to be filled 
with non-zero values the parity matrix. To 
optimize the construction of LDPC codes, we use 
the three-step approach of 
Claude Berrou(optimization profiles of 
irregularity, size optimization cycles, code 
selection by the pulse method).Figure 4 shows a 
representation of a parity check matrix of an 
LDPC code in accordance with these principles. 

 
Figure 4: Example of matrix of parity LDPC 

 

In Figure 4, the matrix is of size 100 x 200, 
that is  to say 100 rows and 
200 columns. The non-zero (nz = none zero in the 
figure) is represented by "point blue" and is in 
number600. The rate is τ = 600 / ((100 x 200)) 
= 0.03.For this example, 3% of the matrix 
elements are nonzero. 

 
Figure 5: Representation form almost triangular 

matrix of parity 
     

Figure 5 shows a representation of the parity 
check matrix of the output of the preprocessing 
algorithm described in Section 2.2. 

 

Figure 6: Distortion for the various messages 
hidden in a cover vector length 500 

 
Figure 7: Distortion for the various messages 

hidden in a cover vector length 1000 

 

Figure 7: Distortion for different messages 
inserted into a vector of length 1000 
     Figures 6 and 7 give a representation of the 
different values of the distortion (number of 
pixels changed) in the vectors of length 500 bits 
cover bits and 1000 respectively according to the 
length of the message. Messages and vectors of 
coverage are randomly generated. For the vector 
of 500 bits, messages inserted have sizes ranging 
from 25 to 250. The upper bound is equal 
to 250 bits because the message size must 
satisfy the following inequality: 2m ≤ n with 
m and n the respective sizes of the message 
and the vector coverage. For the vector of 1000 
bits, messages inserted have sizes ranging from 
50 to 500. Note that the vectors of coverage can 
be considered as the LSB of the pixels of a cover 
image.We note that the distortion is almost linear 
in the size of the message 
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Figure 8: Comparison of performance between 

the codes The theoretical upper limit of the 
efficiency of insertion [9] 

 
 

  ݁ ൑
ߙ

      ,ሻߙଵሺିܪ
 

With  ߙ ൌ ௠
௡

   the payload    H is the entropy 
function is defined by: 

ሻݔሺܪ ൌ െݔ logଶ ݔ െ ሺ1 െ ሻݔ logଶሺ1 െ  ሻݔ

Figure 8 compares the performance of insertion 
of LDPC codes, Hamming and STC and the route 
of the theoretical efficiency limit of 
integration. The values of the efficiency of 
insertion for the LDPC codes are obtained by 
inserting 10 messages in a vector of size n 
=1000. The performance figures for the insertion 
code STC are obtained by running the source 
code of Tomáš Filler and 
Jessica Fridrich [9])(with an adjustment cost 
of detectability constant). The efficiency values 
of Hamming codes are determined by the formula 
e ൌ ౦

భషమష౦ with p an integer. Figure 8 confirms 
the hypothesis that Jessica Fridrich codes 
approach very sparse matrices prepared the 
theoretical limit of efficiency of insertion. 
  LDPC codes are good candidates for 
steganography by minimizing the number of 
pixels changed 

5. CONCLUSION 

In this paper, we reiterated the principle of 
operation of the LDPC codes. Then we presented 
an approach of "embedding matrix" based on the 
approach of T. Filler, but which complexity is 
greatly reduced by a pre-treatment of control 
matrix. The results confirm that 

the binary LDPC codes are used to insert a 
message by minimizing the number of pixels 
changed. In comparison with the binary codes 
STC [10](with use of a constant cost of 
detectability), LDPC codes are more efficient 
because they come more to the theoretical limit of 
efficiency of insertion. 
    Our future research directed towards the use 
of photographers codes [11]from the LDPC 
codes that have a much more hollow 
configuration. In addition, we also plan to study 
non-binary LDPC codes. Finally, as noted in the 
introduction, current patterns of steganography 
safest take into account the detectability of each 
pixel during insertion. It is therefore necessary to 
include this map of detectability in the creation 
of new code (the code STC is an example 
of code taking into account the map of 
detectability) [12] 
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