
SSL based encoder pre-training for segmenting a
heterogeneous chronic wound image database

with few annotations

Guillaume Picaud1, Marc Chaumont1,2, Gérard Subsol1, and Luc Téot3

1LIRMM, équipe ICAR, Univ. Montpellier, CNRS, France
2Univ. Nîmes Place Gabriel Péri, France

3Cicat-Occitanie, Montpellier, France
{guillaume.picaud, marc.chaumont, gerard.subsol}@lirmm.fr

l-teot@chu-montpellier.fr

Abstract. Segmentation is crucial in medical imaging, but obtaining a
sufficient quantity of annotated data is challenging, limiting the devel-
opment of high-performing deep learning models. Self-supervised learn-
ing (SSL) strategies offer a promising solution to address this lack of
annotation. One such strategy, Dinov2 for Distillation with NO labels,
enabled the creation of the vast LVD-142M database and the training
of encoders, whose weights are now freely accessible. However, clinical
images may not be well represented in LVD-142M. Thus, in the context
of scarce annotated clinical data, we evaluate the benefits of a generic
encoder pre-trained with DINO on LVD-142M versus a lighter one. We
also explore the effect of SSL DINO pre-training strategy directly on the
target dataset. We measure the impact of available label quantity on
segmentation performances. Results show, in a context with few anno-
tated images, specific and lightweight encoder can outperform generically
pre-trained DINO one. Furthermore, DINO SSL pre-training on specific
dataset is beneficial for small encoder.

Keywords: Self supervised learning · Dinov2 · segmentation · chronic
wounds

1 Introduction

A chronic wound is a skin lesion that is not entirely healed after 4 or 6 weeks after
it appears. Various factors can contribute to their occurrence in at-risk popula-
tions such as elderly, diabetic, and disabled people. Chronic wounds constitute
a huge socio-economic issue with severe consequences for patients, ranging from
amputation to death. In 2011, the French health insurance system estimated the
cost of managing pressure sores and ulcers at home to be over one billion euros.
Their prevalence is rising steadily [10], in particular, due to population aging.
Teleconsultation is worldwide growing and enables to put in touch local paramed-
ical teams with experienced physicians which improves general patient healthcare
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inside the territory and fights against medical desert consequences. We can illus-
trate a teleconsultation scenario as follows : a care team is overwhelmed by the
management of a polypathological patient’s chronic wound that is stagnating or
worsening. They decide to contact the chronic wounds expert association. After
a first presentation of the case to assess the severity of the situation, a tele-
consultation is scheduled. The expert will then hold a videoconference with the
patient and his paramedical team to give precious advice regarding the diagnosis
and prescribed care. In this way, Cicat-Occitanie experts have developed over
20 years of experience a considerable database of over 133,000 chronic wound
photographic images taken by nurses with their personal smartphones directly
at patients’ homes. Those pictures are associated with valuable clinical infor-
mation. Some examples are shown in Figure 1. This database is a precious but
under-exploited resource, due to the lack of standardization of the acquisition
protocol and image annotations such as chronic wound masks. Indeed, wound
segmentation could the help medical team to better assess the effectiveness of
the current treatment. However, manual tracing is a time-consuming task that
can be challenging in certain cases even for experts. This results in significant
discrepancies from inter and intra-annotator measurements. Furthermore, this
expert database is characterized by the diversity of acquisition devices (smart-
phones used), scenes and conditions (different patient homes, variations in light-
ing, background, picture shooting, distance between smartphone and wound),
and also wound type and location.
Deep learning methods are an efficient approach for segmenting chronic wounds.
The Diabetic Foot Ulcer Challenge (DFUC)1 makes available annotated database
images but they were acquired in hospital conditions taken by experts. In 2022,
organizers released two thousand images with their segmentation masks. This
competition highlighted the performance of the HardNet-DFUS model [9]. How-
ever, the absence of similar initiatives for a heterogeneous database limits the
development of deep learning approaches that cope with the actual diversity of
clinical cases.
To overcome this issue, self-supervised learning (SSL) may appear as a promising
lead. SSL enables neural networks to learn efficient image features without requir-
ing human supervision. In particular, "Distillation with NO labels" methodology
[1, 11], (DINO) uses the massive LVD-142M database on which Vision Trans-
former, ViT encoder [5] was trained to extract generic and discriminative feature
in a very efficient way. However, clinical images are not specifically represented
by this generic database. Thus, a pre-training on LVD-142M is sub-optimal.
This article aims to explore, in the clinical context of chronic wound segmenta-
tion with few annotations, the performance of a state-of-the-art generic encoder
(pre-trained with DINO on LVD-142M) versus a lighter one, randomly initialized
HarDNet-DFUS encoder. We also investigate the effect of SSL pre-training on
target data before the final segmentation task. Finally, we measure the impact
of the amount of available data for the final segmentation task with the various
pre-training scenarios.

1 https://dfuc2022.grand-challenge.org/
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Fig. 1. Four pictures picked from the expert database illustrate the diversity of acqui-
sition conditions, the chronic wound localization, and also the type.

2 Related work

SSL is an approach where an encoder is trained during a so-called pretext task
in which, instead of using human annotations, relies on pseudo-labels automat-
ically generated from the data itself [12, 16], as long as a huge quantity of data
is available. Once pre-training is complete, the fine-tuned encoder’s weights are
used as initialization for the downstream task which most of the time is a su-
pervised one. In this article, we are particularly interested in the discriminative
approach illustrated by the DINO pretext task because of its state-of-the-art
performances.
DINO uses two encoders of identical architecture, one called the student and
the other the teacher. A multi-crop strategy [2] is applied to the input image:
two "global" views, covering at least half of the original image, and n "local"
views, with a surface area smaller than 50%, are produced. The teacher encoder
will receive the two "global" crops while the student will see all of them. Each
of these views is independently augmented using spatial and color transforma-
tions. During training, both encoders produce a representation of these views
which will be passed to their respective projection heads, a series of linear layers
(MLP). Generated feature maps are then compared using cross-entropy, and the
student encoder’s weights are updated through gradient backpropagation. The
weights of the teacher are updated via an exponential moving average from those
of the student.
Using the carefully curated LVD-142M database, SSL DINO enabled the train-
ing of ViT encoder at different scales (small 21 M, large 307 M, giant 1100
M parameters), see2. However, transformers remain memory-costly and compu-

2 https://github.com/facebookresearch/dinov2
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tational resource-intensive architectures. They manage to outperform convolu-
tional approaches only when the databases are very large.
Hardnet [4], short for "Harmonic Densely Connected Network", is an enhanced
convolutional architecture based on DenseNet [7], aiming to reduce inference
time without compromising encoder performance. To achieve this, the number
and position of residual connections within the convolutional blocks have been
adjusted. Specific research on colon polyp segmentation task led to new contribu-
tion [6] in which the use of HarDNet encoder, combined with modified Cascade
Partial Decoder decoder [14] achieved state-of-the-art performances in various
colonoscopy polyp database in 2021.
The winner of the DFUC2022 competition used and refined module encoder
HarDBlk [8]. The encoder was connected to a segmentation decoder called Lawin
for Large window attention [15]. This encoder-decoder architecture is named
HarDNet-DFUS [9] and is particularly promising for chronic wound analysis.

3 Experiences

3.1 Image Database preparation

The expert dataset gathers over 133,000 images of various types of chronic
wounds (pressure ulcers, diabetic foot ulcers, etc.). This dataset has been au-
tomatically labeled with bounding boxes with the help of a Faster R-CNN [13]
updated with the use of Deformable convolution [17] and previously trained as
a wound detector using database [3] from the DFUC2020 competition3. Only
images with a single predicted wound were retained, totaling 89,127 images.
400 images were then randomly selected for manual segmentation annotation by
two experts using labelme annotation tool4. Those 400 annotated images from
database B2. Remaining images form database B1.
For SSL pre-training, B1 is divided into three categories: training, validation,
and testing, with respective data ratios of 70%, 20%, and 10%.
For supervised segmentation fine-tuning, B2 images are divided into five splits
with repartition of 70%, 20%, 10% of B2. There are no shared images between
the five test sets. In those versions, we remove a certain number of randomly
chosen training images, while the validation and test sets remain unchanged. As
a result, we obtain three groups of five splits where the quantity of training data
is respectively 280, 140, and 70. Thus, we can assess the impact of the training
data quantity for fine-tuning. Five splits analysis is also interesting because it
enables us to test any model on 200 different images in total.

3.2 Training scenarios

We selected ViTl14_reg (307 M) and ViTs14_reg (21 M) configurations, with
initial weights from the Dinov2 article [11]. These two encoders are compared
3 https://dfu2020.grand-challenge.org/
4 https://github.com/labelmeai/labelme
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with the one from HarDNet-DFUS (3 M), initialized randomly. Figure 2 sum-
marizes the training scenarios. Encoders can either be pre-trained using the SSL
DINO method on B1 or undergo no pretext task. During the final task, encoder
weights are either frozen or fine-tuned through a weight unfreezing strategy.
Due to computational constraints, the weights of ViTl14_reg encoder are not
optimized in this article. Also, fine-tuning with freezing strategy on HarDNet-
DFUS without SSL pre-training (i.e. from scratch) is avoided here because of its
irrelevance.

Fig. 2. Training scenario : the flake corresponds to the frozen encoder whereas flame
corresponds to the use of the weight unfreezing strategy.

3.3 Implementation

The described experiments were conducted using an NVIDIA RTX A6000 graph-
ics card with 336 Cuda Cores and 48 GB of memory.
SSL training with DINO is conducted using the library called lightly5. On-the-fly
augmentation is performed during 300 epochs of SSL training with a mini-batch
of 128 images, resulting in the creation of eight views. Resolution of the two
"global" views is set to 224x224 and 98x98 for six "local" views. The projection
head consists of three linear layers. Its input dimension depends on the output
tensor dimension of each encoder, while the dimensions of the other layers remain
unchanged between experiments, with values of 512, 128, and 2048, respectively.
Regarding supervised training on B2 coming after SSL pre-training on B1, ini-
tial weights of encoders correspond to those that minimized the cross entropy
loss function on SSL validation data. Segmentation is performed over 150 epochs

5 https://github.com/lightly-ai/lightly
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Table 1. DICE performances of models without SSL pre-training on B2 test set su-
pervised segmentation task. Results are given as mean ± std on 5 splits

Encoder fine-tuning (B2) Train=70 Train=140 Train=280 line
HarDNet-DFUSrdm 0.69±0.04 0.74±0.03 0.77±0.02 1

ViTs14_reg 0.57±0.04 0.65±0.03 0.65±0.02 2
0.69±0.03 0.72±0.02 0.73±0.01 3

ViTl14_reg 0.64±0.04 0.64±0.02 0.70±0.03 4

Table 2. DICE performances of models with SSL pre-training on B2 test set supervised
segmentation task. Results are given as mean ± std on 5 splits

Encoder fine-tuning (B2) Train=70 Train=140 Train=280 line
HarDNet-DFUSrdm 0.72±0.03 0.73±0.01 0.76±0.02 5

0.76±0.03 0.79±0.01 0.80±0.01 6
ViTs14_reg 0.60±0.06 0.64±0.04 0.67±0.03 7

0.67±0.02 0.71±0.02 0.72±0.03 8

on five splits with the Lawin decoder: four feature maps are extracted from the
encoder and adapted to the four expected inputs of the decoder.
Predictions are penalized by a loss function that combines weighted binary cross-
entropy, weighted intersection over union, and also a boundary loss. This loss
function uses the ground truth G, the final prediction P, intermediate predictions
Pi at inner block i, and boundary prediction PB . GB corresponds to boundary
ground truth. More details can be found in [9].

L = lwBCE(G,P ) + lwIoU (G,P ) + lBCE(GB , PB) +

n∑
i=1

(lwBCE(G,Pi) + lwIoU (G,Pi))

The batch size depends on the GPU memory occupied by the encoder: 12 for
HarDNet-DFUS and for ViT encoders when their weights are frozen, but 2 for
ViTs14_reg during progressive unfreezing. Performance on the test set will be
evaluated using the Dice metric, a commonly used measure in segmentation to
assess the similarity between the model’s prediction and the ground truth.

3.4 Results

During SSL training, an overfitting phenomenon occurs after about a hundred
epochs, regardless of the encoder used. An early stopping strategy is set to 30
epochs to limit computation time, which in total corresponds to approximately
30 hours for one hundred epochs.
Tables 1 introduces the Dice performance on B2 test set according to train-
ing scenarios that do not apply SSL pre-training on B1. Conversely, table 2
refers to scenarios that do apply SSL pre-training on B1. Figure 3 illustrates
the same information but gathered according to fine-tuning choice during su-
pervised segmentation on B2. The left-hand side graph concerns scenarios that
unfreeze encoders whereas the right-hand side graph illustrates scenarios that
kept encoders freezed. Figure 4 illustrates the effect on wound segmentation of
SSL pre-training on B1 by showing the superposition of predicted contouring on
the original picture.
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Fig. 3. Final Dice performances for scenarios in which encoders are unfreezed (left) or
kept freezed (right) during supervised segmentation training on B2.

Fig. 4. Visualization of 3 inferences on test set with HarDNet-DFUS and ViTs14_reg.
Models were fine-tuned for segmentation with B2 version containing 280 training im-
ages. Blue is model without encoder pre-training on B1. Red is model with encoder
pre-training on B1. Green is groundtruth. Thus, vizualisation corresponds to lines 1,
3, 6 and 8 from Table 1 and 2.

3.5 Discussion

When comparing all scenarios at once, HarDNet-DFUS encoder randomly ini-
tialized then pre-train on B1 with the DINO SSL methodology, before supervised
training on B2 with unfreezing fine-tuning strategy, gives the best performances.
Results presented in Table 1 demonstrate that increasing the scale of SSL DINO
pre-trained ViT model leads to improved Dice metric. Indeed, scaling up the
encoder from ViTs14_reg to ViTl14_reg (rising from 21 M to 307 M parame-
ters) is associated with enhanced feature extraction capabilities for the encoder
when it deals with chronic wound segmentation. One should also remark that
a lightweight convolutional encoder such as the one from HarDNet-DFUS (3
M parameters), without undergoing pre-training, achieves better performance
than ViTl14_reg initialized via SSL DINO methodology on LVD-142M. This
observation is made regardless of the amount of training data during the final
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supervised task. This suggests that LVD-142M is not suitable for clinical appli-
cations as specific such as chronic wound analysis.
Thanks to Table 2, we see that for the HarDNet-DFUS model, whatever the fine-
tuning strategy during the supervised task we choose, applying the SSL DINO
methodology on B1 for pre-training results in a Dice metric improvement for
the downstream segmentation task. Interestingly, ViTl14_reg performances are
lower when a pre-training is done on dataset B1 (around 88,000 pictures which
is far smaller than LVD-142M generic database). This phenomenon is indeed
classical and probably due to an insufficient number of training examples.
Figure 4 qualitatively shows the impact of SSL pre-training on B1 for HarDNet-
DFUS and ViTs14-reg models. First, we see that pictures are quite heterogeneous
because they illustrate different types of chronic wounds with different acquisi-
tion conditions. With the left-hand picture, we can see SSL enables both models
to limitate false positive segmentation. On the middle one, SSL enables models
to differentiate the two wound instances. With the right-hand picture, we see SSL
globally improve segmentation by making borders more accurate. In conclusion,
using the SSL methodology on a dedicated database (i.e. B1) with a small en-
coder (HarDNet-DFUS) is more interesting than using a huge one (ViTl14_reg
or ViTs14_reg) pre-trained on a generic dataset (LVD-142M) for the specific
segmentation task. Thus, using our proposition (pre-train with DINO methodol-
ogy a small architecture on the application dataset before unfreezing the encoder
during the downstream task) can lead to better performances. By the way, it also
leads to annotation savings. Indeed, when the encoder is fine-tuned on B2 with
only 70 annotated images, HarDNet-DFUS model achieves similar performances
(76% in Dice metric) compared to the same encoder but without pre-training
on B1, despite the use of 280 annotated data for its segmentation training.

4 Conclusion

In this paper, we have assessed the usefulness of using a DINO-trained encoder
on a specific clinical dataset and segmentation task. We compared, in various
training scenarios, the performances of two encoders: the ViT encoder, whose
weights are derived from the Dinov2 paper, to the lightweight one from the
HarDNet-DFUS model, initialized with random weights. Results indicate that
it is not necessary to use generically pre-trained DINO ViT encoders since con-
ventional lightweight ones may outperform them on specific tasks. Additionally,
pre-training an encoder via DINO SSL on a specific dataset with limited annota-
tions proves to be beneficial for small encoders. It would be interesting to further
explore this topic by investigating the impact of increasing the database on SSL
training through the addition of all public databases related to dermatological
lesions.
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